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Several stress analysis methods were used to find the energy release rate for initiation of an interfacial crack
in a microbond specimen. First, we used a recently derived variational mechanics analysis of the stresses in
a microbond specimen. Previous studies for analysis of crack growth have used shear-lag methods. For a
second analysis, we present a new, and more complete, shear-lag analysis of the microbond specimen. Third,
we consider some previously published theories. For each of the stress analyses, the calculated energy release
rate was used to predict the debonding stress as a function of the droplet length. The predictions were
compared to two experimental results. Our new analyses that include residual thermal stresses were found
to be the best. It was further observed that some of the terms in the analysis are negligible. The remaining
terms provide a simple tool for doing a fracture mechanics analysis of microbond experiments.

KEY WORDS: Microbond Test; Interface; Interface Toughness; Fracture Mechanics; Composites; Residual
Stresses

1 INTRODUCTION

Many researchers have used model single fiber composites to study the fiber/matrix interface. A
recently developed single fiber technique, the microbond test, has been shown to be a reproducible
and relatively simple test method.1−7 Figure 1A shows a schematic view of the microbond test.
The fiber is threaded between a vice or two knife edges and pulled. The knife edges contact the
matrix droplet eventually shearing off the droplet when the load on the fiber gets to the debond
load for the specimen. The experimental data are the debond load and the specimen geometry
(i.e., fiber radius, droplet diameter, and droplet length). Our goal was to develop a new method
for interpreting experimental microbond test data.
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FIGURE 1 A microbond specimen of dimensionless length 2ρ, showing the actual specimen, (A), and an
idealized cylindrical model, (B), under test loading conditions. σf is the background fiber tensile stress or
the stress on the fiber due to weight of the fiber below the droplet. σm is the stress applied to the droplet
during the test. ξ and ζ represent the dimensionless radial and axial coordinates, respectively. The stresses
on the top of the fiber and matrix cylinders are balanced with the σf stress on the bottom of the fiber. The
net axial stress on any cross-section is σ0 = V1σf where V1 is the volume fraction of the fiber.

A recent study has concluded that a critical energy release rate for interfacial crack growth failure
criterion is more accurate than either an average shear1 or total energy8 failure criteria in predicting
the failure load of microbond specimens.8, 9 In this study, a recently derived variational mechanics
analysis,8 a new shear-lag analyses, two existing shear-lag analyses, and a simple limiting model
for long droplet lengths are all used to calculate the energy release rate for growth of an interfacial
crack in the microbond specimen. By assuming that debonding occurs when the energy release
rate reaches a critical energy release rate, denoted as Gic, we predicted debond force as a function
of droplet length for all theories. The predictions were compared to our own experimental results
and to some literature experimental results.

2 MATERIALS AND METHODS

Microbond specimens were prepared by placing a microscopic droplet of epoxy resin (diameter
20-200 µm) on a fiber and curing the droplet by following vendor-recommended procedures. To
aid in specimen positioning, a larger “marker” drop was also cured on the fiber at a measured
distance from the droplet to be tested. Sample measurements of droplet diameter, droplet length,
and distance between the droplet and marker drop were recorded for each specimen (see Fig. 2).
The specimens were then placed in the microbond jig (see Fig. 3) and the fibers were translated
upward at a steady rate while the droplet was held in place by means of two microvise grips.
The droplet was continually observed through a telescope to confirm a clean and complete debond
event. During the debond procedure, the load on the fiber was recorded by computer. Only data
from axisymmetric shaped droplets that generated complete and clean debond events were used for
subsequent analysis.

In order to facilitate the difficult handling of specimens with fragile fibers, each fiber to be tested
was mounted on a cardboard specimen holder. The as-received yarns were cut with a razor into
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FIGURE 2 Schematic diagram showing the experimental parameters of droplet length, l, droplet diameter,
D, and marker distance, d.

FIGURE 3 The microbond testing jig showing the microvise and the fiber. The fiber has a droplet which
is sheared off by the microvise and a marker drop that was used to aid in positioning the droplet within the
microvise.

lengths of approximately 5 cm and stored in covered containers. Individual fibers were then removed
from the yarns and placed on cardboard sample holders and secured with a small drop of Elmer’s R©

glue-all placed at each end of the fiber (see Fig. 2).
The matrix material was Epon 828 which consists of a diglycidylether of bisphenol A (DGEBA)

liquid epoxy resin, and meta-phenylenediamine (MPDA), an amine curing agent. DGEBA and
MPDA were purchased from Shell Chemical Company and Aldrich Chemical Company, respectively.
The recommended stoichiometric ratio to ensure complete curing is 16 parts MPDA to 100 parts
resin by weight.10 Some physical properties of cured Epon 828 are listed in Table I. The epoxy
droplets were cured on the fibers at 75◦C for 2 hours and at 125◦C for 3 hours.

Our experiments used E-glass fibers (obtained from Owens-Corning Fiberglass in Toledo, Ohio)
with a diameter of 21 µm. The literature data we analyzed used Kevlar R© 49 aramid fibers (obtained
from DuPont in Wilmington, Delaware). Table I summarizes some physical properties of these
fibers. The E-glass fibers were used in their as-received state and care was taken not to contaminate
the fiber surfaces with oils, dust, or solvents. To insure surface purity all fibers were handled with
clean tweezers and stored in separate covered containers.
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TABLE I

Mechanical and thermal properties of the fibers and matrix used in this paper and linear fitting
parameters for predicting droplet diameter as a function of length. The transverse and shear
properties of Kevlar R© 49 aramid fibers are difficult to determine. The numbers in this table are
estimates. Fortunately, the precise values of these specific properties do not strongly affect the
calculated energy release rates.

Property E-Glass Kevlar R© 49 Epon 828

Diameter (2r1) (µm) 21 11.7
Tensile Modulus (EA or Em) (GPa) 75 130 3.3
Transverse Modulus (ET ) (GPa) 75 10
Axial Shear Modulus (GA or Gm) (GPa) 32 15 1.23
Axial Poisson’s Ratio (νA or νm) 0.17 0.2 0.35
Transverse Poisson’s Ratio (νT ) 0.17 0.35
Axial CTE (αA or αm) (ppm/◦C) 5 -2 48
Transverse CTE (αT ) (ppm/◦C) 5 60

Diameter vs. Length Slope (A) 0.878 0.943
Diameter vs. Length Intercept (B) (µm) -40.6 -33.2

3 STRESS ANALYSIS AND ENERGY RELEASE RATE

3.1 Variational Mechanics Stress Analysis

The idealized specimen in Fig. 1B was the specimen used for all stress analyses. Instead of an
ellipsoidal droplet, the droplet was assumed to be a cylinder on the fiber. Instead of point loading
by knife edges, the load was assumed to be applied uniformly over the top of the matrix cylinder.
In Ref. [8], the idealized microbond specimen with droplet length l (and axial ratio ρ = l/2r1) was
analyzed by making only one assumption—that the axial stresses in the fiber and in the matrix
cylinders depend only on the axial coordinate (z) and are independent of the radial coordinate (r),
all stresses in the matrix and cylinder can be written in terms of a single unknown function, ψ(ζ),
where ζ = z/r1 is a dimensionless axial coordinate normalized to the fiber radius, r1. The stresses
in the fiber are

σzz,1 = ψ (1)

τrz,1 = −ξψ′

2
(2)

σrr,1 =
ψ′′

16

(
ξ2(3 + νT ) + νm − νT +

2(1 + νm) lnV1

V2
− V2A1

V1A0

)
− V2

V1

(
A3ψ + A4σ0 + A5∆T

A0

)
(3)

σθθ,1 =
ψ′′

16

(
ξ2(1 + 3νT ) + νm − νT +

2(1 + νm) lnV1

V2
− V2A1

V1A0

)
− V2

V1

(
A3ψ + A4σ0 + A5∆T

A0

)
(4)

The stresses in the matrix are

σzz,2 =
σ0

V2
− V1ψ

V2
(5)
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τrz,2 =
V1ψ

′

2V2

(
ξ − 1

ξV1

)
(6)

σrr,2 =
ψ′′

16V2

[
(3 + νm)(1− ξ2V1) + 2(1 + νm) ln ξ2V1 +

V2A1

A0

(
1− 1

ξ2V1

)]
+
(

1− 1
ξ2V1

)(
A3ψ + A4σ0 + A5∆T

A0

)
(7)

σθθ,2 =
ψ′′

16V2

[
(1 + 3νm)(1− ξ2V1)− 2(1− νm) + 2(1 + νm) ln ξ2V1 +

V2A1

A0

(
1 +

1
ξ2V1

)]
+
(

1 +
1

ξ2V1

)(
A3ψ + A4σ0 + A5∆T

A0

)
(8)

In these equations 1 and 2 refer to the fiber and matrix cylinders, respectively, νm is the Poisson’s
ratio of the isotropic matrix, νT is the transverse Poisson’s ratio of the transversely isotropic
fiber, V1 and V2 are the volume fractions of the fiber and the matrix, A1 to A5 are material-
and geometry-specific constants (see appendix), σ0 is the total stress applied in the z direction
(σ0 = V1σf where σf is the background tensile stress—see Fig. 1), ∆T is the difference between the
stress free temperature and the specimen temperature, and ξ is a dimensionless radial coordinate
defined by ξ = r/r1. By axisymmetry, the unspecified shear stresses are all zero. (Note: Eqs. (7)
and (8) correct a misprint in Ref. [8] and follows the originally correct equations in Ref. [11]).

The stresses in equations Eqs. (1)–(8) constitute an admissible stress state. By the principles of
variational mechanics, the best approximation to the true stress state is found by finding the ψ(ζ)
that minimizes the total complementary strain energy. The solution to the minimization problem
presented in Ref. [8] is written as

ψ(ζ) = ψ0 − φ(ζ) (9)

where ψ0 is a constant defined by

ψ0 = −C13σ0 + D3∆T

C33
(10)

and φ(ζ) is the solution to the homogeneous, fourth-order differential equation

d4φ(ζ)
dζ4

+ p
d2φ(ζ)

dζ2
+ qφ(ζ) = 0 (11)

In these equations, Cij , Di, p and q depend only on mechanical properties of the fiber and matrix
and on the geometry of the specimen; they are defined in the appendix. Physically, the constant
ψ0 is the far-field fiber stress or the stress that would exist in the fiber far from the ends of an
infinitely long droplet.

From Fig. 1B and the stresses in Eqs. (1)–(8), the boundary conditions on φ(ζ) at ±ρ are

φ(ρ) = ψ0 −
σ0 − σmV2

V1
φ(−ρ) = ψ0 −

σ0

V1
φ′(±ρ) = 0 (12)

Using these boundary conditions, the solution to Eq. (11) can be expressed as

φ(ζ) =
(

ψ0 −
σ0

V1
+

σmV2

2V1

)
φe(ζ) +

(
σmV2

2V1

)
φo(ζ) (13)

where φe(ζ) and φo(ζ) are even and odd functions of ζ; they are defined in the appendix.
For energy release rate calculations, we need to calculate the total strain energy in the microbond

specimen. Using the stresses in Eqs. (1)–(8) to find the strain energy and integrating over the volume
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of the specimen gives the total strain energy. From calculations in Ref. [8], the strain energy integral
simplifies to

U(ρ) = πr3
1

∫ ρ

−ρ
dζ(C33ψ

2 + 2C35ψψ′′ + C55ψ
′′2 + C44ψ

′2) (14)

(Note: the r3
1 in Eq. (14) corrects a misprint in the corresponding equation in Ref. [8] which

had r2
1). In Eq. (14), we have assumed that σf = σ0 = 0. This assumption follows the typical

microbond experiment1 in which the background fiber stress, σf , is negligible. Eliminating σf leads
to considerable simplification. If subsequent experiments show that σf is an important variable, the
variational mechanics analysis can include its effects by rederiving the strain energy for non-zero
σf (see Ref. [8]). Substituting the known function ψ(ζ) and integrating gives:8

U(ρ) = 2C55ρπr3
1

[
D2

3∆T 2

C2
33

(
C33

C55
− χe(ρ)

ρ

)
+
(

σmV2

2V1

)2 (χe(ρ) + χo(ρ)
ρ

)]
(15)

where the new constant C55 and the new functions χe(ρ) and χo(ρ) are defined in the appendix.

3.2 New Shear-Lag Stress Analysis

The shear-lag model or Cox analysis12 is commonly used to analyze stress transfer from the fiber
to the matrix.12−17 Here we present a new shear-lag treatment of the microbond specimen and cast
it in a form analogous to the above variational mechanics analysis. By the shear-lag assumption,
the rate of change in axial load in the fiber is given by 12

dP

dz
= 2πr1τ = H(u− v) (16)

where P is the axial load in the fiber, τ is the interfacial shear stress, H is a shear-lag parameter,
u is the fiber displacement, and v is the matrix displacement in the absence of the fiber (i.e., the
far-field displacement). If we convert the load to stress, differentiate with respect to z, and express
the equation in the dimensionless ζ coordinate, Eq. (16) becomes

d2ψs(ζ)
dζ2

− ω2ψs(ζ) = −ω2ψ0s (17)

where ψs(ζ) is the average axial stress in the fiber (it is analogous to ψ(ζ) in the variational
mechanics analysis), ω is a shear-lag parameter (ω =

√
H/πEA), and ψ0s is the far-field stress in

the fiber (it is analogous to ψ0 in the variational mechanics analysis). By a simple one-dimensional,
thermal-elastic analysis of an infinitely long fiber in a matrix where the fiber and matrix have equal
axial strains, it is easy to find ψ0s. Casting the result in the form of Eq. (10) gives

ψ0s = −C13sσ0 + D3s∆T

C33s
(18)

where the shear-lag constants (C13s, C33s, and D3s) are defined in the appendix.
Continuing the analogy with the variational mechanics analysis, we write

ψs(ζ) = ψ0s − φs(ζ) (19)

where φs(ζ) is the solution to the homogeneous, second-order differential equation

d2φs(ζ)
dζ2

− ω2φs(ζ) = 0 (20)
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with boundary conditions

φs(ρ) = ψ0s −
σ0 − σmV2

V1
φ(−ρ) = ψ0s −

σ0

V1
(21)

Equation (20) is easy to solve. Using the form of the variational mechanics analysis, the solution is

φs(ζ) =
(

ψ0s −
σ0

V1
+

σmV2

2V1

)
φes(ζ) +

(
σmV2

2V1

)
φos(ζ) (22)

where φes(ζ) and φos(ζ) are even and odd functions of ζ; they are defined in the appendix.
Although shear-lag analyses are normally only derived to give the axial stress in the fiber and the

interfacial shear stress,16 use of stress equilibrium allows one to calculate axial stresses and shear
stresses at any position. The analysis is a one dimensional analogue of the variational mechanics
analysis. The shear stresses that result from the already determined tensile stresses are analogous
to the stresses in Eqs. (1)–(8). Thus the shear-lag stresses in the fiber and matrix are

σzz,1 = ψs (23)

τrz,1 = −ξψs
′

2
(24)

σzz,2 =
σ0

V2
− V1ψs

V2
(25)

τrz,2 =
V1ψs

′

2V2

(
ξ − 1

ξV1

)
(26)

The transverse stresses (σrr and σθθ) are zero, or rather undetermined, because the shear-lag
analysis is a one-dimensional analysis. By axisymmetry, the unspecified shear stresses are zero.
For total strain energy, we can either directly integrate the strain energy, or use Eq. (14) and drop
terms involving the transverse stresses.8 The resulting total strain energy by the shear lag analysis
when σf = σ0 = 0 becomes

Us(ρ) = πr3
1

∫ ρ

−ρ
dζ(C33sψs

2 + C44ψs
′2) (27)

Substituting the known function ψs(ζ) and integrating gives:

Us(ρ) = 2C55sρπr3
1

{
D2

3s∆T 2

C2
33s

[
C33s

C55s

(
1− tanhωρ

ωρ

)
+

χa(ρ)
ρ

]
− D3s∆TσmV2

C33sV1

χa(ρ)
ρ

+
(

σmV2

2V1

)2 [C33s

C55s

(
2 coth 2ωρ

ωρ

)
+

χa(ρ) + χb(ρ)
ρ

]}
(28)

where the new constant, C55s, and the new functions, χa(ρ) and χb(ρ), are defined in the appendix.

3.3 Energy Release Rate Analysis

The most widely used approach for analyzing failure in microbond specimens is to assume that the
droplet shears off the fiber when the average shear stress at the interface, 〈τrz(ξ = 1)〉, reaches the
interfacial shear strength, τic. By integrating the equations of stress equilibrium it is possible to
derive an exact relation between 〈τrz(ξ = 1)〉 and fiber force, F :

〈τrz(ξ = 1)〉 =
F

2πr1l
(29)
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The force, Fd, or the stress, σd = −σmV2/V1, in the fiber at the instant of debonding as a function
of droplet length are thus predicted to be linear:

Fd = 2πr1lτic or σd = 4τicρ (30)

There are two problems with Eq. (30). First, it is in poor agreement with experimental data
over a wide range of droplet lengths. Results presented later in this paper and results in other
publications2, 5, 9 show that debond stress is not linear in ρ, but rather levels off at large ρ. Second,
despite that fact that Eq. (29) is an exact expression of stress equilibrium, the assumption that
average shear stress determines failure is unrealistic. A variational stress analysis8 or a finite
element analysis18 show that the shear stress is nonuniform and that there is a significant radial
tensile stress concentration at the point where the fiber enters the droplet. It is probably incorrect
to ignore these features of the stress state and attribute failure only to the level of average interfacial
shear stress.

In Ref. [8], we proposed several alternative failure criteria. In this paper we discuss a fracture
mechanics method where debonding is predicted based on the energy release rate for initiation of
an interfacial crack. The highest interfacial stresses are at the point where the matrix is contacted
by the microvise (see ζ = +ρ in Fig. 1). It is therefore logical to assume that debonding will be
caused by initiation of an interfacial crack at ζ = +ρ. This assumption agrees with experimental
observations of microbond failures.17 In this section we use the variational mechanics stress analysis
and the shear-lag stress analysis to calculate the energy release rate for initiation of an interfacial
crack — Gi. By assuming that specimen failure occurs when Gi reaches the critical energy release
rate for the interface, or the interfacial toughness, Gic, we further predict σd as a function of droplet
length.

For a crack propagation analysis, we must consider a microbond specimen with an interfacial
crack. Figure 4 shows an idealized microbond specimen with a crack of length a or dimensionless
length 2δ where δ = a/2r1. The specimen is now divided into two regions—region I is the region
within the interfacial crack and region II is the region with an intact interface. Our first step is to
find the stresses and strain energies in each region. We begin by using the variational mechanics
analysis.

Because the interfacial radial stress is tensile before crack formation,8 we assume the crack in
Fig. 4 opens and that the crack surfaces are stress free. The only possible stress state in region I in
which σzz is independent of r is simple uniaxial tension. When σf is negligible, the axial stresses
in the fiber and matrix are

σzz,1 = −σmV2

V1
and σzz,2 = σm (31)

All other stresses are zero. The total strain energy in region I is

UI(δ) = 2δπr3
1

[
σ2
mV2

2V1

(
V2

V1EA
+

1
Em

)]
= 2δπr2

1C33sσ
2
d (32)

The stresses at the top of region II are determined by the stresses in region I. From Eq. (31) the
stresses at the top of region II are identical to the boundary conditions in Eq. (12) when σ0 = 0.
Thus the stresses and strain energy in region II are the stresses and strain energy that exist is a
microbond specimen of dimensionless length 2(ρ−δ), or UII(δ) = U(ρ−δ). The total strain energy
in the cracked microbond specimen is

Uc(ρ, δ) = UI(δ) + U(ρ− δ) (33)
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FIGURE 4 An idealized microbond specimen of dimensionless length 2ρ having an interfacial crack of
dimensionless length 2δ emanating from the top of the droplet. Region I is the cracked region above the
dashed line. Region II is the uncracked region below the dashed line.

The total energy release rate associated with growth of the crack in Fig. 4 is 19

Gi =
∂W

∂A
− ∂Uc

∂A
=

∂W

∂A
− ∂UI(δ)

∂A
− ∂U(ρ− δ)

∂A
(34)

where W is external work and A = 2πr1a = 4πr2
1δ is total crack area. We consider the knife edges

as fixed and σf as negligible. When the debond extends, the only external work is the work done
by the fiber stresses which is expended through the distance uf − um (see Fig. 4). Thus,

∂W

∂A
=

1
4πr2

1

∂W

∂δ
=

σd
4

∂ (uf − um)
∂δ

(35)

By integrating the strains in region I (including thermal strains), the relevant displacement differ-
ence is

uf − um = 4δr1 (D3s∆T + C33sσd) (36)

Evaluating

∂W

∂A
= r1

(
D3sσd∆T + C33sσ

2
d

)
and

∂UI
∂A

=
1

4πr2
1

∂UI
∂δ

=
r1

2
C33sσ

2
d (37)

and substituting into Eq. (34) gives

Gi(δ) =
r1

2

[
C33sσ

2
d + 2D3sσd∆T − 1

2πr3
1

∂U(ρ− δ)
∂δ

]
(38)

Substituting the variational mechanics strain energy in Eq. (15) into Eq. (38), and evaluating the
derivatives at δ = 0 gives the energy release rate for the initiation of interfacial debonding:

Gi(0) =
r1

2

{
C33sσ

2
d + 2D3sσd∆T + C55

[
D2

3∆T 2

C2
33

(
C33

C55
− χ′e(ρ)

)
+

σ2
d

4
(χ′e(ρ) + χ′o(ρ))

]}
(39)
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FIGURE 5 Energy release rate for initiation of an interfacial debond in microbond specimens as a function
of the aspect ratio of the droplet. The energy release rate was calculated by various theories and by finite
element analysis. The square symbols are the results from finite element analysis. The stress applied to the
matrix was -30 MPa. The thermal load was ∆T = −100◦C. The fiber type was E glass and the matrix was
an epoxy.

The required derivatives of χe(ρ) and χo(ρ) are given in the appendix. The only difference when
calculating the energy release rate using the new shear-lag analysis is that U(ρ − δ) in Eq. (38)
must be replaced by Us(ρ− δ). Substituting Eq. (28) into Eq. (38) gives

Gis(0) =
r1

2

{
C33sσ

2
d + 2D3sσd∆T + C55s

[
D2

3s∆T 2

C2
33s

(
C33s

C55s
tanh2 ωρ + χa

′(ρ)
)

+
D3sσd∆T

C33s
χa
′(ρ) +

σ2
d

4

(
χa
′(ρ) + χb

′(ρ)− 4C33s

C55s
csch 22ωρ

)]}
(40)

The required derivatives of χa(ρ) and χb(ρ) are given in the appendix.
Figure 5 plots the energy release rate calculated by variational mechanics, by the new shear-lag

analysis, and by finite element analysis for initiation of an interfacial crack as a function of ρ. The
plot in Fig. 5 is for an E-glass fiber in an epoxy matrix with V1 = 0.10. For the new shear-lag
analysis we set the undetermined parameter, ω, according to the recommendations of Cox:12

ω =

√
2Gm

EA ln r2
r1

(41)

where r2 is the outer radius of the droplet. Typical microbond experiments have ρ values between
5 and 20. Over the range of 5 to 20 in Fig. 5, the variational mechanics and shear-lag models agree
within 10%. The range over which the two theories agree, depends on V1. At low V1 (< 0.05) the
two theories can differ significantly at low ρ. At higher V1 (> 0.05) the two theories are generally
within 10% over the entire range of experimental ρ’s.

The two analytical solutions and the finite element analysis (symbols in Fig. 5) differ by about
20%. We claim this agreement to show the analytical solutions have reasonable accuracy. There is
however no certainty that the finite element analyses gave the correct energy release rates. Finite
element analysis of interfacial cracks is a difficult problem. The necessity of using several finite
values for δ and extrapolating to δ = 0 to find Gi(0) compounds the problem. We used about 1500
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degrees of freedom and crack-closure methods to find the results in Fig. 5. The results, however,
were sensitive to the mesh configuration and the δ’s used for extrapolation. Finer meshes did not
necessarily produce more accurate results. If the mesh was too fine, the crack-closure calculations
would be unpredictably affected by oscillating stresses at the interfacial crack tip.20 At short droplet
lengths, the analytical solutions decreased rapidly while the finite element results did not. This
expected result is caused by a breakdown of the assumption that the axial stresses are independent
of r. This assumption is best for long slender droplets and breaks down for short aspect ratio
droplets.8 Fortunately, typical experimental droplets have ρ > 5.

The analytical solutions all give total energy release rate. The finite element analysis, however,
can be partitioned into mode I and mode II energy release rates. This partitioning reveals that
initiation of debonding is pure mode I fracture. This calculation is contrary to the simplistic view
of the microbond test as shearing off the droplet and therefore being a mode II fracture. The
explanation is that before crack initiation there is a large tensile radial stress at ζ = +ρ and
boundary conditions dictate that interfacial shear stress is zero. This stress state leads to mode
I fracture. As the crack grows, the stress state changes and finite element analysis shows that
the amount of mode II deformation increases. If debonding is controlled by the initiation of the
interfacial crack, however, the microbond test should be considered as measuring the tensile or
mode I failure properties of the interface and not the interfacial shear strength or mode II failure
properties.

In the limit as ρ → ∞, the energy release rate by variational mechanics (Eq. (39)), by Shear
lag (Eq. (40)), and by finite element analysis all become constant. Denoting the limiting value as
G∗i (0), the variational mechanics theory gives

G∗i (0) = lim
ρ→∞

Gi(0) =
r1

2

(
C33sσ

2
d + 2D3sσd∆T +

D2
3∆T 2

C33

)
(42)

The limiting value for the shear lag analysis is the same except that D3 and C33 in the last term are
replaced by D3s and C33s. The limiting values for the variational mechanics and shear-lag analysis
are plotted as dashed lines in Fig. 5. Physically the first two terms correspond to the work term
and the change in strain energy in region I; they are identical to the first two terms in Eqs. (39)
and (40). The last term is all that remains from the change in strain energy in region II. At the top
of region II, there is a stress concentration. As the crack moves this stress concentration moves,
but if the droplet is long, the stress concentration is unaltered and thus releases no strain energy.
The strain energy in region II that is released is released from the opposite end or bottom of the
droplet. If ρ is large, the bottom of the droplet is far away from the stress concentration and the
stresses caused by σd will be negligible. The only strain energy remaining is the thermal strain
energy. The last term in Eq. (42) is thus the amount of thermal strain energy released as crack
growth causes region II to become shorter.

As long as V1 is not too large, Gi(0) will reach its limiting value of G∗i (0) quickly. Figure 5 shows
G∗i (0) is very close to the full Gi(0) for ρ in the range of 5 to 20. Many experimental results fall
within this range and thus we have the potential of analyzing them using the simpler result in
Eq. (42) rather than the more detailed results in Eqs. (39) and (40). When using Eq. (42) we only
have to determine the constants D3, C33, D3s, and C33s. For the shear-lag analysis, we further note
that Eq. (42) does not depend on the unknown shear-lag parameter ω.

We assumed microbond specimens debond when the energy release rate for crack initiation, Gi(0),
is equal to the interfacial fracture toughness, Gic. This assumption implies that there is no initial
debond (δ = 0). There is still, however, a stress singularity at the bimaterial interface where the
fiber enters the matrix; we are assuming that this singularity initiates the debonding. Gi(0), Gis(0)
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and G∗i (0) in Eqs. (39), (40) and (42) are each quadratic in σd. Solving the quadratic equations
and taking the positive root gives

σd(ρ) =
−b +

√
b2 − 4ac

2a
(43)

where for the variational mechanics analysis

a = C33s +
C55

4
(χ′e(ρ) + χ′o(ρ)) (44)

b = 2D3s∆T (45)

c =
D2

3∆T 2

C2
33

(C33 − C55χ
′
e(ρ))− 2Gic

r1
(46)

For the shear-lag analysis

as = C33s

(
1− csch 22ωρ

)
+

C55s

4
(χa′(ρ) + χb

′(ρ)) (47)

bs = 2D3s∆T + C55s
D3s∆T

C33s
χa
′(ρ) (48)

cs =
D2

3s∆T 2

C2
33s

(
C33s tanh2 ωρ + C55sχa

′(ρ)
)
− 2Gic

r1
(49)

where the subscript s has been added to denote shear-lag analysis. For the simple analysis in
Eq. (42)

σd(ρ) = −D3s∆T

C33s
+

√√√√ 2Gic

r1C33s
+

∆T 2

C33s

(
D2

3s

C33s
− D2

3

C33

)
(50)

for a variational analysis. For the shear-lag analysis, replace D3 and C33 by D3s and C33s to get:

σd(ρ) = −D3s∆T

C33s
+

√
2Gic

r1C33s
(51)

3.4 Other Shear-Lag Analyses

Several authors have combined shear-lag methods and fracture mechanics to predict interfacial de-
bonding.16, 17, 21 Here when consider two analyses that specifically addressed the microbond test.
Piggott16 used shear-lag methods to evaluate the stresses and strain energy in pull-out specimens
and microbond specimens. In our nomenclature, he assumed the stresses in the fiber and matrix
are

σzz,1 = −σmV2

2V1
(φes(ζ) + φos(ζ)) τrz,1 = 0 σzz,2 = 0 τrz,2 = −σmV2

4ξV2
(φes′(ζ) + φos

′(ζ))

(52)
As in our shear-lag analysis, all unspecified stresses are zero. Piggott’s fiber stress, σzz,1, is identical
to our shear-lag result in Eq. (23) once it is realized the Piggott set σ0 = σf = 0 and ignored thermal
stresses (∆T = 0). The remaining stresses are different. Piggott assumed that the shear stresses
in the fiber and the tensile stresses in the matrix make only negligible contributions to the total
strain energy. The difference between his τrz,2 and ours is a sign error in Piggott’s result (which
is irrelevant when calculating energy) and a loss of the term linear in ξ (which is a consequence of
stress equilibrium and the assumption that σzz,2 = 0).
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Evaluating the strain energy in the microbond specimen using the above stress state, Piggott
found 16

Us(ρ) = 2ρπr2
1

{(
σmV2

2V1

)2 1
2EA

2 coth 2ωρ

ωρ

}
(53)

This result agrees with our result in Eq. (28) if we set ∆T = 0, C33s = 1/(2EA), and C55 = 0.
The constants change because of the different stress state, in particular because of the assumption
that τrz,1 = σzz,2 = 0. Comparing Eq. (53) to Eq. (28) when ∆T = 0, we find that the two
only agree when V1 is vanishingly small. For pull-out specimens with small V1, which was one of
the intents of Piggott’s analysis,16 the strain energy in Eq. (53) will be a reasonable approxima-
tion. For microbond specimens, where V1 is larger then for pull-out specimens, or for ∆T 6= 0,
Eq. (53) becomes a poor approximation. For typical microbond specimens and typical values of
∆T , Eqs. (28) and (53) differ by at least 50% and by as much as 800%. The conclusion is that it
is a poor approximation to set τrz,1 = σzz,2 = 0. Fortunately, it is straightforward to include them
in a shear-lag analysis.

For predicting failure, Piggott assumed droplet debonding would occur when the total strain
energy per unit interfacial area (Gi = Us/(2πr1l)) becomes equal to Gic.16 The debonding stress is
then predicted to be

σd = 2

√
2GicEAωρ tanh 2ωρ

r1
(54)

A similar total energy release model was also discussed in Ref. [8]. This failure criterion is not a
fracture mechanics criterion. Our experience with experimental results is that it does a poor job
of predicting debond stress as a function of ρ. It predicts a smaller change in σd with ρ than is
experimentally observed.9

Penn and Lee17 attempted to improve on Piggott’s analysis by using a true fracture mechanics
failure criterion. As in Fig. 4, they introduced a cracked region. For region I, they assumed a
simpler stress state of

σzz,1 = −σmV2

V1
and σzz,2 = 0 (55)

This stress state follows Piggott’s approach of neglecting the tensile stresses in the matrix. Their
region I strain energy is

UI(δ) =
2δπr3

1σ
2
d

2EA
(56)

which is identical to Eq. (32) if C33s is replaced by 1/(2EA). For region II, Penn and Lee used
Piggott’s stress state but accounted for the shorter droplet of axial ratio ρ− δ. For energy release
rate analysis, they used

Gi =
∂UI(δ)

∂A
+

∂Us(ρ− δ)
∂A

(57)

This equation differs from the correct equation in Eq. (34) in two ways. First, they ignored the
contribution of external work to Gi. Like our analysis, they assumed the knife edges gripping
the specimen were fixed. They perhaps then incorrectly assumed fixed grips meant no external
work. Any specimen, however, must be gripped in two places. For the microbond specimen the
knife edges grip the matrix and the second grip pulls the fiber. The second grip is not fixed and
the external work done by displacement of the second grip must be included. Another difference
between Eqs. (34) and (57) is the sign on the strain energy derivative. The proper definition of
energy release rate has a negative sign, even under fixed-grip conditions.19 Using Eq. (57) and the
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simplified shear-lag stress state, Penn and Lee found the energy release rate to be 17

Gis(0) =
r1

2

{
σ2
d

2EA
(1 + csch 22ωρ)

}
(58)

Like Piggott’s analysis, this equation agrees with Eq. (40) if we set ∆T = 0, C33s = 1/(2EA),
C55s = 0, and correct the sign error on the csch 22ωρ term. We do not need to correct the sign on
the first term because coincidentally the neglected work term, ∂W/∂A is equal to 2∂UI/∂A. The
predicted debond force becomes

σd =

√
4GicEA tanh2 2ωρ

r1
(59)

In the limit as ρ→∞, the debond force is predicted to be

σd =

√
4GicEA

r1
(60)

which agrees with Eq. (51) if ∆T = 0 and C33s = 1/(2EA).
Figure 5 also plots Gi(0) as calculated by Piggott’s analysis16 and by Penn and Lee’s analysis.17

Both results differ significantly from our analyses and from the finite element calculations. Most of
the discrepancy can be attributed to using 1/(2EA) instead of C33s. For typical volume fractions
used in microbond tests, these two terms differ significantly. In summary, our new shear-lag analysis
differs from previous shear-lag analyses in two important ways. First, our analysis includes residual
thermal stresses. Second, our analysis includes shear stresses in the fiber and tensile stresses in the
matrix. These stresses are easy to include and we found that they are not negligible for typical
microbond specimens.

4 RESULTS

To generate a representative set of data, several fiber types were tested and the microdrop size
(length and diameter) was varied among the samples. Each sample’s droplet length and diameter
were recorded prior to debonding (see Fig. 2). Only axisymmetric droplets were tested. The
debond event was monitored through a telescope positioned near the test sample, and three possible
outcomes were noted: partial debond, droplet shatter, and complete debond. Only the results from
complete debonds were used. The sample preparation and testing procedures are described in
more detail by Scheer.9 Although there was much scatter in the individual data points, a simple
smoothing routine can be applied to the data points. We smoothed the data by averaging the
debond force data over 20 µm increments of length. The smoothed debond force data as a function
of droplet length are plotted in Figs. 7 and 8 for both our 21 µm diameter E-glass fibers and Tesoro’s
Kevlar 49 R© data.2 The error bars on the experiment data points are the standard deviation of the
raw data points within the 20 µm range of smoothed data.

The example energy release rate in Fig. 5 shows that at constant V1, Gi(0) increases as ρ increases.
This result suggests that debond force should decrease as ρ increases. This prediction, however,
is a contradiction of all experimental results as a function of ρ.1−7 The problem is that in real
experiments, V1 is not a constant, but is a function of ρ. Because energy release rate and debond
stress depend on V1 and not just on ρ, it is insufficient to follow the standard practice of recording
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FIGURE 6 Plot of droplet diameter as a function of droplet length data for EPON 828 droplets on E-glass
fibers of diameter 21 µm. The solid line is the best linear fit to the experimental data

only droplet length and debond force.1−7 To do an energy release rate analysis, we must also record
V1 as a function of droplet length.

We calculated V1 and V2 from the measured droplet diameter (D) and length (l). The droplet/fiber
region of the specimen was assumed to be a ellipsoid of revolution with total volume:

V =
4π

3

(
D

2

)2 ( l

2

)
(61)

The volume fraction of the fiber is then

V1 =
πr2

1l

V
= 1.5

(
r1

r2

)2

(62)

where r2 is the radius of the droplet. We recorded droplet diameters for each specimen, but, for
theoretical predictions it is preferable to have a relation between diameter and length. A plot of
droplet diameter as a function length for one of the systems tested (a 21 µm diameter E-glass fiber
with EPON 828 droplets) is shown in Fig. 6. These data were fit to a line

D(l) = Al + B (63)

As seen in Fig. 6, the fit is excellent over the entire range of experimental results. The linear
relation, however, is only expected to be valid when D >> 2r1, because it is impossible for the
droplet diameter to be less than the fiber diameter. In other words D(l) will not continue to follow
the line as l decreases, but instead will level off at D ≈ 2r1. There is a some indication of D(l)
leveling off at the lowest l values in Fig. 6. As long as we restrict analysis to droplets within
the range of experimental droplets, the linear relation provides an accurate measure of D(l). A
consequence of not being able to extrapolate D(l) to small l is that out theoretical curves do not
pass through the origin. If necessary, this artifact could be corrected by using a more complicated
form of D(l) that works for all l. The fitting results for linear D(l) for both material systems
analyzed in this paper are given in Table I.

Experimental results and theoretical predictions for debonding EPON 828 droplets off 21 µm
E-glass fibers are shown in Fig. 7. We fit the experimental results to five different theories—the
variational mechanics analysis (Eq. (43)), the new shear-lag analysis (Eq. (43) using as, bs, and
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FIGURE 7 Plot of debond load versus microdrop length for debonding of Epon 828 droplets off 21 µm
diameter E-glass fibers. The smooth lines are theoretical fits to the experiments using several different
theories. The numbers next to each analysis description are the least squares values for Gic.

cs), the simple limiting analysis for samples with high ρ (Eq. (50)), Piggott’s total energy model16

(Eq. (54)), and Penn and Lee’s shear-lag analysis17 (Eq. (60)). The first three analysis methods
all gave excellent fits and gave Gic of 219 J/m2, 223 J/m2, and 222 J/m2. The fact that the
simple analysis works as well as the other two analyses indicates that all droplet lengths in these
experimental data are in the large ρ range. Piggott’s total energy model gives the worst result and
a Gic of 31 J/m2. The poor fit when using a total energy failure criterion agrees with the poor
results when using a similar failure criterion in Ref. [9]. Penn and Lee’s shear lag analysis also gives
a poor fit and a Gic of 76 J/m2.

When comparing our three theories to Penn and Lee’s equation, we see that the calculated Gic’s
are significantly different. A significant reason for the discrepancies in Gic’s is because our analysis
uses C33s while Penn and Lee’s analysis is equivalent to having C33s set equal to 1/(2EA). For the
fiber volume fractions of our specimens, C33s is considerable larger than 1/(2EA); the fit to Penn
and Lee’s equation compensates for this discrepancy by using a significantly smaller Gic. Although
we do not know of any direct measure of Gic, a value of 220 J/m2 agrees almost exactly with
another energy interpretation of failure at an E-glass/epoxy interface.22 We thus claim that a Gic

of 220 J/m2 is more in line with expectation for epoxy systems than the lower value of 76 J/m2.
Another problem with Penn and Lee’s analysis is that it ignores residual thermal stresses. The
consequences of ignoring thermal stresses depends on the level of ∆T . For the experiments in this
paper, ∆T ≈ −100◦C and the thermal stresses contribute about 10% of the total energy release
rate.

Experimental results and theoretical predictions for debonding EPON 828 droplets off Kevlar R©

49 aramid fibers are shown in Fig. 8. The experimental results in Fig. 8 are from Ref. [2]. Because
that paper did not give the droplet diameter as a function of droplet length, we did some of our
own experiments with Epon 828 droplets on Kevlar R© 49 aramid fibers. The linear fit between
D(l) and l (see Table I) from our data was used to analyze the data in Fig. 8. The variational
mechanics analysis, our shear lag analysis, and the simple analysis gave Gic of 104 J/m2, 105 J/m2,
and 106 J/m2. The fact that the simple analysis works as well as the other two analyses indicates,
again, that all droplet lengths in this experimental data are in the large ρ range. Piggott’s total
energy gave a Gic of 15 J/m2. Penn and Lee’s shear lag analysis gave a Gic of 33 J/m2. The fits of
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FIGURE 8 Plot of debond load versus microdrop length for debonding of Epon 828 droplets off Kevlar R©

49 aramid fibers. The smooth lines are theoretical fits to the experiments using several different theories.
The numbers next to each analysis description are the least squares values for Gic.

these two models were worse than to the first three.
All the shear-lag equations depend on the shear-lag parameter ω. Most shear-lag analyses adopt

the shear-lag parameter recommended by Cox12 (see Eq. (41)). Cox, however, derived this shear-
lag parameter for use with high fiber volume fraction composites (greater than 50%). It should
not be expected to be applicable to low volume fraction conditions that exist in microbond test
specimens, pull-out test specimens16,17,23–26, or fragmentation test specimens.27−31 We might
consider looking for improved fits by treating ω as an adjustable parameter. For our shear-lag
analysis, we found that ω has no affect on the final Gic. The reason is that all specimens are in the
high ρ range and inspection of Eq. (51) shows that in the limit of large ρ, σd is independent of ω.
Varying ω has minor affects on the fits to Piggott’s or Penn and Lee’s equation, but does not lead
to any significant improvement in fit.

5 DISCUSSION AND CONCLUSIONS

For both experimental data sets presented above, the variational mechanics analysis, the shear-
lag analysis, and the simple limiting analysis all gave excellent results. The process of fitting
the theories to experimental results allows one to measure the interfacial toughness, Gic. This
toughness should be interpreted as a mode I toughness of the interface. Previous fracture mechanics
analyses suffer from two problems — incomplete energy balance and failure to account for residual
stresses. Our new analyses correct these problems and we claim they give a useful fracture mechanics
interpretation of microbond tests.

The fact that the simple analysis works as well as the more complete analyses means that for
typical microbond specimens, the energy release rate is in the high ρ limit. In other words, the
energy released comes from a change in length of region I and and a loss of thermal stresses as
region II gets smaller. The details of the complex stress state at the top of region II are irrelevant
because they do not release much energy. The simple variational analysis depends only on D3, C33,
D3s, and C33s (see Eq. (50)). The simple shear-lag analysis is even simpler and depends only on
D3s and C33s. Importantly, the simple shear-lag analysis is independent of the shear lag parameter
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ω. Because the differences between Eqs. (50) and (51) are small, especially for larger values of ρ,
we propose the shear-lag result as a simple and elegant tool for analyzing microbond test results.
To repeat that equation in terms of debond force, Fd

Fd = πr2
1

(√
2Gic

r1C33s
− D3s∆T

C33s

)
(64)

This equation is no harder to use than the currently used average shear stress criterion in Eq. (30).
An important difference, however, is that Eq. (64) gives Fd as a function of fiber volume fraction
V1 (V1 is in C33s), while Eq. (30) depends only on ρ. Our recommendation, therefore, is that when
running microbond tests, one should record debond force, droplet length, and droplet diameter.
Droplet diameter can be used to estimate V1. Recording only debond force and droplet length is
insufficient for a fracture mechanics analysis of the microbond test.

The fact that the simple analysis works well further implies that Gi(δ), which can be evaluated
from Eq. (38) with δ 6= 0, is approximately independent of δ. A plot of the complete Gi(δ) as a
function of δ for a typical microbond specimen shows that this approximation is correct. Gi(δ) is
independent of debond length except when the debond gets near the end of the specimen. At this
point Gi(δ) decreases, but the assumptions in the model also break down making the calculation
of Gi(δ) for δ ≈ ρ unreliable. When energy release rate is independent of crack length, a crack that
initiates will propagate until failure. Thus a constant energy release rate implies that complete
failure can be predicted by the conditions required to cause crack initiation. This observation
supports our use of Gi(0) for predicting complete debonding of the droplet from the fiber.

A concern when using Eq. (64) is verifying that all experimental results are in the high ρ limit.
We have not tried all possible specimen geometries, but Eq. (64) appears to work for typical
polymeric droplets on high-modulus fibers (e.g., E-glass, Kevlar R© aramid, and carbon fibers). If
specimen dimensions or matrix and fiber mechanical properties are substantially changed from
those analyzed in this paper, it is recommended that the applicability of Eq. (64) be verified by
comparing its predictions to the more detailed analysis in Eq. (43). If the comparison shows them
to be similar, than Eq. (64) can be used. If they are not similar, then the Eq. (43) should be used
instead.

A concern about all analyses in this paper is that we analyzed an idealized specimen of concentric
cylinders instead of an actual specimen with an elliptical droplet. The idealized specimen was
adopted to make the analysis tractable, but two results argue that its’ use is acceptable. First,
Day32 did finite element analyses of both the idealized geometry and a realistic elliptical droplet.
He examined the interfacial shear stresses and found that they were virtually unaffected by the
details of the droplet shape. Second, the effectiveness of the simple model demonstrates that a
global analysis works. We expect that the idealized geometry does a good job of capturing the
global strain energy in a microbond specimen.

Recent scanning wettability studies of fibers after the debonding process show that the fracture
process is rarely a pure interfacial fracture.6, 7 Instead it is common to see cohesive failure within the
fiber, in which case a small amount of the surface of the fiber is removed, or cohesive failure within
the matrix, in which case a small amount of matrix remains on the fiber. These observations might
seem to invalidate the analysis of this paper which assumes an interfacial fracture, but actually
they do not. Consider analyzing experiments which all fail by the type of matrix cohesive fracture
observed in Ref. [6]. The matrix left on the fiber affects the stress analysis in region I (see Fig. 4).
The fiber part of region I should be slightly larger and have different mechanical properties while
the matrix part should be slightly smaller. The amount of matrix left on the fiber, however, is
exceedingly small; it is beyond the resolution of scanning electron microscopy.6 Thus the effect of
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the matrix left on the fiber on the strain energy in region I will be negligible. The failure mode also
has no effect on the strain energy in region II because the interface in that region is still intact. We
finally conclude that the energy release rates calculated in this paper are valid for any failure mode
as long as the amount of matrix left on the fiber during matrix cohesive failure or the amount of
fiber removed during fiber cohesive failure is small.

Although our energy release rates and methods for determining Gic are valid, the interpretion of
Gic is profoundly affected by failure mode. Gic is only an interfacial toughness when the failure
mode is at the interface. Matrix failures and fiber failures require reinterpreting Gic as either a
matrix cohesive toughness or a fiber cohesive toughness. Microbond tests should therefore always be
supported by careful observation of the failure process by techniques such as scanning wettability.6
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Appendix

In the variational mechanics analysis, the stresses and energy release rate were expressed in terms
of constants that depend on the sample dimensions and on the mechanical properties of the fiber
and the matrix:

A0 =
V2(1− νT )

V1ET
+

1− νm
Em

+
1 + νm
V1Em

(65)

A1 =
(

1− νT
ET

− 1− νm
Em

)
(1 + νm)

(
1 +

2 lnV1

V2

)
+

2(1− νm)
V2Em

(66)

A2 =
1− νT

ET
− 1− νm

Em
(67)

A3 = −
(

νA
EA

+
V1νm
V2Em

)
(68)

A4 =
νm

V2Em
(69)

A5 = αT − αm (70)

C33 =
1
2

(
1

EA
+

V1

V2Em

)
− V2A

2
3

V1A0
(71)

C35 =
1
16

[
A3

[
(1 + νm)

(
1 +

2 lnV1

V2

)
− V2A1

V1A0

]
− 2A4

]
(72)
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C55 =
1

256

{
1− νT

ET

[
5 + 2νT

3
+ νm(2 + νm)

]
+

4A2(1 + νm)2 lnV1

V2

(
1 +

lnV1

V2

)
− V2A

2
1

V1A0

+
1− νm

Em

[
V 2

2 (1 + νm)(5 + 3νm)− 3V2(1 + νm)(3 + νm) + 6(5 + 3νm)
3V1V2

+
8(1 + νm) lnV1

V 2
2

]}
(73)

C44 =
1
16

[
1

GA
− 1

Gm

(
1 +

2
V2

+
2 lnV1

V 2
2

)]
(74)

C13 = − 1
2V2Em

− V2A3A4

V1A0
(75)

C11 =
1

2V1V2Em
− V2A

2
4

V1A0
(76)

D3 = −V2A3

V1A0
[αT − αm] +

1
2

[αA − αm] (77)

In these equations, EA and ET are the axial and transverse tensile moduli of the fiber, GA is the
axial shear modulus of the fiber, νA and νT are the axial and transverse Poisson’s ratios of the
fiber, αA and αT are the axial and transverse thermal expansion coefficients of the fiber, and Em,
Gm, νm, and αm are the tensile modulus, shear modulus, Poisson’s ratio, and thermal expansion
coefficient of the matrix. (Note: the expression of C35 corrects misprints in both Refs. [8] and [11]).

The constants p and q are

p =
2C35 − C44

C55
and q =

C33

C55
(78)

The functions φe(ζ) and φo(ζ) depend on the values of p and q. When p2 − 4q < 0

φe(ζ) =
2h′2(ρ) cosh αζ cos βζ − 2h′1(ρ) sinhαζ sinβζ

β sinh 2αρ + α sin 2βρ
(79)

φo(ζ) =
2h′4(ρ) sinhαζ cos βζ − 2h′3(ρ) cosh αζ sinβζ

β sinh 2αρ− α sin 2βρ
(80)

where
h1(ρ) = coshαρ cos βρ h3(ρ) = sinhαρ cos βρ α = 1

2

√
2
√

q − p

h2(ρ) = sinhαρ sinβρ h4(ρ) = coshαρ sinβρ β = 1
2

√
2
√

q + p
(81)

and h′i(ρ) is the derivative of hi(ρ) with respect to ρ. When p2 − 4q > 0

φe(ζ) =
β cosh αζcsch αρ− α cosh βζcsch βρ

β coth αρ− α coth βρ
(82)

φo(ζ) =
β sinhαζsech αρ− α sinhβζsech βρ

β tanhαρ− α tanhβρ
(83)

where

α =

√√√√−p

2
+

√
p2

4
− q β =

√√√√−p

2
−
√

p2

4
− q (84)

For strain energy and energy release rate, the functions χe(ρ) and χ0(ρ) and their derivatives,
have the following explicit forms. When p2 − 4q < 0

χe(ρ) = 2αβ(α2 + β2)
cosh 2αρ− cos2βρ

β sinh 2αρ + α sin 2βρ
(85)
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χo(ρ) = 2αβ(α2 + β2)
cosh 2αρ + cos2βρ

β sinh 2αρ− α sin 2βρ
(86)

χ′e(ρ) = 4αβ(α2 + β2)2 sinh 2αρ sin 2βρ

(β sinh 2αρ + α sin 2βρ)2
(87)

χ′o(ρ) = −4αβ(α2 + β2)2 sinh 2αρ sin 2βρ

(β sinh 2αρ− α sin 2βρ)2
(88)

When p2 − 4q > 0

χe(ρ) = αβ(β2 − α2)
1

β coth αρ− α coth βρ
(89)

χo(ρ) = αβ(β2 − α2)
1

β tanhαρ− α tanhβρ
(90)

χ′e(ρ) = α2β2(β2 − α2)
csch2αρ− csch2βρ

(β coth αρ− α coth βρ)2
(91)

χ′o(ρ) = −α2β2(β2 − α2)
sech2αρ− sech2βρ

(β tanhαρ− α tanhβρ)2
(92)

Note that these equations for χ′e(ρ) and χ′o(ρ) correct misprints in Ref. [8].
In the shear-lag analysis, the stresses and energy release rate were expressed in terms of constants

that depend on the sample dimensions and on the mechanical properties of the fiber and the matrix:

C13s = − 1
2V2Em

(93)

C33s =
1
2

(
1

EA
+

V1

V2Em

)
(94)

C55s = ω2C44 − C33s (95)

D3s =
1
2

(αA − αm) (96)

The functions used to define the stress are

φes(ζ) =
cosh ωζ

cosh ωρ
and φos(ζ) =

sinhωζ

sinhωρ
(97)

The functions used to define the strain energy are

χa(ρ) =
1
2

(
tanhωρ

ω
− ρsech 2ωρ

)
(98)

χa
′(ρ) = ωρ sech 2ωρ tanhωρ (99)

χb(ρ) =
1
2

(
coth ωρ

ω
+ ρcsch 2ωρ

)
(100)

χb
′(ρ) = −ωρ csch 2ωρ coth ωρ (101)


