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Abstract: This paper describes algorithms for three-
dimensional dynamic stress and fracture analysis using
the material point method (MPM). By allowing dual ve-
locity fields at background grid nodes, the method pro-
vides exact numerical implementation of explicit cracks
in a predominantly meshless method. Crack contact
schemes were included for automatically preventing
crack surfaces from interpenetration. Crack-tip param-
eters, dynamic J-integral vector and mode I, II, and III
stress intensity factors, were calculated from the dynamic
stress solution. Comparisons to finite difference method
(FDM), finite element method (FEM), and boundary
element method (BEM), as well as to static theories
showed that MPM can efficiently and accurately solve
three-dimensional dynamic fracture problems. Since
the crack description is independent of the object de-
scription, MPM could be useful for simulation of three-
dimensional dynamic crack propagation in arbitrary di-
rections.
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1 Introduction

Because of the difficulties in experimentally measur-
ing high-order physical quantities, such as dynamic J-
integral and stress intensity factors, during fast dynamic
fracture events, computational techniques are receiving
considerable attention. Computer simulation of dynamic
fracture is one approach to extracting detailed informa-
tion for physical quantities of a dynamic crack front at
any instant of time along a highly transient history of
fracture. Computer simulations may be the only possi-
ble method for extracting physical quantities as a func-
tion of position along a complicated (non-planar), three-
dimensional crack front. Therefore, the advancement

of three-dimensional, dynamic fracture mechanics relies
heavily on advancements in numerical techniques.

An early application of numerical methods to dynamic
fracture problems was the finite difference method [Chen
and Wilkens (1977)]. Later, the finite element method
(FEM) became the preferred numerical tool due to a se-
ries of efforts made by Nishioka et al. [Nishioka and
Atluri (1983), Nishioka (1983), Nishioka (1995), Nish-
ioka (1997), Nishioka, Murakami, and Takemoto (1990),
Nishioka (2005)]. FEM, however, has problems cop-
ing with crack propagation whenever the crack may not
propagate along mesh lines. One approach is to imple-
ment moving mesh methods [Nishioka, Murakami, and
Takemoto (1990), Nishioka, Tokudome, and Kinoshita
(2001)] or to remesh the material object. Although such
methods are able to simulate dynamic crack propaga-
tion, the computational efficiency is impacted especially
for three-dimensional problems. This difficulty is one
reason why true three-dimensional effects in dynamic
crack propagation is a relatively un-explored area [Nish-
ioka and Stan (2003)]. An alternative to FEM is to use
meshless methods [Belytschko, Lu, and Gu (1994), Or-
gan, Fleming, and Belytschko (1996), Batra and Ching
(2002), Chen and Chen (2005), Sladek, Sladek, Kri-
vacek, and Zhang (2005)] that have advantages dealing
with arbitrary crack propagation. Although such meth-
ods handle crack propagation better than FEM, they have
trouble accurately dealing with explicit cracks [Nairn
(2003); Guo and Nairn (2004)] and have not dealt with
three-dimensional crack problems.

The material point method (MPM) was introduced as a
numerical method to solve problems in dynamic solid
mechanics [Sulsky, Chen, and Schreyer (1994); Sulsky
and Schreyer (1996); Sulsky, Zhou, and Schreyer (1995);
Zhou (1998)]. In MPM, a solid body is discretized into a
collection of material points (particles) with all the phys-
ical properties such as mass, volume, position, velocity,
and stress. As the dynamic analysis proceeds, the phys-
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ical properties are interpolated onto a background grid.
The equations of motion are solved on the grid, and the
grid variables advanced. The advanced grid solutions are
interpolated back to update the particle properties. Due to
the meshless features of the object discretization, MPM
may have advantages over FEM for modeling of crack
propagation because there is no need for cracks to follow
grid lines. In MPM, the background grid is only used as
a tool to solve the equations of motion, and not used to
describe the object or the crack [Nairn (2003)]. In other
words, the crack is not constrained by grid lines and is
free to be oriented and to propagate in any direction.

Conventional MPM, however, is not capable of handling
explicit cracks due to the nature of a single velocity field
on the background. Recently, conventional MPM was
extended by introducing multiple nodal velocity fields to
solve two-dimensional dynamic crack problems [Nairn
(2003); Guo and Nairn (2004)]. The multiple veloc-
ity fields represent velocities above and below cracks
that enable representation of discontinuities, such as dis-
placement discontinuities, which are necessary for de-
scription of explicit cracks. This paper extends the two-
dimensional dynamic fracture algorithms [Nairn (2003);
Guo and Nairn (2004)] to three dimensional cracks and
three-dimensional crack-front parameter calculations.

2 MPM Algorithm with Explicit Cracks

2.1 Conventional Material Point Method

First consider a solid body without cracks subjected to
volume forces, ~B, and surface forces, ~T , as shown in
fig. 1. The problem is discretized by introducing a back-
ground grid and describing the object with a collection
of material points. By the usual MPM methods [Sulsky,
Chen, and Schreyer (1994)], the equations of motion for
nodal momenta (~Pi) or nodal accelerations (~ai) are

d~Pi

dt
= ML

i ~ai = ~f ext
i +~f int

i = ~f tot
i (1)

where ML
i is the nodal mass and f ext

i and f int
i are nodal

forces given by

ML
i = ∑

p
mpNi(~xp) (2)

~f ext
i = ∑

p

(
mp~Bp +~Fp− k~vp

)
Ni(~xp) (3)

~f int
i = −∑

p
mpσp ·∇Ni(~xp) (4)

Fp
→

Fp
→

Bp
→

Figure 1 : Discretization of a material body into mate-
rial points with applied forces and body forces on a back-
ground grid in conventional MPM.

The sums are over the particles, mp is particle mass, ~Bp

is body force on each particle, ~Fp is an external parti-
cle force used to represent traction loads on the surfaces,
k is an external damping coefficient that can be used to
drive dynamic problems to a static limit,~vp is particle ve-
locity, and σp is particle stress. Ni(~xp) and ∇Ni(~xp) are
shape functions and shape function gradients associated
with node i at the position of particle p. When damp-
ing was used, k was varied until oscillations damped in a
few cycles. The specific value of k has little meaning and
depends on problem size, loading conditions, geometry,
etc..

On each explicit time step of time ∆t, the nodal momenta
are updated using

~P∗i = ~Pi +~f tot
i ∆t (5)

The nodal accelerations (~ai = ~f tot
i /ML

i ) and updated
nodal velocities (~v∗i = ~P∗i /ML

i ) are then used to update
the particle velocity (~vp), position (~xp) and strain tensor
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(εp), as follows:

~v∗p = ~vp +∆t ∑
i
~aiNi(~xp) (6)

~x∗p = ~xp +∆t ∑
i
~v∗i Ni(~xp) (7)

ε
∗
p,mn = εp,mn +

∆t
2

(
∂vp,m

∂xn
+

∂vp,n

∂xm

)
(8)

(m,n = 1,2,3)

where ∂vp,m/∂xn denote the velocity gradients of the par-
ticles, evaluated by

∂vp,m

∂xn
= ∑

i
vi,m

∂Ni(~xp)
∂xn

(9)

Once the strain or velocity gradient increments on the
particles are determined, the stress increment of the par-
ticles can be determined by any implemented constitutive
law for the material. Notice that Eq. (8) updates the strain
using particle velocities at the start of the time step rather
than using the updated particle velocities [Bardenhagen
(2002)]. The initial MPM algorithm [Sulsky, Chen, and
Schreyer (1994)] updated strain using ~v∗p, but frequently
gave poor results. The initial algorithm has been replaced
by updating strain as in Eq. (8), by a modified approach
that updates strain after particle velocity updating [Sul-
sky, Zhou, and Schreyer (1995)], or by a combination of
these two approaches [Nairn (2003)]. The calculations in
this paper used the update based on initial velocities.

2.2 Cracks in the Material Point Method (CRAMP)

The previous section gave the algorithms for conven-
tional MPM analysis when there are no cracks. In con-
ventional MPM, the background grid describes a single
velocity field, which makes it impossible to record dis-
continuous velocity fields that occur at cracks. The es-
sential difference of MPM with explicit cracks and con-
ventional MPM is that the background grid has dual
nodal velocity fields, which are used to record the proper-
ties of the particles above and below the cracks, respec-
tively [Nairn (2003); Guo and Nairn (2004)]. The ex-
tension of MPM to have explicit cracks has been termed
CRAMP for CRAcks in MPM [Nairn (2003)]. Each time
step of a CRAMP analysis includes the following tasks:

a. Determine the velocity field of each particle-node pair:
The first step in CRAMP is to detect the velocity field
for each particle-node pair (with non-zero shape func-
tion or with p and i such that Ni(~xp) 6= 0), denoted by

ν(p,1)=1

ν(p,3)=1

ν(p,3)=2

ν(p,2)=1

ν(p,2)=2

1
2

3

Figure 2 : Velocity fields of the particle-node pairs when
the node is in crack and non-crack zones: (1) node in a
non-crack zone (both the node and the particles around it
are in the same side of the crack); (2) node in crack-zone
and above the crack; (3) node in crack-zone and below
the crack.

ν(p, i) = 1 or 2. Here 1 denotes either a particle-node pair
remote from all cracks (such as the particles around node
1 in fig. 2) or a particle-node pair near a crack but with
the particle above the crack (such as the particles around
nodes 2 and 3 in fig. 2 and above the crack). ν(p, i) = 2
denotes a particle-node pair near a crack but with the par-
ticle below the crack (such as the particles around nodes
2 and 3 in fig. 2 and below the crack). A node is near
a crack if a connecting line from that node to any parti-
cle surrounding the node (with non-zero shape function)
crosses the crack surface. In three-dimensional MPM
analysis with cracks, the crack surface is discretized into
a set of triangular elements, and the crack front is repre-
sented by a set of spatial line segments, as shown in Fig-
ure fig. 3a. The detailed algorithms to determine the ve-
locity fields are given in Appendix A. The determination
of velocity fields is the most time-consuming additional
calculation in CRAMP, especially for three-dimensional
problems; it must be done efficiently.

The above step refers to a single crack. The algorithm
is trivially extended to any number of cracks provided
velocity fields at each node can be associated with a sin-
gle crack. Dealing with interacting cracks or with crack
branching is possible, but requires dealing with the possi-
bility of more than two velocity fields at nodes near mul-
tiple cracks or with increasing the resolution to resolve
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the two cracks without needing interacting nodes.

b. Interpolate particle properties onto the grid and solve
the equations of motion: Once the velocity fields are
known, the particle properties (mass and momentum) are
interpolated to the nodes, obtaining the nodal values for
the two velocity fields:

~vi,k =
~Pi,k

ML
i,k

k = 1,2 (10)

where ~Pi,k and ML
i,k are the nodal momenta and mass for

velocity field k calculated with

ML
i,k = ∑

p
mpNi(~xp)δk,ν(p,i) (11)

~Pi,k = ∑
p

mp~vpNi(~xp)δk,ν(p,i) (12)

where δk,ν(p,i) is the Kronecker delta. Similarly, the nodal
forces are

~f ext
i,k = ∑

p

(
mp~Bp +~Fp− k~vp

)
Ni(~xp)δk,ν(p,i) (13)

~f int
i,k = −∑

p
mpσp ·∇Ni(~xp)δk,ν(p,i) (14)

The initial equations of motion at each node are:

d~Pi,k

dt
= ~f ext

i,k +~f int
i,k (15)

Remote from cracks, all nodes have a single velocity field
assigned to ν(p, i) = 1; the k = 1 equations for these
nodes reduce to conventional MPM. Near cracks there
will be two velocity fields. When these two fields are up-
dated, it is important to constrain the update to prevent
overlapping of crack surfaces. We implemented contact
by stick conditions or frictional sliding [Bardenhagen,
Guilkey, Roessig, Brackbill, Witzel, and Foster (2001);
Nairn (2003)]. The contact algorithm can be described
physically as adding nodal forces, ~f con

i,k , to conform to the
contact law. The total nodal force and momentum update
become:

~f tot
i,k = ~f ext

i,k +~f int
i,k +~f con

i,k = ML
i,k~ai,k (16)

~P∗i,k = ~Pi,k +~f tot
i,k ∆t (17)

The contact forces are described in Appendix B.

c. Update the properties of the particles: The posi-
tion and velocity of the particles are updated using the

nodal accelerations (~ai,k = ~f tot
i,k /ML

i,k) and advanced nodal
velocities (~v∗i,k = ~P∗i,k/ML

i,k) for the appropriate velocity
field:

~v∗p = ~vp +∆t ∑
i
~ai,ν(p,i)Ni(~xp) (18)

~x∗p = ~xp +∆t ∑
i
~v∗i,ν(p,i)Ni(~xp) (19)

The strain update proceeds as above in Eq. (8) except the
velocity gradients are found from

∂vp,m

∂xn
= ∑

i
vi,m,ν(p,i)

∂Ni(~xp)
∂xn

(20)

where vi,m,k denotes the mth component of the kth velocity
field on node i. Once the strain or velocity gradient incre-
ments are known on the particles, the stress increment on
the particles can be determined by any implemented con-
stitutive law for the material, exactly as in conventional
MPM.

d. Move the crack surface: In MPM, the crack surface
needs to be updated to translate along with the deform-
ing body. In three-dimensional MPM analysis, the crack
surface is discretized into a set of triangular elements
with mass-less particles at the corners of the triangles.
These elements can represent any crack surface shape,
including non-planar cracks. The crack surface position
updates by moving the crack particles using the updated
center-of-mass nodal velocity field at the crack particle
(~v∗c,cm):

~x∗c =~xc +~v∗c,cm∆t (21)

where~xc is the position of a particle in the crack surface.
The crack-particle velocity is extrapolated from the grid
using

~v∗c,cm = ∑
i
~v∗i,cNi(~xc) (22)

where~v∗i,c is the updated center-of-mass velocity at node
i:

~v∗i,c =
ML

i,1~v
∗
i,1 +ML

i,2~v
∗
i,2

ML
i,1 +ML

i,2
(23)

3 Calculation of J-Integral and Stress Intensity Fac-
tor

For numerical fracture mechanics calculations, it is de-
sirable to calculate J-integral and stress intensity factors
at the crack tip. For 2D problems, these terms are found
at the crack tip [Guo and Nairn (2004)] and only involve
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Figure 3 : 3-D crack description, crack-front coordinate
system, and J-integral contour: (a) crack surface dis-
cretization. (b) J-integral contour (Γε ), which is a circle
centered at crack tip in the x1-x2 plane and intersecting
the crack surface at point c.

mode I and mode II stress intensity factors. For 3D prob-
lems, these terms are calculated as a function of position
along the crack front and add a mode III stress intensity
factor. Calculation of 3D, crack front parameters is de-
scribed in this section.

3.1 Crack-Front Coordinate System

The crack front of a 3D crack is divided into a series
of crack-front segments. We can simplify many oper-
ations if a transformation of the coordinate systems is
performed prior to calculation of the J-integral compo-
nents. Let X1, X2 and X3 be a global Cartesian coordinate
system; and x1, x2 and x3 be the crack-front coordinate
system for a particular crack-front node (see fig. 3). For
the definition of a crack-front coordinate system at any
point, it is sufficient to have the direction cosines for a
unit vector along x2 that is normal to the crack surface at
that position:

~ν2 = {l2,m2,n2} (24)

and the direction cosines for a unit vector along x3 that
is tangential to the crack front and in the crack surface at
that point:

~ν3 = {l3,m3,n3} (25)

The direction cosines of the last axis are then

~ν1 = {l1,m1,n1}=~ν2×~ν3 (26)

The transformation of coordinates, displacements, dis-
placement gradients, and stress tensor are then:

xi = αi jX j (27)

ui = αi ju
g
j (28)

ui, j = αimα jnug
m,n (29)

σi j = αimα jnσ
g
mn (30)

where the variables with superscript g stand for the val-
ues in the global coordinate system and αi j is the coordi-
nate transformation matrix:

αi j =

 l1 m1 n1
l2 m2 n2
l3 m3 n3

 (31)

3.2 Dynamic J-integral Vector

The most general and useful way to predict the behavior
of a cracked body is through the use of the J-integral frac-
ture criterion. The definition of J-integral components
at a crack tip in dynamic fracture analysis was derived
by Nishioka and Atluri (1983) and Nishioka (1995). For
each crack-front segment, the dynamic J-integral vector
is defined in the crack-front local coordinates by

Jk = lim
ε→0

Z
Γε

[
(W +K) ·nk−σi jn j

∂ui

∂xk

]
dΓ (32)

=
Z

Γ+Γc

[
(W +K) ·nk−σi jn j

∂ui

∂xk

]
dΓ

+
Z

VΓ

(
ρüiui,k−ρu̇iu̇i,k

)
dV (33)

where k = 1, 2; W and K denote the stress-work density
and kinetic energy density, respectively; σi j are stresses;
ui represent displacements (accordingly, ∂ui/∂xk are the
components of the displacement gradient); nk are com-
ponents of the unit normal vector (~n) to the J-integral
contour Γε (see fig. 3b). Furthermore,

W =
Z

σi j dεi j (34)

K =
1
2

ρu̇iu̇i (35)

where ρ is the mass density.

Integral paths are defined as follows: Γ is a far-field con-
tour that encloses the crack tip and envelops a volume VΓ;
Γε is a near-field contour arbitrarily close to the crack
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tip and envelops an infinitesimal volume Vε; and Γc is
the crack surface enclosed by Γ. In practice, we usually
select a near-field contour which is a circle centered at
crack tip with a radius of 2 times of mesh cell size, as
shown in fig. 3b. Note that the k = 1 component (J1) in
Eq. (33) is the total energy release rate for elastic materi-
als.

The key terms in Eqs. (32) and (33) are known on the
particles, but to calculate dynamic J-integral, they have
to be extrapolated to the nodes for subsequent numerical
integration. The extrapolations to the grid are

qi,k =
∑p mpqpNi(~xp)δk,ν(p,i)

ML
i,k

(36)

where qi,k is the value of the kth velocity field at node i
for any property q and qp is particle value of the property.
Once the nodal results are obtained, the solution at any
position (~Xp) for either velocity field is

q(~Xp) = ∑
i

qi,ν(p,i)Ni(~X) (37)

J-integral is calculated at crack-front nodes, as shown in
fig. 3a. There are several steps to the task:

1. Find the intersection (point c in fig. 3a) between the
J-integral contour and the crack surface;

2. Divide the J-integral contour into n j segments. Ac-
cordingly, there are n j + 1 points along the J-
integral contour;

3. Find the coordinates (~xp) of the points on the con-
tour in the local crack-tip coordinates;

4. Determine the coordinates (~Xp) of the points in
the global coordinates by coordinate transformation
(Eq. (27));

5. Compute the solutions of all required, J-integral
terms in Eqs. (32) and (33) at the points (~Xp) in the
global coordinates using Eq. (37);

6. Transform the global solutions for all terms to
the crack-front coordinates, getting the solutions
for strain-energy density (W ), kinetic-energy den-
sity (K), stresses (σi j) and displacement gradients
(∂ui/∂x j) in the crack-tip coordinates.

Once the solutions of the variables required for J-integral
calculation are determined in the crack-tip coordinates,
the J-integral in the local coordinate system can be cal-
culated by numerical integration using the midpoint rule:

Jk =
πr
n j

n j

∑
i=1

(
F i

k +F i+1
k

)
k = 1, 2 (38)

where summation is conducted on the segments of the J-
integral contour or radius r and F i

k denotes the value of
integrand (Fk) at point i on the J-integral contour:

Fk = (W +K)nk−σi jn j
∂ui

∂xk
(39)

when using Eq. (32). Numerical results showed that n j =
16 was sufficient for accurate results.

3.3 Calculation of Dynamic Stress Intensity

Once the dynamic J-integral is obtained, the results can
be converted to crack tip mode I, II, and III, stress inten-
sity factors. For isotropic, linear elastic materials, the re-
lation between the total energy release rate (G = J1) and
the stress intensity factors is [Nishioka (1995); Nishioka,
Murakami, and Takemoto (1990)]

G =
1
2µ

(
AIK2

I +AIIK2
II +AIIIK2

III
)

(40)

where KI , KII , and KIII are the components of pure modes
I, II, and III stress intensity factors. AI , AII , and AIII are
parameters related to crack propagation velocity (C):

AI =
βI(1−β2

II)
4βIβII − (1+β2

II)2 (41)

AII =
βII(1−β2

II)
4βIβII − (1+β2

II)2 (42)

AIII =
1

βII
(43)

where

βI =

√
1−C2

C2
s

(44)

βII =

√
1−C2

C2
d

(45)

where C2
s = µ/ρ and C2

d = (κ+1)µ/((κ−1)ρ), and µ and
ρ are shear modulus and density of the material. Taking
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the limit as C → 0 for the stationary crack calculations in
this paper leads to AI = AII = (κ+1)/4, and AIII = 1. In
the above equations, κ = (3−ν)/(1+ν) for plane stress
and κ = 3−4ν for plane strain, where ν is Poissons ratio.

According to linear elastic fracture mechanics, the stress
intensity factors can be expressed by the crack opening
displacements near the crack tip

∆uI =
2(1−ν)

µ

√
R
2π

KI (46)

∆uII =
2(1−ν)

µ

√
R
2π

KII (47)

∆uIII =
2
µ

√
R
2π

KIII (48)

where ∆uI , ∆uII , and ∆uIII are the crack opening, shear-
ing, and tearing displacements, taken in the limit as the
distance R from the crack tip approaches zero. Combin-
ing Eq. (40) with the crack-tip displacements, the stress
intensity factors can be found from the total energy re-
lease rate and the ratios of the crack opening displace-
ments using

|KI| =

√
2µG

AI +AIIγ
2
12 +AIIIγ

2
31

(49)

|KII| = |γ21KI| (50)

|KIII| = |γ31KI| (51)

where γ21 = ∆uII/∆uI and γ31 = ∆uIII/∆uI . These equa-
tions assume ∆uI is non-zero. If it is zero, alternate equa-
tions can derived. If ∆uII is non-zero, the relations are:

|KII| =

√
2µG

AIγ
2
12 +AII +AIIIγ

2
32

(52)

|KI| = |γ12KI| (53)

|KIII| = |γ32KI| (54)

where γ12 = ∆uI/∆uII and γ32 = ∆uIII/∆uII . If ∆uIII is
non-zero, the relations are:

|KIII| =

√
2µG

AIγ
2
13 +AIIγ

2
23 +AIII

(55)

|KI| = |γ13KI| (56)

|KII| = |γ23KI| (57)

where γ13 = ∆uI/∆uIII and γ23 = ∆uII/∆uIII. The signs
of the stress intensity factors are determined by the signs

  120
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X140
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Figure 4 : Sketch of a rectangular rod (half) with an em-
bedded elliptical crack under axial tension (dimensions
in mm).

of the corresponding crack tip displacements (∆uI , ∆uII ,
and ∆uIII).

4 Results and Discussion

4.1 Rectangular Rod with an Embedded Elliptical
Crack

To verify the above algorithms and MPM for solving
three-dimensional fracture problems, a rectangular rod
with an embedded elliptical crack subjected to an axial
tensile load (σ(t) = 400 MPa for t ≥ 0) was employed
to calculate dynamic J-integral and stress intensity. As
shown in fig. 4, the specimen was 300 mm long, 180 mm
wide and 120 mm high, and loaded dynamically in the
axial direction. An elliptical crack, with a major axis of
70 mm and a minor axis of 40 mm, was located cen-
trally in the mid-plane of the specimen. Only half of the
specimen along the loading direction is shown in fig. 4 to
show the crack surface. The material used in the analysis
was assumed to be linear elastic with shear modulus of
77 GPa and bulk modulus of 165 GPa (i.e., tensile mod-
ulus of 200 GPa and Poissons ratio of 0.298). The mass
density of the material was 7900 kg/m3.

Because of the bi-axial symmetry of the specimen, only
one quarter of the specimen (X1 ≥ 0 and X2 ≥ 0) was ana-
lyzed. The entire length in the X3 direction was analyzed
to make the crack an internal, explicit crack. The size
of the cells in the background mesh were varied from
7.5× 7.5× 7.5 mm to 3× 3× 3 mm, which generated
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Figure 5 : Effect of mesh size on the dynamic stress in-
tensity in a rectangular rod with an embedded elliptical
crack

from 30,720 to 480,000 particles in total. A reduction in
cell size by linear factor f increased computational time
by a factor of f 4. The power of 4 was due to each geomet-
ric dimension and the time dimension due to smaller cells
requiring smaller step sizes. The crack calculations did
not cause additional time increases for smaller cells. The
J-integral and stress intensity factor at the deepest point
(point A in fig. 4) were calculated. The J-integral contour
was a circle in the X2-X3 plane with its center located at
point A and a radius equal to two cell widths. The re-
sults for dynamic KId , normalized to the static KIs of 83.6
MPa

√
m, for three different mesh cell sizes are given in

fig. 5. These undamped calculations show the initial os-
cillations in dynamic stress intensity factor as the stress
wave first encounters the crack tip. The results show that
stress intensity factor was insensitive to the mesh sizes
used and therefore converged even for relatively coarse
meshes. The coarsest mesh (7.5 mm cells) had particle
spacings that were 9.4% of the crack length. The results
were further validated by comparison to calculations on
the same specimen by other methods. Figure 6 compares
MPM results to prior numerical results evaluated by the
finite element (FEM) [Nishioka (1995)] and finite differ-
ence methods (FDM) [Chen and Wilkens (1977)]. The
results of stress intensity evaluated by MPM agreed very
well with FEM results. There was more deviation when
compared to FDM, which is likely because FDM is less
accurate than either FEM or MPM.

Path independence of the dynamic J-integral was evalu-
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Figure 6 : Comparison of the results of the dynamic
stress intensity factor evaluated by MPM, finite element
method (FEM) and finite difference method (FDM) for a
rectangular rod with an embedded elliptical crack.

ated at constant mesh size (∆ = 3 mm mesh) while vary-
ing the radius of the path using r = 6, 9, or 18 mm (see
circle in fig. 3b). The results for dynamic J-integral cal-
culated by MPM using either Eq. (32) or Eq. (33) are
plotted in fig. 7 and fig. 8. The results in fig. 7 show that
Eq. (32), which excluded the volume integral term, is rel-
atively insensitive to path size for this problem and the
chosen path sizes, but does start to show deviations when
r = 18 mm. In contrast, the full equation in Eq. (33) is
path independent as shown in fig. 8. Provided the path is
small, the dynamic J-integral can be found by the contour
integral in Eq. (32), which is computationally more effi-
cient. For larger paths, accurate path-independent results
require both the contour integral and the volume integral
in Eq. (33). The volume integral was evaluated numeri-
cally over the zone enclosed the the path.

4.2 Thin-Walled Cylinder with Inner-Surface Crack

The next example was a thin-walled cylinder with an
elliptical crack on the inner surface. A cylinder, with
radius R = 200 mm and thickness t = 40 mm, was
loaded axially by a uniform tension (σ(t) = 100 MPa,
t ≥ 0). Figure 9 depicts half the cylinder with a length of
2l = 2×120 mm. A circumferential semi-elliptical crack
was located at the inner surface of the cell as shown in
fig. 9, where points A, B, and C are on the minor and
major axes of the elliptical crack. The semi-elliptical
crack was assumed to have a major axis of BC = 80 mm
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Figure 7 : Effect of the size of the contour on the J-
integral when calculated without the volume integral, i.e.,
when using Eq. (32).
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Figure 8 : Effect of the size of the contour on the J-
integral when calculated with the volume integral, i.e.,
when using Eq. (33).
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Figure 9 : Sketch of a thin-walled cylinder (half of the
specimen) with an elliptical crack on the inner surface
and loded in tension.

(2c = 80.676 mm) and a depth of a = 21 mm from the
inner surface. Due to symmetry, only half (X2 ≥ 0) of the
cylinder cell was analyzed, and the displacement bound-
ary conditions on the plane of X2 = 0 were thus set to
u2 = 0. The entire length in the X3 direction was analyzed
to make the crack an internal, explicit crack. The mate-
rial properties were the same as in the previous example.
The cell size for background mesh was 3× 5× 5 mm,
which generated a total of 643,584 particles. The non-
cubical grid was used to add resolution in the X1 direc-
tion for better resolution of the crack. Such grids are fine
in MPM.

The dynamic stress intensity at the deepest location
(point A in fig. 9) of the crack was calculated using a cir-
cular contour in the X1-X3 plane with the center located
at point A and a radius of 10 mm. The dynamic stress
intensity is plotted in fig. 10, where the dynamic stress
intensity was normalized by the static stress intensity re-
sult [Anderson (1995)]:

KIs = σ

√
πa
Q

Ft (58)

where σ is the applied stress. Quantities Q and Ft are
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Figure 10 : Dynamic stress intensity evaluated by MPM
for a thin-walled cylinder with an elliptical crack on the
inner surface under axial tension.

given by

Q = 1+1.464
(a

c

)1.65
(59)

Ft = 1+

[
0.02+ξ(0.0103+0.00617ξ)

+0.0035(1+0.7ξ)
(

R
t
−5

)0.7
]

Q2 (60)

where ξ = 2c/t. Note that the formula (Eq. (58)) for the
static stress intensity is only valid for thin cylinders with
R/t ≥ 5; the MPM calculations had R/t = 5. For these
calculations KIs = 24.1 MPa

√
m.

As seen in fig. 10, the dynamic stress intensity without
damping vibrates with an average value approximately
equal to the static stress intensity factor (KIs). With the
addition of damping, the dynamic stress intensity con-
verged to the static value at long times.

4.3 Cylindrical Bar with an Inclined Crack

For a 3D, mixed-mode stress intensity example, a cylin-
drical bar with an inclined penny-shaped crack was se-
lected, as shown in fig. 11. The specimen was subjected
to a step loading (σ(t) = 40 MPa, t ≥ 0). The modulus
and Poisson ratio of the material were set to E = 2 GPa
and ν = 0.298. The angle between the crack surface and
loading direction was 60◦. The length and radius of the
cylindrical bar were 100 mm, and 50 mm, respectively.
The mesh size used was 2×2×2 mm, and the radius of
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Figure 11 : Sketch of a cylindrical bar with an inclined
penny-shaped crack under axial tension.

J-integral path was 4 mm, i.e., twice the cell size. In or-
der to compare the MPM results with the static theoreti-
cal results, artificial damping was added to the MPM cal-
culations. The static theoretical results are incorporated
in the figures for comparison, which are [Tada, Paris, and
Irwin (2000)]:

Ks
I =

2
π

σ
√

πacos2
α (61)

Ks
II =

4
π(2−ν)

σ
√

πacosαsinαcosθ (62)

Ks
III =

4(1−ν)
π(2−ν)

σ
√

πacosαsinαsinθ (63)

where α = 90◦−φ.

The results for dynamic stress intensity in modes I, II,
and III at points A (where θ = 0◦), B (where θ = 45◦, and
C (where θ = 90◦) are plotted in figs. 12, 13, and 14. All
stress intensity factors were normalized by

K0 =
2
π

σ
√

πa (64)

All three dynamic stress intensity factors, with damping,
converged to the static theoretical results at long times.

The MPM results for normalized stress intensity fac-
tors along the crack front from θ = 0◦ to 90◦ at time
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Figure 12 : Mode I, II, and III stress intensity factors
at point A on the edge of an inclined penny-shaped crack
under axial tension calculated by MPM with damping.
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Figure 13 : Mode I, II, and III stress intensity factors
at point B on the edge of an inclined penny-shaped crack
under axial tension calculated by MPM with damping.
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Figure 14 : Mode I, II, and III stress intensity factors
at point C on the edge of an inclined penny-shaped crack
under axial tension calculated by MPM with damping.

t = 600 µs, which corresponds to convergence to the
static results, are compared with the normalized, analyt-
ical, static stress intensity factors in fig. 15. The MPM
results agreed well with the static theoretical results.

5 Conclusions

This paper describes algorithms for crack-tip fracture pa-
rameters for three-dimensional dynamic problems with
explicit cracks using the meshless material point method
(MPM). The results for J-integral and stress intensity
factors evaluated by MPM were compared with the re-
sults generated by other approaches, including finite el-
ement method (FEM), finite difference method (FDM),
dynamic boundary element method (BEM), as well as
static theories. The comparisons showed that MPM is
a reliable approach for conducting dynamic stress and
fracture analysis with high computational accuracy and
efficiency. Since the crack surface is an independent en-
tity in MPM analysis, not connected to the mesh, there
is no need to re-mesh the problem during simulations
of 3D crack propagation. It is reasonable to expect that
MPM will be a useful tool in the simulation of three-
dimensional crack propagation.
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Appendix A: Determination of Velocity Fields

In CRAMP or MPM with cracks, the first task is to deter-
mine the velocity field of each particle-node pair. Figure
2 illustrates a material body with a crack, and the material

body has been discretized into a collection of material
points (particles). If all the particles with non-zero shape
function around a node are on the same side of the crack,
that node is in a non-crack zone (see node 1 in fig. 2).
Otherwise, the node is in crack zone (see nodes 2 and 3 in
fig. 2). In a typical MPM analysis, most nodes will be in
non-crack zones, except for the few nodes around crack
surfaces. For any node i in a non-crack zone, the velocity
field of any particle is set to ν(p, i) = 1. For a node in
a crack zone, the particles around it with non-zero shape
function are either above the crack or below the crack.
If a particle around the node is above the crack, the ve-
locity field of the particle-node pair is set to ν(p, i) = 1,
otherwise it is set to ν(p, i) = 2.

For each particle-node pair possibly near a crack, the key
task is to determine if the particle is above or below the
crack or on the same side of the crack as the node. Let
λ(p, i) denote the particle-node-crack relation. It is de-
termined by drawing a line from particle p to node i fol-
lowed by

λ(p, i) =


0 if line does not cross the crack
1 if line crosses the crack from above
2 if line crosses the crack from below

(65)
The determination of λ(p, i) is based on calculation of
the signed volume of specific tetrahedra, given by:

V (A,B,C,D) =−1
6

∣∣∣∣∣∣∣∣
xA yA zA 1
xB yB zB 1
xC yC zC 1
xD yD zD 1

∣∣∣∣∣∣∣∣ (66)

where points A, B, C denote the three vertices of a tri-
angle, and point D is an arbitrary point. The volume is
positive if point D is in the direction of the outward nor-
mal of the plane (A,B,C), otherwise it is negative.

In 3D CRAMP, the crack surface is discretized into a col-
lection of triangular elements, as shown in fig. 3a. De-
termination of particle-node crossing of the crack sur-
face is done be an element by element search of the
crack surface elements. For a specific crack element (see
fig. 16), we define the following five volumes according
to Eq. (66):

V1 = V (1,2,3, p) V2 = V (1,2,3, i)
V3 = V (i,1,2, p) V4 = V (i,1,3, p)
V5 = V (i,2,3, p)

(67)
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Figure 16 : Illustration of the tetrahedra used to deter-
mine velocity field of a particle-node pair, where p de-
notes a particle, i represents a node, and triangle 123
is a crack surface element: (a) the particle and node
are in the same side or the crack (λ(p, i) = 0); (b) the
particle-node line segment crosses the crack surface ele-
ment from above (λ(p, i) = 1); (c) the particle-node line
segment crosses the crack surface element from below
(λ(p, i) = 2).

where points 1, 2, 3 are the three vertices of a crack sur-
face element, and points p and i denote the particle and
the node, respectively. By inspection, it was determined
that, λ(p, i) = 1 if V1 > 0, V2 ≤ 0, V3 ≥ 0, V4 ≤ 0, and
V5 ≥ 0; λ(p, i) = 2 if V1 < 0, V2 ≥ 0, V3 ≤ 0, V4 ≥ 0,
and V5 ≤ 0; and λ(p, i) = 0 for all other cases. For cases
1 and 2, the first two conditions assure that the particle
and node are on opposite sides; the latter three condi-
tions specify that the particle-node line crosses the crack
surface within the region of the crack element. Note that
particles should never be on the crack surface whenever
contact is handled correctly; therefore V1 6= 0. A node,
however, may be on a crack surface without disturbing
the analysis. One complication in determining λ(p, i) is
that the particle-node line might cross more than one el-
ement of a single crack. In this situation, the crossing is
ignored unless there are an odd number of crossings. To
consider this possibility, the above steps must check all
crack surface elements of a crack before deciding if there
is a crossing.

Finally, λ(p, i) is converted to the velocity field ν(p, i)

for each particle-node pair, i.e., ν(p, i) = 1 if λ(p, i) = 1
or λ(p, i) = 0 and ni,2 6= 0 and ν(p, i) = 2 if λ(p, i) = 2
or λ(p, i) = 0 and ni,1 6= 0. Here ni,k (k = 1,2) denote the
number of particles around the node with non-zero shape
function and λ(p, i) = k. Note that the only conversion
is to decide whether λ(p, i) = 0 should be ν(p, i) = 1 or
ν(p, i) = 2.

Appendix B: Crack Surface Contact

Whenever a new nodal velocity field and/or acceleration
field is generated, the dual-field node must be checked
for crack surface contact to prevent crack surfaces from
interpenetration, which is physically not allowed. In a
prior paper on 2D cracks [Nairn (2003)], contact was de-
tected by calculation of nodal volumes relative to nodal
volumes for the undeformed body. During extensions to
3D, it was determined that an alternate approach based
on nodal displacement is both simpler and more robust;
i.e., does not depend on pre-selected critical values for
contact. In the displacement method, the nodal displace-
ments are calculated by interpolating the particle dis-
placements (~up); i.e.,

~ui,k =
∑p mp~upNp,iδk,ν(p,i)

ML
i,k

(68)

where k = 1 or 2 corresponds to the velocity field
ν(p, i) = 1 or 2 or to displacements above and below the
crack. The crack surfaces are assumed to be in contact if
normal direction displacements overlap or if

(~ui,1−~ui,2) · n̂i < 0 (69)

where n̂i is the normal of the crack surface near node i
pointing into the material above the crack. The displace-
ment criterion is based on zero relative displacement cor-
responding to closed cracks. This condition is guaranteed
for all cracks in this paper which start with closed cracks
prior to application of load. The approach requires mod-
ification for cracks that are initially opened.

A variant of the displacement criterion is to also check
relative velocities of the crack surfaces as done pre-
viously by Bardenhagen et al. [Bardenhagen, Guilkey,
Roessig, Brackbill, Witzel, and Foster (2001); Barden-
hagen, Brackbill, and Sulsky (2000)]. The crack surfaces
are moving apart if

(~vi,1−~vi,2) · n̂i > 0 (70)
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where~vi,1 and~vi,2 are the nodal velocities for the particles
above and below the crack. In the variant of the displace-
ment scheme, the relative velocities are checked first. If
the surfaces are moving apart, the cracks are assumed to
not be in contact and the natural movement occurs. If the
cracks are moving towards each other, the displacement
criterion above is used to determine whether or not there
is contact. It most calculations, the velocity check is su-
perfluous, but it some problems involving friction it was
found to improve accuracy. None of the problems in this
paper involved friction and thus all were based solely on
the displacement criterion.

Once contact is detected, a force is applied to the node to
conform to a contact law. The contact laws were applied
following Bardenhagen et al. [Bardenhagen, Guilkey,
Roessig, Brackbill, Witzel, and Foster (2001); Barden-
hagen, Brackbill, and Sulsky (2000)]. The only differ-
ence being that normal vector was calculated from the
crack surface rather than the gradient of the mass matrix.
Since there is a single normal vector, the crack contact
scheme exactly conserves momentum. Two contact laws
were implemented — stick and frictional sliding. In stick
conditions, forces normal and tangential to the crack sur-
face are applied above the crack at node i of

fi,N = −
ML

i,1

∆t
(~vi,1−~vi,c) · n̂i (71)

fi,T = −
ML

i,1

∆t
(~vi,1−~vi,c) · t̂i (72)

where ML
i,1 is mass above the crack,~vi,1 is velocity above

the crack, ~vi,c is the center-of-mass velocity of the two
velocity fields, n̂i and t̂i are normal and tangent vectors
to the crack surface, and ∆t is the time step. By conser-
vation of momentum, opposite forces are applied to the
bottom of the crack. These forces correspond to forcing
the two surfaces to move in the same center-of-mass ve-
locity field and thus to stick together.

During frictional contact, the normal forces are the same,
but the tangential forces differs. First the normal and tan-
gential forces for stick conditions are calculated. If the
stick values satisfy | fi,T |< µ| fi,N |. where µ is the coeffi-
cient of friction, then the contact has not overcome fric-
tion and stick conditions are used. Otherwise, the tan-
gential force is calculated from a friction law such that
fi,T = µ fi,N . All calculations in this paper used friction-
less conditions for which fi,T = 0 for all contact situa-
tions. In frictionless contact, contact only leads to normal

forces.

Few of the results in this paper were influenced by crack
contact effects. Nevertheless, contact calculations are
needed to define the complete 3D CRAMP algorithm.
Some results on pure mode II fracture in Nairn (2006)
have shown that these contact methods correctly model
cracks in contact.




