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ABSTRACT

Single-fiber pull-out tests were used for investigation of interfacial bond strength or
toughness and load transfer between polymeric matrices and glass fibers having different
diameters. The interfacial bond strength was well characterized by an ultimate interfacial shear
strength (7,,) whose values were nearly independent of fiber diameter. The same experiments
were also analyzed by fracture mechanics methods to determine the interfacial toughness (Gy).
The critical energy release rate (G;.) was a good material property for constant fiber diameter, but
G, for initiation of debonding typically got smaller as the fiber diameter got larger. It was also
possible to measure an effective shear-lag parameter, 8, characterizing load transfer efficiency
between the fiber and the matrix. 8 decreased considerably with the fiber radius; this decrease
scaled roughly as expected from elasticity theory. The measured results for 3 were used to
calculate the radius of matrix material surrounding the fiber and significantly affected by the
presence of the fiber. The ratio of this radius to the fiber radius (R,./ry) was a function of fiber

diameter.
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1. INTRODUCTION

The efficiency of load transfer through the interface between the fiber and the matrix plays a
critical role in the performance and behavior of fiber-reinforced composite materials. To
investigate this efficiency, a number of micromechanical techniques, such as pull-out, push-out,
microbond, and fragmentation tests, have been extensively used in recent decades [1-4]. These
tests have been considered to be convenient for estimation of the efficiency of fiber surface
treatments, matrix modification, etc. The results, however, from different tests, or even from the
same test but obtained by different researchers, are hardly comparable [4]. This difference is
mostly due to inadequate experimental data reduction methods. For example, specimen geometry
can greatly affect the load transfer but it is often ignored or mistreated.

Traditionally, load transfer through the interface has been characterized by an apparent
interfacial shear strength (7,,,). 7., however, is only an effective (mean) value which depends on
many factors, such as embedded fiber length and interfacial friction between the matrix and the
debonded fiber. In more recent work, local interfacial parameters, such as ultimate (local, critical)
interfacial shear strength (7,;) [5-9] and critical energy release rate (G;.) [10—12], are being used
for interface characterization in fiber-matrix systems. The important advantage of these
parameters is that they are regarded as true failure criteria, in other words, they characterize local
processes near crack tips that lead to interfacial debonding.

To estimate T,;; and G, from experimental results requires the use of an elasticity model. The
most popular elastic models are one-dimensional shear-lag models by Cox [13] and Nayfeh [14]
and a three-dimensional model proposed by Scheer and Nairn [10]. An important parameter in
these models is the matrix volume effectively involved in load transfer, or, in other words, the

“external radius” of the matrix relative to the fiber radius. In multi-fiber, unidirectional



composites, this volume fraction is often assumed to be the distance between neighboring fibers.
For single-fiber micromechanical tests, however, the meaning of “matrix radius” is rather blurred.
A typical micromechanical sample is a single fiber having a diameter of several micrometers
embedded in a droplet or bar of matrix material with a much larger transverse size (several
millimeters). Matrix droplets, such as in microbond tests, however, differ in their size depending
on droplet length [10]. It is, therefore, not surprising that different researchers obtain different
results even when using the same equations for the same fiber-matrix materials pair. Most
microbond analyses have not even included droplet diameter in the analysis, but it has recently
been shown that the failure load depends on droplet diameter and thus this term must be included
to obtain valid results [10, 11]. Furthermore, in test methods that typically use much more matrix
material than microbond tests, it is likely that only a small part of the matrix volume is involved
in load transfer. The participation of only a thin layer of matrix adjacent to the fiber was shown
experimentally using birefringence techniques [15] and Raman spectroscopy [16]. Using the
latter technique, Andrews et al. [17] estimated the effective ratio R,/ry (where R,, and r, are the
effectively loaded radius of the matrix and the radius of the fiber, respectively) for aramid—epoxy
systems (aramid fibers having diameter of », = 12 um) to be about R,/ry = 15. Other
measurements and theoretical estimations [18, 19] suggest that a value of R,,/ry in the range of 2
to 10 is typical for high-modulus fibers in a polymeric matrix. It is not clear whether this
estimation is valid for all polymer-fiber systems, or, even whether it is the same for a single
polymer-fiber pair but with fibers of different radii.

Clearly R,/ry will decrease as the fiber radius increases when R,, is constant. Further study on
this issue could provide important information for better comparisons between micromechanical
tests using different fiber diameters and between different micromechanical tests. In this study,

single-fiber pull-out tests were done on a series of glass fibers having different diameters and



different sizings in a variety of polymeric matrices. The simultaneous analysis of all results led to
better characterization of the efficiency of load transfer between glass fibers and polymer

matrices.

2. EXPERIMENTAL

2.1. Materials

E-glass fibers manufactured using spinning devices at the Institute of Polymer Research
Dresden were used in these experiments. The fiber diameters varied from 9 to 90 pm. Several
sizings and/or coatings were used in order to modify the surface of the glass fibers and to alter the
bond strengths between them and polymer matrices. The unsized fibers are designated in this
paper as GO, and the treated fibers are designated G1 (y~aminopropyltriethyoxysilane sizing, y-
APS), G2 (y-APS sizing with polyurethane film former), G3 (polyvinyl alcohol coating) and G4
(methacryltriethoxysilane sizing + unsaturated polyester film former).

For matrix materials, we used three thermoplastic polymers and one thermoset polymer. The
thermoplastic polymers used were polyamide 6 (PA6, Leuna Werke AG), polyamide 6,6 (PA66,
Ultramid A5, BASF) and maleic anhydride grafted polypropylene (PPM). The last was produced
by blending the commercial modifier M1 with polypropylene homopolymer from Borealis in an
amount of 2 wt% during compounding in a twin-screw extruder. The thermoset polymer used was
vinylester resin (VE) manufactured by Norpol.

The mechanical properties of fibers and matrices, necessary for interfacial bond strength and

toughness characterization, are given in Table 1.

2.2. Pull-Out Tests
The pull-out tests were carried out using a pull-out apparatus which allows high precision

fiber displacement and force measurements as well as data recording and management [20]. The



fibers were embedded in thermoplastic matrices in a microwave oven under argon atmosphere.
The heating and cooling rates were about 50°C/min. For the thermosetting VE resin, the
specimens were cured after embedding the fiber at 70°C for 1 h. The embedded lengths ranged
from 50 t0300 pm.

All pull-out tests were performed at a constant crosshead displacement rate of
1.2x10 mm/min for all specimens and tested at ambient temperature. Force-displacement curves
were recorded. From each force-displacement curve, the debond force, F; (which corresponds to
interfacial crack initiation and manifests itself as a deviation from linearity or a “kink” in the
growing stage of the curve, see Fig. 1), and the embedded fiber length, /., were determined. The

apparent or debond shear stress, 7,, was calculated using
Tg = Fd /(2T[I'f|e). (1)

The interfacial strength and interfacial toughness were characterized using three parameters, as

described in Section 3.
3. THEORY
3.1. Shear-lag parameter and its relation to an “effectively loaded matrix radius”

Finding the exact stress distribution in a specimen consisting of an elastic cylindrical fiber
that is being pulled out of an elastic matrix is a complicated task. Even when using a simple
geometry (e.g., a cylindrical matrix surrounding the fiber), further simplifying assumptions are
required in order to obtain analytical results.

Several simplified approaches that describe interfacial stress distribution along the embedded
fiber length are known. One-dimensional shear-lag models [8, 13, 21] are commonly used. From

such shear-lag analyses, it is possible to obtain the interfacial shear stress as a function of a



coordinate along the fiber. In shear-lag analysis, the maximum interfacial shear stress occurs
where the fiber enters the matrix. If one assumes debonding occurs when this maximum
interfacial shear stresses reaches 7,, or the critical (ultimate) interfacial shear strength, then it is
possible to predict that the debond force, F; (external load at which interfacial debonding

initiates) is given by [22]:

210+ T
Fy = U tanhpl, - 007 tanhBIetanh%, ()

B

where /. is the embedded fiber length, ryis the fiber radius, o7 is the magnitude of the radial
compressive stress resulting from thermal shrinkage of the fiber and the matrix [23, 25], and S is
the shear-lag parameter. Equation (2) can also be written in terms of the apparent debond shear

stress, T, (see Eq. (1)) as:
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It is important that neither Eq. (2) nor Eq. (3) require any particular expression for (3, and thus 3
can be considered as a fitting parameter to be determined from experimental data if it is assumed
that 3 and 7, are constants for a given set of experiments. Note that 7, is different from the
commonly used apparent interfacial shear strength (7,,,). T4y is usually calculated using the
maximum applied load, F,.4, and corresponds to the average shear stress on the interface at the
peak load. Here, 7, was calculated from the force at the onset of debonding, F,;, and it
corresponds to the average shear stress on the interface at this lower load.

For a quantitative characterization of load transfer through the interface and of interfacial
bond strength, the procedure described in [8] was used. The experimental 7, values were plotted

against embedded lengths using Eq. (3). The best fit between experiments and Eq. (3), with S and



T as fitting parameters, was found using the least-squares method. For the low-fiber volume
fractions present in single-fiber pull-out tests, the thermal stress term, 07, can be calculated with

sufficient accuracy using
o, =E,(a,-a,)AT (4)

where Eris the (axial) tensile modulus of the fiber, a, is the axial thermal expansion coefficient
of the fiber, a,, is the thermal expansion coefficient of the matrix, and AT is the temperature
difference between the test temperature and the stress-free temperature (see Table 1). The
optimum 7, value from the above fitting procedure was considered to be the ultimate interfacial
shear strength for the given polymer-fiber-sizing specimens [8, 24].

The optimum [ was considered to be a measured stress-transfer parameter that characterizes
the distribution of interfacial shear stresses in the specimen (i.e., the key parameter in a shear-lag
stress analysis). Although [ here is a measured quantity, in shear-lag theories of stress transfer, 3
is a parameter that is calculated from specimen geometry and mechanical properties of the fiber
and the matrix [25]. There are two explicit expressions for finding [ from fiber, matrix, and

specimen properties. In the original Cox approach [13], the shear-lag parameter is defined by

0 D1/2
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where G, is the matrix shear modulus and R,, is the “effectively-loaded matrix radius”.
Despite the popularity of the Cox analysis and the Cox shear-lag parameter, it has recently

been shown that it never gives a valid calculation of stress transfer in concentric cylinder model



calculations [11, 25]. Instead, in all fiber/matrix shear-lag analyses, the Cox shear-lag parameter

should be replaced by the shear-lag parameter originally derived by Nayfeh [14] and given by:
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where E,, is Young’s modulus of the matrix, Gis the (axial) shear modulus of the fiber, and V'
and V,, are the volume fractions of the fiber and the matrix, respectively. When the matrix is
approximated by a cylinder, the fiber volume fraction is Vy= (K//Rm)z and V,, = 1-V.

Again, given fiber, matrix, and specimen properties, Egs. (5) and (6) give two results for
calculating the shear-lag stress-transfer parameter 8. Here a different approach was taken. The
experiments provided a method for measuring (8. Given fiber and matrix properties and a
measured result for 8, Egs. (5) and (6) can be inverted to determine the effectively-loaded matrix
radius, R,,. Thus, in contrast to common approaches, which either consider R,, as the radius of the
specimen (matrix droplet) or take a “reasonable” but arbitrary value for the R, /rsratio, given an
experimental 3 value, Egs. (5) and (6) allow calculation of R,,. Note
that both Eq. (5) and (6) predict that B approaches zero as R,, approaches infinity. In other words
shear-lag analysis breaks down at low fiber volume fractions. To use shear-lag analysis for very
low fiber volume fractions, the true fiber volume fraction must always be replaced by a volume
fraction deduced from the effectively-loaded matrix radius which is deduced here from the
measured . Because Eq. (5) is never correct at any volume fraction [25], only Eq. (6) will give
an estimation of an effectively-loaded matrix radius that corresponds to the actual radius within

the matrix where the stresses are significantly perturbed by the presence of the fiber.
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3.2. Interfacial fracture toughness

The quality of bonding at fiber-matrix interfaces can be characterized by either local
(ultimate) interfacial shear stress (IFSS or 7,,) [5—9] or by a critical energy release rate for
interfacial crack propagation (G,.) [10-12]. During the last two decades, the question of which of
them describes the interface “better” has been extensively discussed in the literature. Many
papers have been published in support of each, referring mainly to different theoretical models for
micromechanical tests. This discussion is closely related to the problem of the proper choice of
failure criterion: is it stress-based or energy-based? The failure criterion, in turn, depends on the
mechanism of interfacial failure, which cannot be predicted a priori by theoretical or numerical
models, but rather requires experimental investigations.

The analysis of experimental data showed that both 7,;, and G;. were good candidates for the
failure criteria. They each adequately describe interfacial crack propagation [23] and can predict
debond force in the pull-out or microbond tests as a function of embedded fiber length [22].
Moreover, it was demonstrated that for specimens containing fibers of the same diameter these
two parameters could be used as essentially equivalent failure criteria [22, 23]. T, and G,
however, may depend on fiber diameter. Several possible trends for their variation with r, have
been considered theoretically [22]. Unfortunately, data from micromechanical tests on fibers with
different diameters are very scarce. One goal of this study was to estimate the values of interfacial
parameters for polymer/glass-fiber systems with glass fibers having the same chemical structure
but differing diameters. These results can be used to evaluate the 7,, and G;. failure criteria.
Clearly, a true failure criterion should be a constant for a given pair of materials and independent

of specimen geometry.
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The ultimate interfacial shear strength was calculated by fitting experimental results to
Eq. (3). To estimate G;., the model developed by Scheer and Nairn [10] and Liu and Nairn [11]
was used. That model, however, was developed for the microbond test. It has recently been
extended to handle the pull-out test as well [26]. For initiation of debonding (initial debond length
equal to zero), frictionless debonding, and sufficiently long embedded fiber lengths, the critical

energy release rate is given by [26]:

002 Vo (ge - )20
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where 0, = F; E,, Va/(TT 172 E.) is a reduced stress applied to the fiber at the moment of crack
initiation, E.=E;V;+ E,, V), is the rule-of-mixture modulus of the specimen, a7 is the transverse
thermal expansion coefficient of the fiber, and Css, D35, D3, Cs3s, and A4y are constants defined in
the Appendix which depend only on fiber and matrix properties and on specimen geometry [10,
26]. The analysis in Ref. [26] also considers frictional stress on debond surfaces and the effects of
short embedded fiber lengths. Some sample calculations showed that both these effects could be
ignored for analysis of our experimental results. Friction could be ignored because we only

analyzed initiation of debonding. Although friction affects G;. for initiation [26], it had to be

much higher than reasonably thought possible to have a significant effect on the results.
Similarly, a comparison of analyses that assume long embedded fibers with those that account for
short fiber lengths [26] showed that the long-fiber analysis was adequate. There were some

deviations for the shortest embedded fiber lengths; therefore the calculations of G;. placed greater
emphasis on the experiments with longer embedded fibers.

Equation (7) is based on the actual specimen dimensions within the embedded fiber zone and

not on the effectively-loaded matrix radius. In these experiments, the matrix droplet was
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approximately hemispherical in shape with a droplet radius of R = 2.5 mm. By equating the
volume of matrix from the point where the fiber enters the droplet to the end of the embedded

fiber length to the equivalent cylinder of matrix, the effective matrix radius can be calculated to

be

_ | le O
Ret = lecR= 31 ®)

This R.ywas used to calculate the ¥V, and V', used in Eq. (7) and in the terms defined in the
Appendix. Notice that once Ry is determined that a value of G;. can be calculated from each
experimental point. There is no need to do any fitting or to determine the stress-transfer
parameter (3. By plotting G, results from each experimental result it is easy to recognize if it is a
good material property that should be constant for a given polymer-fiber-sizing set of

experiments.
4. RESULTS AND DISCUSSION
4.1. Strength calculations

By fitting experimental results for 7, as a function of embedded fiber length, /., to Eq. (3), it
was possible to determine 7,, and B for each polymer-fiber-sizing set of experiments. The
properties used to determine Oy for these fits are given in Table 1. Some sample plots of the “best
fits” for vinylester matrix with G3 sizing and three different fiber diameters are given in Fig. 2.
All fits were excellent. From Eq. (3), it is apparent that 7, approaches T, as [, approaches zero.
Thus, the best-fit results for 7, correspond to the intercepts in plots like those in Fig. 2.

Table 2 lists all experimental results for 7,;, and . For a given matrix and sizing, T, was

found to be independent of fiber diameter. Thus, 7,;; can be suggested as a good material property
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for characterizing the fiber/matrix interface. We claim it is more realistic than the common
practice of setting the interfacial shear strength to the value of 7, determined from the peak load
in the pull-out experiments. Using T, as an interface characterization property, the interface
strengths in the various fibers rank as PA6 = PA66 > VE > PPM. For a constant polymer type,
the sizings rank as G4 > G3 for VE matrix, GO > G1 > G2 for PA6 matrix, and G1 > G0 = G2 for
PA66 matrix.

The measured (3, however, was a function of fiber diameter — it was larger for specimens
with smaller diameter fibers. The literature data on [ variations with external conditions are
rather scarce [9, 15, 24], and no information is available about the dependence of 8 on fiber
radius. Elasticity models consider 3to be a well-defined parameter whose value can be calculated
from specimen geometry and elastic properties of the fiber and the matrix (see Egs. (5) and (6)).
Such calculations of 3, however, depend on the effectively-loaded matrix radius, R,,. It has been
shown experimentally that R,, can be considerably smaller than the specimen radius [15, 23].
Similar observations led to the “rule-of-thumb” proposed by Detassis et al. [19] that the R,./ry
ratio in micromechanical tests should be taken in the region between 2 and 10, independent of the
fiber radius and specimen size; but this assumption appeared to have only limited applicability. It
was shown, in particular, that the 3 value for a given polymer-fiber system could be altered
substantially as a result of fiber treatment [9, 24]. Furthermore, if the R,/rsratio was a constant
then 3 would be constant; our experiments demonstrated that R,/ry was neither constant nor
“nominal” for fibers having different diameters.

A “physical” interpretation of 3 can be developed by considering its use in analyses of stress
transfer. By experimental observations of fiber-matrix stress transfer (e.g., by Raman

spectroscopy [27]) or from elasticity models of stress transfer [25], the rate of stress transfer
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between the fiber and matrix can always be described by an exponential function such that the
extent of transfer is proportional to exp(—[3z). Here z is the distance from any discontinuity such
as a fiber break, a fiber end, or the point where the fiber enters the matrix in a pull-out test. For

such a process, we can define:

In 2
ten = —— 9
50 21 @ )

The term ¢ is the distance required, in dimensionless units of fiber diameters, for the stress
transfer process to be 50% complete. Our results for #5, calculated from the measured [’s are

given in Table 2 and plotted in Fig. 3. The stress-transfer distance gets longer as the fiber radius
gets smaller. This result is consistent with elasticity calculations of fiber/matrix stress transfer.
Both numerical and shear-lag calculations for concentric fiber/matrix cylinders show that the
stress transfer distance gets longer as the fiber volume fraction gets smaller [25]. For real
specimens, this volume fraction should refer to an effective volume fraction calculated from the
effectively-loaded matrix radius. Without experiments, it is not possible to tell whether such an
effective fiber volume fraction should decrease or remain the same as the fiber radius gets
smaller, but it is physically unreasonable for it to increase. The experimental results in Fig. 3,
show that for this range of fiber radii and this size of matrix droplet, that the stress transfer rate
increases, which implies that the effective fiber volume fraction decreases, and the fiber radius
decreases.

The specimen fiber volume fractions in our experiments calculated using Eq. (8) were always

low (0% < V;< 0.1%). Although shear-lag analysis does not work when the specimen volume
fraction gets too low, both Egs. (5) and (6) have interesting low Vlimits that can be compared to

experiments. In fact, both have the same limiting result that can be cast as
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Interestingly, the only time the Cox B (Eq. (5)) and the Nayfeh B (Eq. (6)) agree is at very low
volume fraction, which is a regime for which shear-lag analysis breaks down [25]. For all volume
fractions at which shear-lag analysis works, the two [’s are different; the Nayfeh [ gives a good
prediction of stress transfer rates while the Cox [ is very inaccurate. If R, is assumed to be
independent of 7, which may not be a good assumption, Eq. (10) predicts that a plot of 1/(3r4)
as a function of In rrshould be linear with a slope of —E/(2G,,) while the intercept can be used to
calculate R,,. Such a plot is given in Fig. 4 for all experimental results. The plot is roughly linear,
but there is too much scatter and insufficient distribution of fiber radii to confirm a linear relation.
The slope of the “best-fit* line was —78.1. The four matrices had different values of G,, (and
perhaps should not have been on the same plot) giving a range of actual —E/(2G,,) from —-30.5 to
—78.0. Considering the qualitative nature of the analysis, the actual ratio agrees well with the
measured slope. From the intercept of the “best fit” line, the R,,, which was assumed to be
constant, was 41.7 um. Using this result, R,,/ry varied from 0.95 to 8.8. This range is reasonable
[19] but the lower limit is too low. It may not be correct to assume, as done in this interpretation,
that R,, is independent of fiber diameter.

Another route to R, is to calculate it from the measured values for 8 and the shear-lag
equations in Egs. (5) and (6). The results of deducing effective fiber volume fractions, the ratio
R,/rs, and the effectively-loaded matrix radius R, using either the Cox 3 or the Nayfeh 3 are
given in Table 2. Consistent with the stress transfer results in Fig. 3, the effective fiber volume
fraction decreased as the fiber radius decreased. The related ratio R,/rs increased as the fiber

radius decreased. For large fiber diameters (>50 pum), R,/rr was in the range 3.4 to 13.8 which is
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the range commonly assumed for micromechanical tests [19]. For smaller fiber diameters (<30
Mm), R,./ry got much larger. For large fiber diameters (>50 pm), R,, was much smaller than the
specimen dimensions. For smaller fiber diameters (<30 pm), R, got larger and equaled or
exceeded the specimen dimensions. All these comments refer to results deduced when using the
Nayfeh result for 3. It is mathematically possible to deduce the same parameters using the Cox 3
(see Table 2). Because the Cox f3 is inaccurate, such calculated dimensions cannot meaningfully

be compared to specimen dimensions.
4.2. Energy calculations

The same experimental results that were analyzed in the previous section for 7, and 3 can be
analyzed for critical energy release rate using Eq. (7). Typical pull-out experiments record
debonding force and embedded fiber length. To use Eq. (7), one additionally needs to know the
effective fiber volume fraction. This term was determined here using Eq. (8). Some sample
results for vinylester matrix with G3 sizing and three different fiber diameters are given in Fig. 5.
Because G, can be calculated from each experimental result, the results for all three fiber
diameters could be plotted on the same plot. These results, and all other fracture mechanics
results, had a characteristic shape. At very short embedded fiber length, the calculated G,. was
low, but it increased rapidly eventually reaching a plateau value. The results for short embedded
fiber length were low either because Eq. (7) was inaccurate or because the embedded fiber end
influenced the debond initiation. Either way, the analysis worked better when the embedded fiber
end was not too close to the debonding zone [26]. For a given polymer-fiber-sizing set of
experiments, we, therefore, calculated the G;. to be the average of the G, values in the plateau

region. For most specimens, the plateau region was for embedded fiber lengths longer than
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100 pm. For some of the larger radius fibers, the plateau regions required embedded fiber lengths
of 150 to 200 pm.

The G, results for all fiber-sizing-matrix systems are listed in Table 2. For the PPM and VE
polymers, G;. was nearly independent of fiber diameter. For PA6 and PA66 polymers, however,
G,. depended on fiber diameter; it got smaller as the fiber diameter got larger. Comparing the
different matrices, the interfacial toughness ranked as PA6 > PA66 > VE > PPM. This ranking
agrees with the ranking determined from 7, calculations. For a constant polymer type, the
interfacial toughnesses for the sizings rank as G4 > G3 for VE matrix and GO > G1 = G2 for PA6
matrix. These rankings are nearly the same as the 7, rankings with the one exception being that
the 1, rankings placed G2 < G1 instead of G2=G1 for the PA6 matrix. Furthermore, the results
for G3 and G4 sizings were also obtained for many other polymer-fiber systems [22]. The G,
ranking for the PA66 polymer was ambiguous and different than the 7, rankings. For small fiber
diameter, the interfacial toughnesses for PA66 ranked as GO > G2 > G1; for larger fiber

diameters, the interfacial toughnesses of these three sizings were indistinguishable.
4.3 Strength vs. energy calculations

When looking at a single set of experiments with a constant fiber diameter, G;. appears to be
an excellent material property characterizing debonding. For a given polymer-fiber-sizing system,
it was always constant within the plateau region of sufficiently long embedded fibers. When
comparing experiments with different fiber diameters, however, 7,, may be a better material
property; T,;, was independent of fiber diameter while G;. sometimes depended on fiber diameter.
For ranking interfacial properties, either material property may be used and they usually gave the
same results. If G;. is used, however, it can only be used to compare results with similar fiber

diameters. For PA66 polymer systems, only the T, results gave a clear ranking. It is possible,
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however, that the interfacial properties for the three sizings with PA66 polymer were too close to
be clearly distinguished using pull-out experiments.

Most work on crack or debond growth assumes fracture mechanics or energy methods are
more fundamental than strength-based methods. It was somewhat surprising, therefore, that the
strength analysis for 7, gave results that were more independent of specimen geometry than the
energy analysis for G;.. A possible explanation is that all our experiments were for initiation of
debonding. Most experimental work in fracture mechanics analyzes growth of existing crack
instead of initiation of a new crack. It is mathematically possible to calculate the energy release
rate for initiation of debonding, but from our experiments, it appears that the conditions to cause
initiation are determined by local stress rather than the initial energy release rate. It would be
interesting to monitor load as a function of debond length and see if the fracture mechanics
methods then give the preferred approach for prediction of debond propagation.

It is important to emphasize that the preferred strength analysis here is not the same as the
strength analyses typically used for pull-out tests. Most strength models are simple average shear
stress models that calculate the average interfacial shear stress at the point of failure using Eq.
(1). The strength analysis here is based on the /ocal or maximum interfacial shear stress. It is more
difficult to determine 7, than 7,. If 8 is known for a given system, 7, can be determined from 7,
using Eq. (3). If B is not known, 7, can be determined from the two-parameter fitting process
used here. An advantage of such an analysis is that it additionally leads to an experimental result
for the physically-meaningful . A possible disadvantage is that the analysis for T,; requires
experimental determination of two parameters. Although the G,. calculations gave results that
depended on fiber diameter, one advantage of the energy methods was that these results could be

determined without knowledge of £.



19

5. CONCLUSION

1) Both ultimate IFSS (7,;) and critical energy release rate (G;.) are sensitive to fiber treatment
and, thus, characterize the interfacial bond strength.

2) The maximum shear stress failure criterion (7,;) gives results that are more independent of
specimen geometry for initiation of debonding than the critical energy release rate (Gi.)
criterion. The situation may be different for analysis of propagation of debonding.

3) Analysis of debonding stress as a function of embedded fiber length can be used to deduce
and effective shear-lag parameter, 3, which is a measure of the efficiency of load transfer
from the fiber to the matrix. Both the dimensionless fry and the related R,/ry ratio are strong
functions of the fiber radius.

4) The single-fiber pull-out test is a useful test for characterizing interfacial properties, but the
data reduction must be done with care. Traditional average shear stress models are probably
too simplistic. Such analyses should be replaced by maximum shear stress models or fracture

mechanics models.
Appendix

The constants required for the fracture mechanics analysis of the pull-out test are defined by

[26]:
_101 V& O ]
Caas = 5B, "V g H (A-1)
Cas = Cs _ VS (A-2)
3 3s Von
D, =@, -a,) (A-3)
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Ds = Das - fo”fs (ar - ) (A-4)
_Vm@-vy)  Vild-vm) 1+vy

Vo =T SR T (A-5)

s (A)

The new terms not previously defined in the paper are the transverse thermal expansion

coefficient of the fiber (ay), the transverse modulus of the fiber (E7), the axial and transverse

Poisson ratios of the fiber (V4 and Vp), and the Poisson ratio of the matrix (v,,,).
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Typical force-displacement curve from a pull-out test. The debonding was assumed to
initiate at the debond force, F;, which corresponds to the knee in the force-displacement

curve. F; was always smaller than the maximum force value recorded during the test.

Debond shear stress (7,) as a function of embedded fiber length for glass fibers with G3
sizing embedded in vinylester resin. The solid line is the best fit to Eq. (3). The fiber
diameters were 11 pm (a), 50—60 um (b) and 85-90 um (c).

The distance required for the stress transfer process to be 50% complete (in dimensionless

units of fiber diameters from Eq. (9)) vs the fiber radius (for all experimental results).

Experimental results for the dimensionless term ([377)72 as a function of In rr(when ryis in

Mm). For details see text.

Typical plot of the critical energy release rate (Gi.) as a function of the embedded length
for glass fibers with G3 sizing embedded in vinylester resin. G, was calculated using the

long-fiber analysis in Eq. (7).
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