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Abstract 

This paper discusses numerical modeling and experimental results on stress transfer in wood 

composites. The numerical model treats adhesive bonds using the concept of an imperfect 

interface. The displacement discontinuity at an imperfect interface is proportional to the tractions 

at the interface. A stiff interface will result in little discontinuity and maximum translation of 

wood component mechanical properties into bulk properties. If the interface allows slippage, 

however, the mechanical properties will suffer. The numerical modeling can calculate the 

mechanical properties of oriented strand board as a function of realistic strand undulation 

geometries and of the properties of the glue lines. To provide input to the numerical modeling, a 

new experimental method was developed to measure strand-to-strand interfacial properties as a 

function of the amount of glue. The modeling and experiments were done on unmodified strands 

and on densified strands. 

Introduction 

The interface in composites has two roles. The first is to hold elements of the composite together. 

This role can be characterized as interfacial “strength.” If the interface has insufficient strength, 

the interfaces will fail, the elements will cease to share load, and the composite will have poor 

properties. The second role, even in the absence of failure, is to transfer stress from one phase of 

the composite to another. This role can be characterized as interfacial “stiffness.” A better (or 

“stiffer” interface) will transfer stress faster between elements and therefore result is superior 

composite stiffness properties. 

 Both “strength” and “stiffness” are important properties in adhesion or in interface quality. 

Nearly all methods for characterizing adhesives, however, consider only the strength of the 

bonds. These tests typically load an adhesive bond line to failure and record the load at the time 

of failure. Almost no attention is paid to what happens before failure, which is controlled more 
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by interfacial stiffness. In many wood products, interfacial strength is not the limiting factor. 

Most good adhesives show failure in the wood rather than in the adhesive. In a wood composite 

such as oriented stand board, it is unlikely that ordinary use is causing a large accumulation of 

adhesive failures. In these situations, it is the “stiffness” of the adhesive that would have the 

more practical relevance to product performance. This adhesive property will affect panel 

stiffness and therefore suitability of panels for various applications. 

 The importance of adhesive stiffness in wood composite properties depends on the structure 

of the composite. A common calculation found is numerous text books on composite materials 

(e.g., Piggott 1980, Hull and Clyne 1986) is to predict the modulus of a short fiber composite in 

which all fibers are aligned in the loading direction. The prediction depends on the mechanical 

properties of the fiber and matrix and on the aspect ratio of the fibers. A stress-transfer analysis 

predicts the aligned, short-fiber composite modulus, E, to be: 

€ 

E =ηErVr + EmVm  (1) 

Er and Em are the moduli of the reinforcement phase and the matrix phase, Vr and Vm are their 

volume fractions, and η is an efficiency factor that describes the ability of the interface to 

transfer load into the reinforcement phase. The efficiency factor can be modeling by stress 

transfer analysis, such as shear-lag analysis (Nairn 1997), resulting in 

€ 

η =1− tanhβla
βla

 (2) 

where la is the aspect ratio of the reinforcement and β is the stress transfer or shear-lag 

parameter. Early shear-lag analysis always assumed a “perfect” interface implying continuous 

displacement between phases (Cox 1952). Naturally such models eliminate the interfacial 

stiffness effect and the modulus depends only on the mechanical and geometric properties of the 

phases. Modern shear-lag analysis, however, can incorporate interfacial stiffness into the shear-

lag parameter than thereby predict modulus as a function of phase properties, phase geometry 

(e.g., aspect ratio), and interfacial stiffness (Nairn 2004). 

 Some sample composite modulus calculations are given in Fig. 1. The “perfect” interface 

curve is the classic shear-lag analysis. It predicts that modulus is strongly affected by 

reinforcement aspect ratio. If the aspect ratio is sufficiently large (e.g., la > 100), the composite 

properties, as expected, approach the modulus of continuous fiber composites (i.e., η approaches 

1). The two other curves in Fig. 1 show the effect of varying the stiffness of the interphase 



3 

region. A “compliant” interface slows down stress transfer. Is this situation it takes longer to 

transfer stress into the reinforcement phase and therefore longer to reach the limit of the 

continuous fiber result. In wood products, the adhesive might penetrate into wood cells of two 

wood elements thereby reinforcing the interphase region making it stiffer than the wood itself. 

This effect can be modeled as a “reinforced interphase,” which may increase the rate of stress 

transfer and improve the modulus of the composite. 

 The curves in Fig. 1 can illustrate the relative importance of interfacial stiffness depending 

on the structure of a wood composite. For example, the “PSL” and “LVL” lines indicate example 

aspect ratios for two wood-product analogs of aligned short-fiber composites. PSL is for parallel 

strand lumber consisting of aligned wood strands having modest aspect ratio (10 or lower). LVL 

is for laminated veneer lumber consisting of aligned veneers with very high aspect ratio (plotted 

here as 180). The PSL product is on the rising portion of the curve. Thus the modulus is lower 

than would be expected for higher-aspect-ratio elements. Furthermore, the specific modulus is 

strongly dependent on interfacial stiffness — the modulus with a compliant interface is four to 

five times lower then with a perfect or reinforced interface. In contrast, LVL is near the 

asymptotic limit of the curves. In this limit, the composite modulus is insensitive to the 

interfacial stiffness. The phases are sufficiently long such that the stress eventually gets 

transferred and therefore interfacial stress transfer has a reduced role in properties. 

 Thus, the stiffness of the interface will be important in any wood product that has phases of 

low aspect ratio. Such products include strand based products (such as PSL and OSB (oriented 

strand board)), fiber-based products (medium and high density fiber board or MDF and HDF), 

and particle-based products (particle board and wood plastic composites). Besides aspect ratio, 

any misalignment of phases will increase the role of interfacial stiffness because it will increase 

the amount of shear stress along the glue lines. Thus strand undulation in OSB or PSL and fiber 

orientation in MDF and HDF are also important factors in modeling properties of the 

composites. 

 This work developed a numerical modeled based on the material point method (MPM) 

(Sulsky et al. 1994) to predict the modulus properties of OSB. The modeling accounts for both 

glue-line stiffness and for strand undulation. The modeling was used to study the properties of 

OSB panels fabricated with unmodified strands or with some strands that were densified prior to 

incorporation into the panel product (Kutnar et al. 2008, Kamke and Rautkari 2009, Kamke and 
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Rathi 2009). The predicated mechanical properties were strongly dependent on the glue-line 

stiffness. To relate these predictions to actual adhesive properties, we developed a new 

experiment method for measuring the glue-line stiffness. We measured the stiffness for two glues 

(phenol formaldehyde (PF) and polyvinyl acetate (PVA)) and for adhesive bonds between either 

unmodified strands or densified strands. 

Materials and Methods 

Adhesive stiffness was measured using experiments on double lap shear (DLS) specimens, but 

concentrating on the stiffness of the specimen instead of the failure load. Figure 2 shows a 

double lap shear specimen where each layer may have a different longitudinal modulus (ELi), 

longitudinal shear modulus (GLi), and thickness (ti). The stiffness of such a specimen can be 

modeled by shear-lag analysis as described in Nairn (2007A). The previous analysis gave a final 

result only for identical strands; here the final result was generalized to allow the strands to have 

different properties, but was restricted to symmetric specimens (i.e., EL1 = EL3, GL1 = GL3, and t1 

= t3). The new result for slope of the force-displacement curve of the DLS specimen is 

€ 

k =
t2EL2W

C
C∞

l
(1+ 2Rλ)

+
L1
2Rλ

+ L2
 (3) 

where W is specimen width, R = EL1/EL2, λ = t1/t2, other dimensions are illustrated in Fig. 2, and 

€ 

C
C∞

=1+
(1− 2Rλ)2 tanhβl

2
+ (1+ 2Rλ)2 tanhβl

4
4βlRλ

+
t2EL 2β(1+ 2Rλ)

4lDt

csch βl
2

 (4) 

Physically, C/C∞ is the ratio of the compliance of the bonded section (of length l) of the 

specimen relative to the compliance where the three strands deform as a unit with equal and 

constant strain throughout. The term β is the shear lag parameter, which in modern shear lag 

theory can account for interfacial stiffness (Nairn 2004, 2007A): 

€ 

β 2 =

1
t1EL1

+
2

t2EL 2
t1
3GL1

+
t2
6GL 2

+
1
Dt

 (5) 

Here Dt is an interface parameter that describes an imperfect interface. The glue line in wood 

composites is not a 2D interface, but rather a finite interphase region where glue may penetrate 
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into the two adherends. The properties of the interphase will differ from both the adhesive and 

the wood and the properties may vary with position within the interphase as well. Fully 

characterizing such complexity may not be possible and may not be necessary. Instead, 

“imperfect interface” theory seeks to collapse the 3D interphase to a 2D interface and lumps all 

mechanical properties of the interphase into a small set of interface parameters (Hashin 1990). 

The interface parameters describe relative motion of the two adherends across the interphase as a 

function of applied tractions to the 2D interface. For the DLS specimen, it suffices to describe 

tangential slip caused by shear traction parallel to the interface (Nairn 2007A). The elastic slip 

(denoted [u] for a displacement jump at the interface) is described by 

€ 

[u] =
τ
Dt

 (6) 

where τ is interfacial shear stress. The interface parameter (which is a stiffness property, e.g., 

with units MPa/mm) describes the response on the interphase region. A value of Dt = ∞ means 

[u] = 0 and is characterized as a “perfect interface”. A value of Dt = 0 means τ = 0 and is 

characterized as a debonded interfaces. Values for Dt between 0 and ∞ describe an “imperfect 

interface.” In wood bonds, the adhesive many penetrate into wood causing the interphase region 

to be stiffer than either the wood or the adhesive. This situation could correspond to a negative 

stiffness, but there are limits to possible negative values (Nairn 2007A). The analysis is valid 

provided β2 is positive and thus requires 

€ 

1
Dt

≥ −
t1
3GL1

−
t2
6GL 2

 (7) 

The lower limit on 1/Dt corresponds to the rigid limit where a load on the central strand causes 

the ends of the two outer strands to move rigidly as if all three strands were gripped and 

deformed together. 

 The experimental strategy for measuring Dt of any glue bond between wood strands was as 

follows: 

1. Select two strands and nondestructively measure EL1, EL2, t1, and t12. The shear moduli, 

GL1 and GL2 were estimated by typical ratios between EL and GL in solid wood. 

2. Cut one strand in half and glue with desired adhesive and desired amount of adhesive on 

the two sides of the other strand to make a DLS specimen. By using one strand on both 
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sides of the DLS specimen, this process insured symmetric specimens. (Note: we derived 

an analysis for unsymmetric specimens, but it is much more complicated.) 

3. Load the specimen, record load vs. displacement (displacement was measured with an 

extensometer than spanned the entire bond line section), and fit the initial deformation to 

find the specimen stiffness k (in N/mm). 

4. By Eqs. (3) to (5), and given strand properties and DLS geometry, the only unknown is 

the interface parameter Dt. A simple Java application was written to numerically invert 

Eqs. (3) to (5) to find Dt from the measured k. Finite element analysis used was to verify 

that Eqs. (3) to (5) are extremely accurate (Nairn 2007A) and thus analytical methods 

rather the finite elements were sufficient for finding Dt. 

 Two different adhesives were used — phenol formaldehyde (PF) and polyvinyl acetate 

(PVA, Titebond original). The glues were applied to the strands as follows. First the glue was 

spread on a glass plate to uniform thickness using a wire-wrapped bar. Second a rubber stamp 

with a uniform dot pattern picked up some glue and was pressed onto the strand. We prepared 

specimens using dot patterns having area coverages of either 1% or 25%. To test fully glued 

specimens, the adhesive was manually spread onto the strands. The specimens were cured in a 

hot press according the recommended adhesive procedures (100 psi for 5 min at 180˚C). All DLS 

specimens were made with strands cut from hybrid poplar. Some strands used unmodified 

strands; other strands were densified using a viscoelastic thermal compression procedure (Kutnar 

et al. 2008, Kamke and Rautkari 2009, Kamke and Rathi 2009). The unmodified strands had a 

density of 350 kg/m3 while the densified strands had a density of 910 kg/m3. 

 Step 4 in the procedure involves inverting the analysis for k as a function of 1/Dt. Figure 3 

shows a plot of this function for typical strand properties and DLS specimen dimensions. The 

key factor is the amount of variation in k with changes in Dt. The controlling specimen property 

for this variation is the length of the bonded region or l. Since shear stress along bond lines in a 

DLS specimen is concentrated at the ends of the specimens, it is important to keep the specimen 

as short as possible so that interface effects do not become a negligible end effect. We used 25 

mm bond lengths and Fig. 3 shows that with sufficient accuracy in k, we can measure Dt.  

 Numerical modeling of OSB was done using the material point method (MPM) (Sulsky 

1994) using open-source code developed by one of the authors (Nairn 2009). In brief, MPM is a 

particle-based method for computational mechanics. Its advantages over finite element analysis 
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(FEA) for OSB modeling are that it can model compaction of the strand mat (without mesh 

distortion issues in FEA) (Bardenhagen et al. 2005, Nairn 2006), it can track explicit cracks to 

model glue lines between strands (Nairn 2003), and it can model imperfect interfaces that follow 

the traction law in Eq. (6) (Nairn 2007A). The ability to model compaction was important for 

modeling undulating strands. The process for modeling OSB was as follows: 

1. Individual layers of a strand mat were created by laying down strands separated by gaps 

where strand length and gap spacing were randomly selected using input averages and 

standard deviations for length and gap spacing. 

2. Stacking together layers of strands and gaps from step 1 created a full strand mat. The 

surface layers had strand grain direction in the horizontal direction of the analysis while 

the core layers had the grain direction perpendicular to the plane of the analysis. Figure 

4A shows an uncompacted strand mat created by this process. The volumes of surface 

and core layers were equal with half the surface layers being on each surface of the OSB. 

3. An MPM simulation was used to compact the strand mat. The individual strands were 

modeled as anisotropic elastic-plastic materials (Hill yielding criterion (Hill 1948), see 

below) with work hardening. Figure 4B shows a strand mat that has been compacted by 

40%. During the simulation, the analysis tracked the surfaces between the strands and 

tracked the grain angle as the strands developed undulation. 

4. Finally, the particle locations of the compacted mat were input to a new MPM simulation 

for tensile loading (in the horizontal direction of Fig. 4). The tensile simulation used fiber 

angles from the undulating strands and implemented imperfect interfaces between strands 

using imperfect interface methods for MPM (Nairn 2007A). The numerical calculations 

gave results as a function of mat compaction and interface parameter Dt. Values of Dt 

used spanned the range from perfect interfaces to experimental results for Dt. 

5. Because the mats were randomly created, all simulations were repeated for five randomly 

selected initial mat structures. Error bars are some curves show the range of modulus 

results from the various structures. 

 Plasticity of the strands was modeling using J2 plasticity theory (Simo and Hughes 1997), an 

anisotropic Hill yielding criterion (Hill 1948), and a power-law work hardening term (Simo and 

Hughes 1997). The plastic potential for this material response was 
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where σi and τxy are the normal and shear stresses in the material’s axis system, 

€ 

σ i
Y  is the tensile 

yield stress in material direction i, and 

€ 

τ xy
Y  is the shear yield stress in the materials x-y plane, 
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 (10) 

The hardening parameters are k and n; α is the cumulative equivalent plastic strain that evolves 

during the computation (Simo and Hughes 1997). For surface strands, the initial x-y-z directions 

were the L-R-T directions (for longitudinal, radial, and tangential) of the wood. For the core 

strands, the initial x-y-z directions were the T-R-L directions of the wood. Thus, for the 2D, x-y 

plane-strain analysis, the core strands had the transverse plane of the strands. To account for 

strand undulation, the rotation of the material’s x direction to its initial x direction was tracked 

throughout the simulations. The properties assumed for unmodified and for VTC wood are listed 

in Table 1. The longitudinal moduli for strands were measured. Other properties were estimated 

by scaling to similar properties in solid wood (Nairn 2007B). The transverse yield stresses of 

unmodified strands were taken from typical wood properties. The yield stresses for VTC strands 

were estimated from scaling laws for density given by cellular mechanics theories (cube of the 

density (Gibson et al. 1982)). The hardening parameters were not measured, but were chosen to 

match transverse compression stress-strain curves for solid wood with a plateau in stress 

followed by rapid increase in stress after about 30% compression strain (Nairn 2006).  

Results and Discussion 

Adhesive Bond Line Stiffness 

Figure 5 shows the PF adhesive compliance (1/Dt) for specimens with 1%, 25%, and 100% 

coverage in DLS specimen with unmodified or VTC hybrid poplar strands. The stiffness 

increased (compliance decreased) as the amount of glue coverage increased. For 100% coverage, 

the stiffness was negative indicating reinforcement of the strands by penetration of the PF 

adhesive into the wood. Comparing unmodified to VTC strands, the VTC strands had the stiffer 

(or better) interface. Since glue will penetrate into VTC strands less than into unmodified strands 
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(Kutnar et al. 2008), these results indicate that less penetration improved the transmission of 

stress across these glue line bonds. More work is needed to evaluate the role of adhesive 

penetration in glue line mechanics. The error bars shown in Fig. 4 indicate the difficulty in 

extracting a property of an interface from a global specimen measurement. The experimental 

method could potentially be improved by using shorter specimens (l < 25 mm). Alternatively, the 

glue bond could be evaluated by direct observations of deformation in the interphase region. 

 Figure 6 shows the PVA adhesive compliance (1/Dt) for specimens with 1%, 25%, and 100% 

coverage in DLS specimen with unmodified hybrid poplar strands. No VTC experiments were 

done for the PVA resin. Again, the adhesive stiffness increased  (compliance decreased) as the 

amount of glue coverage increased. The adhesive stiffness for PVA was an order of magnitude 

lower than for PF. Even with 100% coverage, the PVA glue bond did not perform as an 

interphase being reinforced by resin (i.e., Dt remained positive). The error bars for PVA were 

slightly better than for PF due to the larger magnitude of 1/Dt, which resulted is larger 

displacement caused by glue line deformation. 

Numerical Modeling of OSB Properties 

Figure 7 gives the MPM calculations for axial modulus of an OSB panel with unmodified strands 

as a function of mat compaction and glue-line stiffness. The random mats were constructed from 

20 layers of 0.8 mm thick strands. The top and bottom 5 layers had the grain direction in the 

horizontal direction. The average lengths of the strands were 150±20 mm (where ± value 

indicates an assumed standard deviation). The 10 middle layers had their grain direction normal 

to the plane of the analysis and thus the analysis plane models the transverse plane or width and 

thickness of the strands. The average strand widths were assumed to be 25±3 mm. The gaps 

between strands in the surface layers were assumed to be 30±5 mm. The gaps between strands in 

the core layers were assumed to be 10±1 mm. The total length of the analysis cell was 100 mm. 

 The modulus decreased as the interfacial compliance (1/Dt) increased. The effect of glue-line 

stiffness increased slightly as the mat compression increased. This effect is due to increased 

strand undulation at higher compaction. Undulating strands rely more on the adhesive then 

perfectly straight strands. All calculations were repeated five times for each point to assess the 

effect of the random selection of the initial mat. Error bars are shown only for the 30% 

compression results. Using experimental results for Dt when using PF resins, if the strands are 
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covered 1% (by area) of glue, the stiffness of the OSB panel would be about 10-15% lower than 

could be expected by panels with 100% coverage. 

 Figure 8 give the MPM calculations for axial modulus of an OSB panel with both VTC and 

unmodified strands as a function of mat compaction and glue-line stiffness. For this hybrid panel, 

only the surface strands were changed to VTC strands. The core strands remained as unmodified 

strands. Like the unmodified panels, the modulus decreased as the interfacial compliance (1/Dt) 

increased. The influence of interfacial stiffness was higher when using VTC strands. A panel 

with 1% coverage would have a modulus about 25% lower than one with 100% coverage. The 

moduli were much higher because the surface strands provide most of the stiffness and all those 

strands were replaced by VTC strands, which had a much higher modulus (see Table 1). 

Homogenized Model Interpretation 

For another view of explicit numerical results, we compared the calculated moduli to a 

simplistic, analytical model based on homogenization of each layer, followed by simple, uniform 

compression. For an analytical model, the composite was divided into three layers – top surface, 

core, and bottom surface. For each layer, the axial modulus was replaced by a homogenized 

modulus by considering the volume fraction of gaps within each layer. Thus the moduli of the 

surface (ES) and core (EC) layers were replaced by: 

€ 

ES = EL
L

L + GL

     and     

€ 

EC = ET
W

W + GW

 (11) 

where EL and ET are the longitudinal and tangential moduli of the strands, <L> and <W> are the 

average length and width of the strands, and <GL> and <GW> are the average gaps between 

strands in the surface and core layers. Next, it was assumed these moduli increased uniformly 

due to compaction to ES/(1-C) and EC/(1-C), where C is the fraction compaction. Finally, a 

simple rule of mixtures was used to find the OSB modulus for structures with equal amounts of 

surface and core layers to be: 

€ 

E * =
ES + EC

1−C
 (12) 

This equation predicts a linear relation between OSB modulus and fraction compaction. 

 Figures 9 and 10 re-plot the results from Figs. 7 and 8 as a function of 1/(1-C) along with the 

homogenized model in Eq. (12). The numerical results are approximately linear but deviate from 
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the simplistic modeling. First, the results for a perfect interface (1/Dt = 0) are close to the linear 

model, but results with unmodified strands are nonlinear and higher then the model, while results 

from with VTC strands are nonlinear and lower the model. These shifts are a consequence of 

non-uniform compression in the layers. In real OSB panels, the surfaces are denser than the core. 

This effect is reproduced in the simulations where the surface layers compact more than the core 

layers. Since the surface layers contribute the most to the modulus, extra compaction in those 

layers leads to higher modulus than expected from the simplistic uniform compaction model (see 

Fig. 9). When using VTC strands, however, the surface layers are already densified and thus 

densify less than the core layers during mat compaction. Thus the numerical results are lower 

than the uniform compaction model (see Fig. 10). 

 Another difference between simulations and the simplistic model is that the model predicts 

no influence of interfacial stiffness (Dt). The model consists of three parallel layers loaded by 

uniform deflection to find the modulus. Since uniform deflection induces no shear at the 

interfaces, the shear stiffness of the glue lines has no affect on the results. In reality, the strands 

are undulating and experience much shear during tensile loading. Thus strand undulations (which 

are a consequence of gaps in the initial mat) are the reason glue-line stiffness is important in the 

tensile modulus of OSB panels. Explicit numerical simulations that include strand undulations 

are required to accurately model this influence of glue-line stiffness. To confirm the importance 

of strand undulation, we ran numerical simulations of mats with no gaps (i.e., 20 completely 

filled layers). These mats compact with no stand undulation. The modulus of the compacted mats 

was found to be independent of Dt. 

Conclusions 

The main result of this paper is that MPM simulations can evaluate the modulus of OSB panels 

accounting for realistic strand undulations and for the effective stiffness of the adhesive bonds 

between strands. The two effects are connected. If there are no undulations, the influence of glue 

is greatly reduced. But all real OSB panels have undulations and thus glue-line stiffness plays a 

role in the panel’s modulus. To connect calculations to real adhesive properties, new adhesive 

characterization methods are needed. Here a DLS specimen was used to find the effective 

interface properties of wood strands glued by either PF or PVA resins. We can estimate that the 

modulus of OSB panels with inadequate gluing is approximately 10% to 25% lower than it could 
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be with improved adhesive application. The importance of the adhesive increases when using 

strands with enhanced properties such as VTC strands. 

Acknowledgements 

This work was supported by the National Research Initiative of the USDA Cooperative State 

Research, Education and Extension Service, Grant #2006-35504-17444. We also thank Prof. 

Greg Smith (UBC) for help and adhesive application methods. 

References 

Bardenhagen, S. G., A. D. Brydon, and J. E. Guilkey. 2005. Insight into the physics of foam 
densification via numerical simulation. J. Mech. Phys. Solids. 53(3):597–617. 

Cox, H. L. 1952. The elasticity and strength of paper and other fibrous materials. Brit. J. Appl. 
Phys., 3:72–79. 

Gibson, L. J., M. F. Ashby, G. S. Schajer, and C. I. Robertson. 1982. The mechanics of two-
dimensional cellular materials. Proc. Royal Soc. Lond. A, 382:25–42. 

Hashin, Z. 1990. Thermoelastic properties of fiber composites with imperfect interface. Mech. of 
Materials, 8:333–348. 

Hill. J. R. 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. 
London, 193:281–297. 

Hull, D. and T. W. Clyne. 1986. An Introduction to Composite Materials, Second Edition. 
Cambridge University Press, Cambridge, England. 

Kamke, F.A. and L. Rautkari. 2009. Modified wood veneer for structural applications. In: Proc. 
Fourth International Symposium on Veneer Processing and Products, May 24 – 27, Espoo, 
Finland. Pp. 207-212. 

Kamke, F.A. and V. Rathi. Modified hybrid poplar for structural composites. In: Proc. 4th 
European Conference on Wood Modification, Stockholm, Sweden, April 27-29, 2009. Pp. 
397-400. 

Kutnar, A.; F.A. Kamke and M. Sernek. 2008. The mechanical properties of densified VTC 
wood relevant for structural composites. Holz als Roh- Werkst. 66(6): 439-446 

Nairn, J. A. 1997. On the use of shear-lag methods for analysis of stress transfer in unidirectional 
composites. Mech. of Materials, 26:63–80. 

Nairn, J. A. 2003. Material point method calculations with explicit cracks. Computer Modeling 
in Engineering & Sciences, 4:649–664. 

Nairn, J. A. 2004. Generalized shear-lag analysis including imperfect interfaces. Advanced 
Composite Letters, 13:263–274. 



13 

Nairn, J. A. 2006. Numerical simulations of transverse compression and densification in wood. 
Wood and Fiber Science, 38:576–591. 

Nairn, J. A. 2007A. Numerical implementation of imperfect interfaces. Computational Materials 
Science, 40:525–536. 

Nairn, J. A. 2007B. A numerical study of the transverse modulus of wood as a function of grain 
orientation and properties. Holzforschung, 61:406–413.  

Nairn, J. A. 2009. Nairn Research Software, http://people.oregonstate.edu/~nairnj/ 
Piggott, M. R. 1980. Load Bearing Fibre Composites, Pergamon Press, New York. 

Simo, J. C. and T. J. R. Hughes. 1997. Computational Inelasticity. Springer-Verlag, New York. 
Sulsky, D., Z. Chen, and H. L. Schreyer. 1994. A particle method for history-dependent 

materials. Comput. Methods Appl. Mech. Engrg., 118:179–186. 



14 

Table 1: Mechanical properties assumed for unmodified and VTC strands in the numerical 
simulations. 

 

Property Unmodified Strands VTC Strands 
EL (MPa) 9936 23411 
ER (MPa) 913 2153 
ET (MPa) 425 1005 
GRL (MPa) 743 1616 
GTL (MPa) 686 1486 
GRT (MPa) 108 235 
νRL 0.028 0.028 
νTL 0.017 0.017 
νTR 0.33 0.33 

 (MPa) ∞ ∞ 

 (MPa) 5 90 

 (MPa) 5 90 

 (MPa) 10 180 

 (MPa) 3 – 

k 120 120 
n 4 4 
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Figure Captions 

Figure 1: Predicted modulus of an aligned, short-fiber composite as a function of the aspect ratio 
of the fibers and for three different interface properties. 

Figure 2: Geometry of the double lap shear specimens used for adhesive testing. 

Figure 3: Shear lag calculation of the global stiffness of a DLS specimen as a function of the 
interfacial shear stiffness property. The bond line length was 25 mm. 

Figure 4: A. Random OSB mat for MPM numerical modeling. The darker, surface strands have 
the grain direction in the horizontal direction. The lighter, core strands have their transverse 
plane in the plane of the analysis. B. The strand mat in A. numerically compressed 40% by 
an MPM simulation. 

Figure 5: Measured adhesive compliance for PF resin on either unmodified strands or VTC 
strands. 

Figure 6: Measured adhesive compliance for PVA resin on unmodified strands. 
Figure 7: MPM calculation of modulus of OSB panel with unmodified strands as a function of 

the mat compaction and the glue line stiffness. 
Figure 8: MPM calculation of modulus of OSB panel with VTC and unmodified strands as a 

function of the mat compaction and the glue-line stiffness. 
Figure 9: MPM calculation of modulus of OSB panel with unmodified strands as a function of 

1/(1-C) and the glue line stiffness. 
Figure 10: MPM calculation of modulus of OSB panel with VTC and unmodified strands as a 

function of 1/(1-C) and the glue-line stiffness. 
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Nairn and Le, Figure 1 

 

 
 

Nairn and Le, Figure 2 

 

 

Load Bearing Phase Aspect Ratio

M
o
d
u
lu

s
 (

G
P

a
)

0 20 40 60 80 100 120 140 160 180 200
 0 

 5 

 10 

 15 

 20 

 25 

"perfect"

PSL

LVL

compliant

reinforced Interphase

P/2

P/2

P

y

x
x = 0 x = l

t1

t2

L
2

t3

E
L1

, G
L1

E
L2

, G
L2

E
L3

, G
L3

L
1



17 

Nairn and Le, Figure 3 

 

 
 

Nairn and Le, Figure 4 
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Nairn and Le, Figure 5 
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Nairn and Le, Figure 6 
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Nairn and Le, Figure 7 
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Nairn and Le, Figure 8 
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Nairn and Le, Figure 9 
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Nairn and Le, Figure 10 
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