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ABSTRACT: Cross-laminated timber (or CLT) must be recognized as a “precracked” wood composite material where 
the non-bonded edges within each layer act as cracks in the structure. Furthermore, differential shrinkage between the 
layers of installed CLT panels subjected to variations in moisture and temperature will result in additional cracks forming 
parallel to the initial precracks. Fortunately, there is a large literature on the effect of such cracks in cross-laminated 
composites used in aerospace composites. This paper applies prior literature (when available), and extends it (when 
needed) to derive all mechanical, thermal expansion, and moisture expansion properties of CLT as s function of the 
number of cracks in each layer. These results can be used to better design CLT structures. Furthermore, because CLT will 
form additional cracks when in service, these equations should be a key component of any durability analysis. 
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1 INTRODUCTION 123 
Cross laminated timber (CLT) is made by laminating 
three or more layers of timber such that the grain direc-
tions in alternate layers are at right angles to each other 
much like the grain directions in the veneer layers of ply-
wood. Glue is applied between the layers on the faces of 
the timber, but no glue is applied on timber edges within 
each layer. CLT must therefore be recognized as a 
precracked composite where the timber edges represent 
periodic “precracks” in every layer. Furthermore, CLT 
will develop more cracks over time due to environmental 
exposure and differential layer shrinkages. For example, 
figure 1 shows a CLT structure on display in the lobby of 
the College of Forestry at Oregon State University illus-
trating both “precracks” (non-bonded edges) and “added 
cracks” (within timber elements). Those involved in wood 
construction are used to seeing cracks in solid-sawn lum-
ber and glulam, but the structure of CLT causes the driv-
ing force for formation of such cracks to be much greater 
[1-4] and the consequences of those cracks to be more se-
vere [5-7]. Attempts to ameliorate effects of precracks by 
applying glue to the edges would be thwarted by natural 
formation of added cracks over time. 
The inescapable conclusions are that CLT structures must 
be designed with tools that recognize cracks and durabil-
ity analysis of CLT must account for the rate of formation 
of added cracks and their role in changing the properties 
of the structure. Fortunately, the analysis of CLT need not 
re-invent the tools because many of the needed methods 
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are already available from prior research on cross-ply 
laminates made with carbon fibre or glass fibre materials. 
Applications of synthetic cross-ply laminates include bi-
cycle tubes and ski poles. Common applications that are 

 
 

 
Figure 1: Typical CLT has “precracks” (initial non-glued 
edges) and “added cracks” induced by environment. 
 



close to cross-ply laminates include filament wound pres-
sure vessels and fibreglass pipes. Unlike CLT, synthetic 
cross-ply laminates are not manufactured with precracks 
(non-glued edges), but like CLT, laminates are prone to 
added cracks (known as “microcracks” or “transverse 
cracks”) caused by mechanical loads or by residual 
stresses. The consequences of microcracks are a reduction 
in laminate properties and a promotion of more serious 
damage such as delamination. The linking of microcracks 
and delaminations can lead to leakage in pressure vessels 
or pipes that represent functional failure despite only 
modest changes in mechanical properties [8]. 
The analysis of microcrack formation in cross-ply lami-
nates has focused on energy methods where the next crack 
forms when the energy release rate for formation of the 
next microcrack exceeds the toughness of the ply material 
[1-4]. A prerequisite to finding this energy release rate is 
a mechanics analysis for the mechanical and expansion 
properties of the laminate as a function of the number of 
microcracks [1-7]. Although most prior microcracking 
models have been 2D models for cracking in a single 
layer, Hashin analysed a three-layer, cross-laminated 
composite with orthogonal cracks in all layers [6]. This 
paper applies and extends Hashin’s variational mechanics 
methods to find in-plane moduli, Poisson’s ratio, and ther-
mal and moisture expansion coefficients of CLT, all as a 
function of crack spacings in the layers. The use of these 
results for evaluating the driving forces for formation of 
additional cracks is briefly discussed. 
 
2 THEORY 
The most relevant paper for analysis of CLT is Hashin’s 
3D analysis of an orthogonally cracked laminate [6]. 
From a mechanics point of view, Hashin’s paper analysed 
the CLT panel shown in figure 2, and completed that anal-
ysis before CLT was developed as a product. Hashin’s 
solved for modulus in the laminate 1 direction (due to load 
N1) and for Poisson’s ratio (ν12) for a laminate with trans-
versely isotropic plies with fibre direction defining the ax-
ial direction. This section applies his methods to include 
orthotropic properties of wood for the layers, to addition-
ally determine properties for loading in the laminate 2 di-
rection (due to load N2), and to give a corrected Poisson’s 
ratio. 

Figures 3A and B show analysis coordinates for a single 
unit cell between cracks (which are indicated as shaded 
areas) in the three layers for loading in both the 1 (as done 
by Hashin) and 2 (added here) directions. To maximize 
overlap with Hashin's analysis, the direction 2 unit cell ro-
tates material properties by 90˚. Each problem considers 
one half by symmetry defined by 0 ≤ z ≤ h = t1 + t2 with –
a ≤ x ≤ a and –b ≤ y ≤ b for direction 1, but –b ≤ x ≤ b and 
–a ≤ y ≤ a for direction 2. Note that the z axis for direction 
2 is shifted from the centre to the left edge. With this shift, 
the layers labelled (1) and (2) retain the same orthotropic 
wood properties in the two unit cells — longitudinal, L, 
direction in y direction for layer (1) and x direction for 
layer (2) — and have cracks on the same surfaces. When 
the cracks are edges of timber elements, distances be-
tween the cracks (2a and 2b) are widths of timber in those 
layers. Most CLT will have layers of the same thickness 
(2t1 = t2) and us lumber of the same width (2a = 2b), but 
these parameters can be left as independent variables to 
keep the analysis more general. 
Hashin’s analysis [6] is too lengthy for this proceedings 
paper. Instead, the analysis procedure is outlined and 
complete results for calculations are provided. The reader 
is referred to Hashin’s paper [6] and a longer CLT publi-
cation for analysis details [9]. Hashin wrote the compo-
nents of total stress in layer (k) as: 

 

where σij
(k,0) is the stress in the corresponding CLT panel 

with no cracks and σij
(k) is the perturbation stress or change 

in stress due to addition of cracks. He derived a 3D admis-
sible stress state for each layer [6], which can be general-
ized to account for direction i loading (i =1 or 2). The ten-
sile stresses in the layers are 
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Figure 2: A three-layer CLT panel where 1, 2, and 3 refer to 
laminate directions and Nij refer for force per unit length (force 
resultants) applied to the laminate. 
 

 

 
Figure 3: Unit cell for analysis of CLT properties. The shaded 
regions are crack surfaces. A and B are for loading in the 1 and 
2 directions, respectively. 



where σ0 is uniaxial applied stress (in direction i), φi(x) 
and ψi(y) are four unknown functions (two for each load-
ing direction), λ1 = t2/t1, and λ2 = t1/t2. The stiffnesses, kxi 
and kyi, give the stress in layer 1 of a CLT with no cracks 
due to uniaxial load in direction i: 

       and        

where kxi and kyi are easily calculated from classical lami-
nated plate theory [9,10] and are given in the appendix. 
The remaining 3D stresses (all shear stresses and normal 
stresses in the z direction) are given elsewhere [6,9]. The 
main simplifying assumptions are that σxx

(k) depends only 
on x and σyy

(k) depends only on y. Otherwise, the stress 
state is a valid admissible stress state. It satisfies all 3D 
equilibrium conditions, has zero shear on free surfaces 
and on midplanes of symmetry, has zero normal stress on 
free surfaces, and satisfies continuity of stresses as needed 
at layer interfaces. 
Finally, the stresses satisfy all traction boundary condi-
tions by virtue of the initial stress state and providing the 
unknown functions satisfy: 

 (1) 

 (2) 

The function boundary conditions result in zero normal 
stress on all crack surfaces. Because shear stresses are 
proportional to function derivatives [6,9], the zero bound-
ary conditions for derivatives gives zero shear stress on all 
crack surfaces. 
The next step is to evaluate the total complementary en-
ergy in the unit cell. Because the stress state is admissible, 
one can then determine the best approximate stress state 
by minimizing that complementary energy. The minimi-
zation process, by using variational calculus, leads to cou-
pled differential equations for the four unknown func-
tions, which can be solved analytically using the boundary 
conditions in equations (1) and (2). The solutions are pro-
vided in the appendix. 
 
2.1.1 In-Plane Tensile Moduli 
By theorems of variational mechanics [6], the minimized 
complementary energy leads to lower bound moduli in the 
two directions as a function of crack spacings (a and b) in 
the layers [6,9]: 
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where superscript 0 indicates hypothetical CLT properties 
with no cracks and 

 

 

where  and  are average values of those functions 
for loading direction i in the unit cell. EL, Et, and vLt are 
moduli and Poisson's ratio for the lumber in the plane of 
the CLT layers. L stands for longitudinal wood properties 
while t stands for property perpendicular to the grain di-
rection and its direction in the wood will depend on the 
transverse grain pattern of the lumber (see sample grain 
patterns in figure 2 and the appendix for more details on 
wood property settings). 
 
2.1.2 In-Plane Poisson's Ratio 
Although it is not possible to place bounds on Poisson ra-
tios, it is possible to calculate them using the above stress 
state. For direction 1 loading: 

 

where  is average strain in the 2 direction. Hashin 
mistakenly equated this term to average strain over all lay-
ers [6], but that calculation does not account for extra 
strain resulting from crack opening displacements. After 
accounting for crack opening strain,  can be derived 
as equal to average y direction strain in layer (1) only [9]. 
Finding this  from the solved stress state (and a sim-
ilar calculations for loading in direction 2), the in-plane 
Poisson’s ratios are: 
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These two results are, as expected, identical and therefore 
satisfy standard relations between Poisson ratios. 
 
2.1.3 Thermal and Moisture Expansion 

Coefficients 
The usual approach to finding thermal expansion coeffi-
cients is to start over with a new stress analysis that ex-
plicitly includes residual stresses, but that work is not 
needed. Instead, thermal expansion coefficients of the 
CLT structure can be found from the Levin equation [11]: 

 

where  is effective thermal expansion tensor of the 
composite. The sum is over phase i with volume fraction 
Vi and thermal expansion tensor  where  is 
the average stress tensor in that phase due to any applied 
mechanical stresses  (i.e., the approximate stress 
state solutions). Applying this result to separate calcula-
tions using the direction 1 and 2 stress state solutions, the 
calculations leads to: 

 

 

�(1,0)
xx

= k
xi

�0 �(1,0)
yy = kyi�0

�1(±a) =  1(±b) = 1 �01(±a) =  0
1(±b) = 0

�2(±b) =  2(±a) = 1 �02(±b) =  0
2(±a) = 0

1

E11(a, b)
 1

E0
11

+
K

x1 h�1i+K
y1 h 1i

1 + �1

1

E22(a, b)
 1

E0
22

+
K

x2 h�2i+K
y2 h 2i

1 + �2

K
xi

= k
xi

✓
k
xi

(�
i

E
L

+ E
t

)� 2k
yi

E
t

⌫
Lt

(1 + �
i

)

�
i

E
L

E
t

◆

K
yi

= k
yi

✓
k
yi

(E
L

+ �
i

E
t

)� 2k
xi

E
t

⌫
Lt

(1 + �
i

)

�
i

E
L

E
t

◆

h�ii h ii

⌫12(a, b) = �h"22i
�0

E11(a, b)

h"22i

h"22i

h"22i

⌫12(a, b)

E11(a, b)
=
⌫012
E0

11

+
k
y1 h 1i � ⌫

Lt

k
x1 h�1i

E
L

⌫21(a, b)

E22(a, b)
=
⌫021
E0

22

+
k
y2 h 2i � ⌫

Lt

k
x2 h�2i

E
L

�(m) ·↵eff =
X

i

Vi

D
�(i,m)

E
·↵(i)

↵eff

↵(i) h�(i,m)i

�(m)



where αL and αt are the longitudinal and perpendicular in-
plane thermal expansion coefficients of the wood (see ap-
pendix for details on wood properties). Note that the CLT 
expansion coefficients with no cracks (α1

0 and α2
0) are 

found using the above expressions by setting  and 
 to zero. This result is, as expected, identical to clas-

sical lamination theory approach to thermal expansion co-
efficients [10]. 
The analysis for moisture expansion coefficients, which 
may be more important for wood products, is identical and 
follows simply by replacing all thermal expansion coeffi-
cients (α) with the corresponding moisture expansion co-
efficients (β) for both the CLT panel and the wood. 
 
3 RESULTS AND DISCUSSION 
This section gives sample calculations for CLT properties 
as a function of crack spacings for three layer CLT made 
from flat-sawn lumber. The initial lumber cross section is 
40 X 160 mm (1.57 X 6.30 in) and identical in all layers 
leading to 2t1 = t2 = 40 mm and a = b = 80 mm. All results 
are plotted as a function of dimensionless crack density 
equal to 1/ρ1 = a/t1 where ρ1 is the aspect ratio of the lum-
ber's cross-section. The as-made CLT has 1/ρ1 = 40/160 = 
0.25 while zero crack density corresponds to CLT with no 

cracks and 1/ρ1 > 0.25 corresponds to changes in proper-
ties caused by added cracks (as seen in figure 1). The as-
sumed wood properties are in Table 1; for flat sawn lum-
ber t and r in CLT correspond to T and R directions in the 
lumber. 
Figure 4 plots the in-plane tensile moduli calculated by 
equations (3) and (4) and the results are normalized to 
moduli for CLT with no cracks. The vertical dashed line 
shows the as-made CLT while the horizontal dashed lines 
show the “ply-discount” limit for an infinite number of 
cracks. These moduli decrease as crack density increases. 
The ply discount limit corresponds to a calculation that 
assumes the 90˚ plies contribute zero stiffness to the 
panel. The reason tensile moduli decreases are modest is 
because of the high EL/ET ratio for wood. The 90˚ degree 
layers never contribute much stiffness and therefore when 
cracks form the degradation is rather small. The degrada-
tion would be slightly larger for radial-sawn lumber (be-
cause ER > ET). 
The calculated moduli are formally lower bound predic-
tions (i.e., conservative) of the actual moduli. To check 
the utility of these lower bounds, the symbols show 3D 
material point method (MPM) calculations [13,14] for in-
plane tensile moduli. The analytical and numerical results 
agree well demonstrating that the lower bounds are close 
to actual moduli. 
Hashin's paper on orthogonally cracked composites men-
tions that “the problem of shearing of a cross-ply will be 
considered elsewhere.” [6] Unfortunately, it turned out 
that the variational methods used for in-plane axial load-
ing do not extend easily to in-plane shear loading. It is 
difficult to find an admissible stress state that is suffi-
ciently robust to describe all 3D shear while also being 
simple enough for a closed-form, variational mechanics 
solution for shear modulus [15]. To provide complete re-
sults, this section quotes an alternate in-plane shear anal-
ysis method by Bogensperger et al. [16]. This analysis is 
a hybrid analytical/numerical result. It starts with a very 
simple model (e.g., zero stiffness transverse to the plies 
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Figure 5: The in-plane shear modulus calculated using an MPM 
model with N X N units cells with a = b = 40 mm as a function 
of N. The graphic show 3D MPM model with 5 X 5 unit cells. 

Table 1: Softwood lumber properties for CLT calculations. 
Moduli are in MPa and moisture expansion coefficients are % 
strain/% moisture content. 

Property Value Property Value 
EL 8000 ET 620 
ER 960 GLR 800 
GLT 800 GRT 80 
νLR 0 νLT 0 
νRT 0 βL 0.0 
βR 0.16 βT 0.26 

 
 

 
Figure 4: In-plane tensile and shear modulus by equations 
(solid lines) and by 3D MPM calculations (symbols). The filled 
symbols are for shear modulus with frictional contact on board 
edges. The dashed vertical line is as-made CLT crack density. 
The dashed horizontal lines and ply discount calculations. 



that is limited to CLT with constant board widths and con-
stant thickness) and then calibrates the coefficients in this 
simplistic model using 3D finite element analysis (FEA). 
The resulting equation for three-layer CLT in current no-
menclature is [16]: 

 
(7)

 

where GLt is the in-plane shear modulus of the wood lay-
ers. This shear modulus result is compared to new 3D 
MPM calculations in figure 1. The agreement is reasona-
ble with differences likely attributed to boundary condi-
tions used in the FEA modelling in Ref. [16] compared to 
MPM modelling used here. 
In MPM calculations here, attempts to model a single unit 
cell with shear force applied only to non-cracked surfaces 
only were not realistic The alternate approach used was to 
increase the size of the modelled CLT to include N X N 
unit cells and apply uniform shear on edges of the full 
structure. For large N, this approach is modelling a com-
plete CLT panel. Analysis of multiple unit cells requires 
numerical methods that can handle sliding at interior non-
glued edges but stick conditions on glued faces. Fortu-
nately, MPM is capable of handling this issue [14]. Figure 
5 shows shear modulus calculated from such an N X N unit 
cell model with a = b = 40 mm as a function of N. The 
results show that N ≥ 4 is sufficiently large for numerical 
results to be representative of a full CLT panel. The shear 
modulus calculations in figure 4 used N = 5. 
An interesting application of 3D MPM modelling of N X 
N unit cells is to investigate the role of friction between 
the edges. The filled symbols in figure 4 show numerical 
results for shear modulus when the coefficient of friction 
between wood edges is 0.3. In the presence of friction, the 
shear stiffness only slightly increased. One should not ex-
pect that frictional loading would significantly ameliorate 
the effects of non-glued edges or added cracks. 
Figure 6 compares in-plain Poisson's ratios for a CLT 
panel (ν12 and ν21) by modelling (equations (5) and (6) as 

curves) to 3D MPM calculations (symbols). The agree-
ments are not as good as for moduli, but both results show 
that both Poisson's ratios approach zero as additional 
cracks are formed. Also note that the Poisson's ratios for 
as-made CLT (vertical line) are significantly different 
than the ratios calculated from a laminate theory that ig-
nores cracks in the wood layers. 
Figure 7 plots the moisture expansion coefficients for a 
CLT panel as a function of crack density (no modelling 
was done so curves are only for modelling predictions 
from section 2.1.3). Both moisture expansion coefficients 
approach zero as additional cracks are formed. Like Pois-
son's ratio, the moisture expansion coefficients for as-
made CLT (vertical line) are significantly different than 
the results calculated from a laminate theory that ignores 
cracks in the wood layers. The modelling predictions for 
thermal expansion coefficients would be similar. 
The fact that shear modulus, Poisson’s ratio, thermal, and 
moisture expansion coefficients for CLT with initial 
cracks (based on lumber dimensions) are significantly dif-
ferent from simplified lamination models that ignore the 
cracks, suggests that property analysis of CLT panels 
should always account for those cracks. Ignoring the 
cracks may overestimate these properties by 100%. 
 
3.1.1 Formation of Added Cracks 
Potentially more important then initial CLT properties is 
how the properties will change in service. Changes in 
properties are expected because CLT will develop cracks 
and those additional cracks will change properties as 
shown in figure 4, 6, and 7. The properties that change the 
most are shear modulus, Poisson's ratios, and thermal and 
moisture expansion coefficients. In aerospace cross-lami-
nated composites, it has been shown that the driving force 
for additional cracks is the total energy released due to the 
formation of each crack [1-4]. This key crack driving 
force can be calculated once effective mechanical and ex-
pansion properties are known. 
Imagine an as-made CLT panel with lumber dimensions 
corresponding to a = b = a0. If this panel is loaded in the 
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Figure 6: In-plane Poisson's ratios by equations (solid lines) 
and by 3D MPM calculations (symbols). The dashed vertical 
line is as-made CLT crack density. 

 
Figure 7: In-plane moisture expansion coefficients calculated 
by variational mechanics). The dashed vertical line is as-made 
CLT crack density. 



1 direction with stress σ0, the first added crack will ex-
pected to form perpendicular to the wood grain in the (1) 
layer and form at the middle of one piece of lumber. This 
crack will change crack spacing from a0 to a0/2. From mi-
crocracking analysis in cross-laminated composites [1-
4,17,18], the energy release rate (energy per unit crack 
area) for this added crack is: 

 

where B = 2(t1 + t2) is total CLT thickness and 

 

is the total stress in layer (1) for a CLT with no cracks. 
Importantly, this stress includes both applied load (σ0) and 
residual stresses caused by changes in temperature (ΔT) 
or changes in moisture content (Δc). The new constants, 
kth,1 and km,1 give residual stresses in layer (1). These terms 
are easily calculated from laminated plate theory [3] (but 
not given here). The next crack will form when Gac ex-
ceeds the toughness, Gc, of the wood. For Douglas fir, the 
initiation toughness is about 200 J/m2 [19]. 
The observation that CLT naturally forms additional 
cracks with minimal external load (e.g., figure 1), sug-
gests that the main driving forces for crack formation are 
residual stresses due to changes in moisture and tempera-
ture. The above energy release rate equation can be a tool 
for predicting the rate of formation of such cracks. The 
extension to further cracking would replace a0 by the cur-
rent crack spacing. The modelling of cracks in the outer 
layers would use a corresponding equation based on 
changes in E22(a,b) and crack spacing’s in that layer. A 
robust approach to modelling durability of CLT panels 
should use these tools to account for the rate of formation 
of additional cracks and use the modelling to predict how 
those extra cracks will change all mechanical and expan-
sion properties of the panel. This work will be addressed 
in a future publication.  
 
3.1.2 Limitation and Future Work 
The variational mechanics analysis presented above is 
limited to three layer CLT and to in-plane mechanical 
properties. Although the variational methods could be ex-
tended to more layers, the problem would involve a sys-
tem of coupled equations that would likely need a numer-
ical solution. Similarly, the variational methods could be 
used for laminates in bending [20,21], but only have a 
closed-form solution for three layer CLT. 
A potential method to approximate CLT with any number 
of layers and to calculate bending and twisting properties 
is to use damage mechanics [22]. In this approach, a ply 
with cracks is replaced by a homogeneous ply with de-
graded properties. The degraded properties of a cracked 
wood layer could be evaluated by inverting an analysis for 
a three layer CLT with uncracked layers (see equations in 
the appendix) to solve for the effective layer properties 
required to match the variational mechanics results for 
mechanical properties as a function of the crack spacings 
in the layers. Once the effective properties are found, they 
could be input to classical laminated plate theory [10] to 

find CLT properties for any number of layers and to find 
laminate flexural properties.  
Another limitation is that analysis is linear elastic. One 
non-linearity is the difference between tension and com-
pression. The analysis assumes crack surfaces have zero 
normal stress, which is appropriate for tensile loading. 
During compression, however, the crack surfaces may 
come into contact and transmit normal stress (although 
would transmit shear stress only if sufficient friction). As 
a result, the compression moduli are likely to be higher 
than the tensile moduli. This effect would also affect 
bending calculations where some layers are in compres-
sion and others are in tension. Because cracks have a 
larger effect on tensile properties then on compression 
properties, the modelling used here can be claimed to give 
conservative predictions that would lead to fail-safe de-
sign. Those willing to rely on crack surface contact to pro-
vide structural integrity could potentially design to higher 
modulus values. Based on friction calculations in figure 
4, however, crack surface contact likely has very little ef-
fect on shear modulus predictions. 
The shear modulus predictions in equation (7) currently 
used a prior model that required numerical calibration 
[16]. A useful addition to CLT design would be a varia-
tional mechanics method to find a closed form solution for 
shear modulus in the presence of cracks. This solution has 
so far proved to be elusive. 
Finally, durability analysis for CLT must account for the 
formation of additional cracks. Useful future work, there-
fore, would be experiments to monitor the rate of for-
mation of additional cracks due to applied loads or to 
changes in temperature and moisture. These experiments 
could be analyzed by energy methods made possible by 
the property analyses in this paper. Once crack formation 
rates are known, durability could be predicted by model-
ling changes in structural integrity induced by the changes 
in properties caused by the additional cracks. 
 
APPENDIX 
The CLT properties were determined relative to the hypo-
thetical CLT with no cracks. This structure would corre-
spond to solid wood layers or approximately to CLT lay-
ers with glued edges before the formation of any added 
cracks. These properties can be found from classical lam-
inated plate theory [9,10] applied to a laminate with an 
odd number, n, of alternating 0˚ and 90˚ layers with 0˚ 
plies on the surfaces and the laminate 1 direction in the L 
direction of the 0˚ plies. The results needed here are: 

 

 

 

where EL and GLt are tensile and shear moduli of the lum-
ber parallel to the grain, νLt is the axial Poisson's ratio, and 
R = Et/EL is ratio of tensile moduli in transverse and grain 
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directions. Note that Et, GLt, and νLt purposely used low-
ercase t to avoid confusion with tangential (T) direction of 
the wood. The actual values for these properties will de-
pend on the end-grain pattern of the CLT lumber (see 
samples in figure 2). For example, with flat-sawn lumber, 
the t direction will approximately be the wood T direction 
(Et = ET) direction and wood radial (R) direction will be 
in the z direction. For radial sawn boards, the t direction 
will be in the R direction (Et = ER) with wood T direction 
in the z direction. For off-axis lumber (e.g., lumber cut 
close to heartwood of the tree), Et may be less then both 
ET and ER [12]. Although the analysis methods here could 
easily be modified to account for different properties in 
different layers, the results presented here assume identi-
cal or mean properties for all layers. Those properties can 
be chosen to reflect the most common end-grain patterns 
in the lumber. The use of n layers means these equations 
apply to any odd-ply structure such as plywood or CLT 
with more than three layers. The analytical results in this 
paper are for n = 3. The damage mechanics approach men-
tioned above provides one approximate method for gen-
eralizing to n > 3 [9]. 
Classical lamination theory also provides the constants for 
finding initial stresses in the layers: 

 

 Lastly, we need to minimize the complementary energy to 
find the unknown φi(x) and ψi(y). These functions are 
found by solving coupled differential equations, which 
can be solved in closed form [6,9]. The solutions are best 
expressed in terms of constants defined from the wood 
properties. For loading in the i = 1 direction, the needed 
constants are: 

 

 

 

 

 For loading in the 2 direction, use i = 2 in the first five 
constants and replace the last three constants by: 

 

 

 

For each loading direction i, the function φi(ξ) (where ξ = 
x/ti) is determined using the above constants and new con-
stants derived from the characteristic equation for the con-
trolling differential equations [6,9]: 

 

 

but A2, B2, and C2 are replaced by A2', B2', and C2 for load-
ing in direction 2. All combinations of CLT properties 
have pi < 0 and qi > 0, but the final solution depends on 
their relative values. When 4q1 > p1

2: 

 
                           

where 

 

 

 

and ρ1 = a/t1. The average value of φi(ξ) is 
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where 

 

When 4q1 > p1
2: 

 

                                         

where 

 

 

 

The average value of φi(ξ) is the same as equation (A1) 
except now 

 

To find ψi(η), use the above equations but replace φi(ξ), 
p1, q1, ρ1, m1, , ω1, and ξ with ψi(η), p2, q2, ρ2 = b/t2, 
m2, , ω2, and η = y/ti, respectively and note that α and 
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β will be different. Note that equation (A1) will now in-
volve ω2 and the subsequent equation for ω1 now defines 
the needed ω2. 
All effective properties depend on the average values  
and . To find these terms, solve equation (A1) and 
the corresponding equation for  to get: 

 

 

where ω1 and ω2 are determined from the appropriate form 
for φi(ξ) and ψi(η) in the previous equations. Repeating 
this calculation for both loading directions determines all 
terms need to find all mechanical properties for a three-
layer CLT panels. 
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