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Summary
Finite element analysis was used to study the effective transverse modulus of 

solid wood for all possible end-grain patterns. The calculations accounted for 
cylindrical anisotropy of wood within rectangular specimens and explicitly 
modeled wood as a composite of earlywood and latewood. The effective 
modulus was significantly reduced by growth ring curvature or off-axis loading, 
The large changes were attributed to the low transverse shear modulus of wood. 
The explicit, or heterogeneous, model was compared to prior numerical methods 
that homogenized properties in the transverse plane. The two models gave 
similar effective modulus results, but  a heterogeneous model was required to 
capture details in modulus calculations or to realistically model stress 
concentrations. Various numerical methods for modeling transverse stresses in 
wood are discussed

Introduction

Wood within a tree has cylindrical symmetry. 
Its longitudinal direction is along the tree’s axis 
while the radial and tangential directions are in 
the transverse plane. A transverse cross section of 
a tree has approximately concentric growth rings. 
The radial and tangential directions are 
perpendicular and parallel to these rings. Typical 
boards are sawn from trees with rectangular cross 
sections. A board’s axial direction aligns with the 
tree’s longitudinal direction, but its cross section 
will have various end-grain patterns depending on 
where it was cut  from the tree (see Fig. 1). The 
various board cross sections are a consequence of 
fitting a material with cylindrical symmetry into a 
shape with rectangular symmetry. This paper 
describes a numerical study of the transverse 
properties and stresses for rectangular boards as a 
function of the end grain pattern.

Because the longitudinal modulus (EL) of wood 
is 10 to 20 times larger than the radial or 
tangential modulus (ER or ET), while ER and ET 
are similar, one is tempted to approximate wood 
as transversely isotropic. But, in reality, ER is 
typically double ET (Bodig 1982); this difference 
should not be ignored for accurate modeling of 
transverse stresses. In hardwoods, the stiffer radial 
direction may be due to rays cells (Price 1929; 

Schniewind 1959). In softwoods, the stiffer radial 
direction may be due to alignment  of cells in 
radial rows (Price 1929). Whatever the reason, 
transverse anisotropy causes some unusual 
experimental results. Bodig (1963; 1965) 
observed that ER of Douglas fir increases as 
specimen thickness increases. In contrast, 
Hoffmeyer et al. (2000) found that ER of Norway 
spruce decreases as gage length increases. 
Kennedy (1968) measured transverse modulus as 
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Fig. 1: Sample end grain patterns for rectangular 
boards cut from a tree with cylindrical structure.



a function of loading angle for several species and 
found that  the modulus varies with angle and can 
even be lower than both ER and ET. Shipsha and 
Berglund (2006) found that ER of periphery 
boards far from the pith of Norway spruce is more 
then double the ER for boards close to the pith. 
These observations are a consequence of the 
transverse anisotropy of wood and of fitting a 
cylindrical material into a rectangular specimen. 
They are also influenced by the particularly low 
transverse shear modulus, GRT, of wood. A low 
GRT combined with growth ring curvature causes 
localized deformations that  affect modulus 
experiments (Aicher and Dill-Langer 1996, 
Aicher et al. 2001; Shipsha and Berglund 2006). 
Another wood property that may play a role, but 
is less studied, is the layering of wood into 
earlywood and latewood material within each 
growth ring; i.e., the composite structure of solid 
wood.

A thorough understanding of transverse 
anisotropy and layering of wood is helpful for 
analysis of structures and transverse failure 
modes. For example, variations in end-grain 
patterns between boards in glulam cause modulus 
mismatches between layers. These mismatches 
can induce non-uniform stresses that  may 
promote glue-line failure or transverse tensile 
failure (Aicher and Dill-Langer 1997; Hoffmeyer 
et al. 2000). Non-uniform stresses are particularly 
important  for curved glulam subjected to climate 
changes (Aicher and Dill-Langer 1997; Aicher et 
al. 1998). Transverse stress analysis is also 
important  for modeling drying cracks or internal 
checking of Radiata pine (Pang et al. 1999; Ball 
et al. 2001). Since internal checking is confined to 
earlywood, its analysis requires composite 
analysis of wood that explicitly accounts for 
earlywood and latewood properties.

Previous finite element analyses (FEA) of 
transverse wood properties confirm that 
transverse anisotropy and low shear modulus are 
important. Aicher and Dill-Langer (1996) did 
FEA of one wide, symmetric board under radial 
loading and various boundary conditions. Growth 
ring curvature within the board strongly affected 
the effective modulus. Hoffmeyer et al. (2000) did 
FEA of glulam with boards loaded in the radial 
direction and one selected timber structure under 
tangential loading. The stress concentrations 
correlated with observed transverse cracks. Aicher 
et  al. (2001) compared experiments to FEA results 

on a specific board under tangential loading. The 
experiments confirm the effect  of low GRT on 
transverse wood properties. Jernkvist  and 
Thuvander (2001) used optical methods to 
measure radial dependence of mechanical 
properties. These properties were input to FEA 
analysis for radial loading of boards of various 
widths as a function of distance from the pith. 
Shipsha and Berglund (2006) compared FEA 
results to radial loading of a board close to the 
pith and one far from the pith to confirm shear 
coupling effects in modulus experiments.

Previous numerical studies mostly used 
homogenized properties in the transverse plane 
and analyzed only selected loadings or selected 
board orientations. The purposes of this paper 
were to explicitly model earlywood and latewood, 
to compare such heterogeneous calculations to 
calculations with homogenized transverse 
properties, and to sample many more end-grain 
patterns. Various numerical approaches to 
modeling transverse mechanical properties of 
wood are discussed.

Numerical Methods

Figure 2 shows one quadrant  of an idealized 
tree with concentric growth rings of earlywood 
and latewood. All potential cross sections for 
rectangular lumber can be sampled from this 
quadrant by selecting board centroid, (xc, yc), 
while maintaining board width and height in the x 
and y directions. Boards selected this way were 
analyzed by 2D, plane-strain FEA. The FEA mesh 
was created by partitioning a board’s entire cross 
section into a square grid of 8-noded, 
isoparametric elements. All elements used 
orthotropic material properties with the tangential, 
radial, and longitudinal properties initially in the 
x, y, and z directions. To account  for cylindrical 
anisotropy of wood, each element’s material axes 
were rotated clockwise by angle

θ =
π

2
− arctan

y
(i)
c

x
(i)
c  

(1)

where (xc
(i), yc

(i)) is the centroid of element i. 
To model heterogeneous properties, each element 
was assigned to either earlywood or latewood 
properties depending on radial position of the 
element  centroid. Defining board orientation by 
centroid is equivalent  to a prior approach based 
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on distance from board bottom to the pith, d, and 
eccentricity, e, or distance from board center to a 
vertical line from the pith (Aicher and Dill-Langer 
1996; 1997). The two methods are related by d = 
yc – h/2 and e = xc, where h is board height.

The effective, plain-strain, transverse modulus 
was determined by subjecting each board to axial 
compression in the y direction. Loading was 
either by uniform displacement or uniform stress 
conditions. When a board is explicitly 
heterogeneous (i.e., modeled with earlywood and 
latewood layers), the stress state is non-uniform 
and complex. The modulus was thus found by 
energy methods. For uniform displacement 
conditions, total strain energy, Uε, can be 

expressed in terms of an effective modulus, Eε*, 
as (Hashin 1969)

Uε =
V

2
E∗

εε2

 
(2)

where V is total volume. Thus, the effective 
modulus is given by

E∗
ε =

2Uε

V ε2 
(3)

Similarly, for uniform stress conditions

Uσ = V
σ2

2E∗
σ    

and
  
E∗

σ =
V σ2

2Uσ  
(4)

The two energies, Uε and Uσ, are total strain 
energies found by FEA.

All simulations were for Douglas fir; typical 
bulk properties for the longitudinal (L), radial (R), 
and tangential (T) directions are listed in Table 1 
(Bodig and Jayne 1982). To explicitly model 
earlywood and latewood, one needs their relative 
fractions and their separate properties. Growth 
ring thickness in Douglas fir varies from 2 to 11 
mm, depending on location within the tree (larger 
closer to the pith) and on yearly variations in 
growing rates; the average value is 3.5 ± 2 mm 
(Taylor et al. 2003; Grotta et al. 2005). X-Ray 
densitometer measurements show an average 
latewood fraction of 40% (Abdel-Gadir, et al. 
1993). All simulations matched these average 
properties by setting earlywood thickness to 2.1 
mm and latewood thickness to 1.4 mm.

There are few experiments on mechanical 
properties of earlywood and latewood (Jernkvist 
and Thuvander 2001), but  some qualitative 
information is available. The earlywood and 
latewood properties assumed for most 
calculations are listed in Table 1. These properties 
were derived as follows.:
Tangential  Modulus: Cellular mechanics predicts 

that transverse moduli scale with the cube of 
the density (Gibson et al. 1982; Gibson and 
Ashby 1997). It was thus assumed that

E(l)
T = E(e)

T ρ3
 (5)

where ρ is the ratio of latewood to earlywood 
density and superscripts (l) and (e) indicate 
latewood and earlywood properties.

Radial Modulus: This modulus is also a 
transverse modulus, but recent experiments 
show the the scaling is less than ρ3 (Modén 
and Berglund, 2006). The reduced scaling is 
caused by alignment of cells in radial rows 
leading to axial deformations that are ignored 
in cellular theories. Here it  was assumed that

E(l)
R = E(e)

R ρ1.63
 (6)

where 1.63 was an arbitrary scaling coefficient 
between 1 and 3.

Values for Transverse  Moduli: The above 
transverse moduli ratios were used in FEA 
calculations for pure radial loading (xc = 0 and 
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Fig. 2: All possible board orientations can be sampled 
by orienting the width and height direction along the x 
and y axes and selecting the board centroid, (xc, yc), 
from the upper-right quadrant of the x-y plane. The 
inset board indicates the FEA mesh was a square grid 
of elements and loading was in the y direction.



yc large) and pure tangential loading (yc = 0 
and xc large) and varied until the effective 
moduli agreed with bulk values for ER and ET. 
The density ratio for Douglas fir was set  to ρ = 
2 (Abdel-Gadir, et al. 1993). The resulting 
moduli are given in Table 1.

Transverse  Shear Modulus: This modulus was 
found by selecting a reasonable value GRT

(e) 

and then varying GRT
(l) until FEA calculations 

matched the bulk shear modulus. Pure shear 
FEA conditions were set  by fixing the entire 
boundary to a pure shear deformation state. A 

plot of GRT
(l)  as a function of GRT

(e) is given 
in Fig. 3. The results are bounded by a simple 
rule of mixtures (parallel springs) and an 
inverse rule of mixtures (series springs), but 
trends closer to the later, as often assumed in 
composite mechanics for shear modulus (Jones 
1975). Unless specified, all calculations 
assumed the specific shear moduli listed in 
Table 1.

Transverse  Poisson Ratio: Optical measurements 
show that νTR

(l) > νTR
(e) (Jernkvist and 

Thuvander 2001). The values in Table 1 were 
selected consistent  with this finding and such 
that a rule of mixtures gave the bulk Poisson 
ratio:

νTR = 0.35 = Veν
(e)
TR + Vlν

(l)
TR (7)

where Ve = 0.6 is the fraction earlywood and 
Vl = 0.4 is the fraction latewood.

Longitudinal Modulus: Cellular mechanics 
predicts that longitudinal modulus scales 
linearly with density (Gibson and Ashby 
1997). The values in Table 1 were selected to 
follow this scaling and such that  a rule of 
mixtures gave the bulk longitudinal modulus:

EL = 14, 500 = VeE
(e)
L + VlE

(l)
L  (8)

Longitudinal Poisson Ratios: The longitudinal 
modulus and Poisson ratios enter plane-strain 
calculations through plane-strain modifications 
to the in-plane moduli. For example, the 
effective, plain-strain radial modulus is
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Table 1: Cylindrically orthotropic material properties for bulk wood, earlywood, and latewood used in the 
calculations to model Douglas fir in the longitudinal (L), radial (R), and tangential (T) directions. No properties are 
listed for longitudinal shear moduli (GLR and GLT) because they have no effect on 2D, plain-strain analyses.

Property Bulk Earlywood Latewood

ET (MPa) 620 152 1215
ER (MPa) 960 566 1752
EL (MPa) 14500 10400 20700
GRT (MPa) 80 50 215
νTR 0.35 0.30 0.425
νTL 0.033 0.033 0.033
νRL 0.041 0.041 0.041
fraction — 0.60 0.40

Earlywood GRT (MPa)
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Fig. 3: Latewood shear modulus as a function of 
earlywood shear modulus when the bulk shear 
modulus is equal to 80 MPa. The solid lines are 
calculations of latewood shear modulus using simple 
composite theories based on springs in parallel or in 
series.



1

E(eff)
R

=
1

ER
− ELν2

RL

E2
R  

(9)

Since longitudinal properties only have a small 
effect, the Poisson ratios simply used the bulk 
Poisson ratios for both earlywood and 
latewood.

Other Poisson Ratios: Poisson ratios not  listed 
obeyed the relation

νji =

Ejνij

Ei  
(10)

In summary, the earlywood and latewood 
properties in Table 1 are not  experimental results. 
They are, however, reasonable values, consistent 
with known theory and experiments on earlywood 
and latewood properties, and consistent with bulk 
properties.

All calculations were run using the author’s 
FEA software (Nairn 2006). FEA Convergence 
for effective modulus was checked by varying the 
uniform grid size from 2X2 mm down to 
0.25X0.25 mm elements. These calculations found 
effective modulus for 10 different board 
orientations. Element  sizes 0.5X0.5 mm and 
smaller gave nearly identical results, while larger 
elements had minor differences. All subsequent 
calculations thus used 0.5X0.5 mm elements.

Using a square grid to model curved growth 
rings can result in rough boundaries between 
earlywood and latewood, although the roughness 
is small for fine meshes. To check for numerical 
problems caused by rough boundaries, some 
calculations used a modified grid where nodes 
near earlywood-latewood boundaries were moved 
to those boundaries. The differences between a 
square grid and a modified grid for modulus 
calculations were negligible. A drawback of the 
modified grid is that node movement  sometimes 
distorted elements causing unrealistic strain 
calculations. All calculations therefore used the 
simpler square grid.

Results and Discussion

Modulus as a function of board orientation
To probe all board orientations, the quadrant in 

Fig. 2 was partitioned into a grid extending from 
0 to 500 mm in each direction with grid points 
separated by 25 mm. FEA calculations were run 
for 50X20 mm boards located at each of the 441 
grid points. Each FEA calculation used a 0.5X0.5 

mm square grid resulting in 4000 elements with 
12281 nodes to mesh the entire board. The 
effective modulus as a function of position, 
calculated using uniform displacement  conditions, 
is plotted in Fig. 3. For radial loading (xc = 0), the 
modulus was low near the pith, but increased as 
yc increased. Far from the pith (xc = 0, yc large), 
the modulus approached the bulk ER. The radial 
loading results are analogous to numerical results 
by Jernkvist and Thuvander (2001) and 
experimental and numerical results by Shipsha 
and Berglund (2006).  Pure tangential loading (yc 
= 0) was similar, except  with a smaller increase 
because the bulk ET is smaller. For orientations 
deviating from pure radial or tangential loading, 
the modulus rapidly decreased. The rapid 
decrease is a consequence of the low transverse 
shear modulus (Aicher and Dill-Langer 1996; 
Aicher et  al. 2001; Shipsha and Berglund 2006). 
A shear effect maximizes near 45˚ where a wide 
trough of minimum stiffness was observed. 
Common practice for measuring transverse 
properties of wood is to select small, straight-
grained specimens and measure bulk ER and ET 
(ASTM D-143 2001). From the FEA grid results, 
however, the effective transverse modulus was 
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Fig. 4: The effective transverse modulus as a function 
of board centroid for all possible board orientations. 
The loading was in the y direction. The boundary 
conditions were uniform axial displacement.



lower than both ER and ET  for 82% of the 
orientations.

The grid calculations were repeated for uniform 
stress instead of uniform displacement  conditions. 
Figure 5 plots the effective modulus for boards at 
two constant distances from the pith as a function 
of angle between a line to the board centroid and 
the x axis. “Close” boards were 50 mm from the 
pith while “Periphery” boards where 500 mm 
from the pith. The moduli by uniform stress or 
uniform displacement  conditions were similar, 
although the uniform displacement  result was 
always stiffer. By variational mechanics, a 
modulus found by imposing displacement 
boundary conditions and minimizing potential 
energy (i.e., the FEA process) is a rigorous upper 
bound to the modulus (Hashin 1969). Although 
the uniform stress result  is not  a lower bound 
(because that would require minimization of 
complementary energy), it  must  be lower than the 
upper-bound. Because the FEA analysis is 
converged, however, both results should be 
accurate. All subsequent  calculations used 
uniform displacement conditions.  

Heterogeneous calculations vs. homogenized 
calculations

To study whether layering influences properties, 
calculations explicitly modeling earlywood and 
latewood were compared to calculations using 
homogenized properties (see Bulk properties in 
Table 1). Although all elements had the same 

material properties, each element was still 
assigned the appropriate angle to model a 
cylindrically anisotropic material. The modulus 
for periphery and close boards calculated with 
homogenized properties (dashed lines) is 
compared to the heterogeneous model (solid 
lines) in Fig. 6. The similarities show that  a 
homogenized model provided an acceptable 
approximation for modulus. Differences, 
however, did arise. For example, the modulus for 
close boards at  low angle was more than 20% 
stiffer when using homogenized properties. 
Similarly, the modulus for periphery boards 
around 15˚ was more than 15% stiffer with 
homogenized properties.

Another method to compare homogenized and 
heterogeneous models is to vary the earlywood 
and latewood properties while keeping bulk 
properties constant. If layering plays a role in 
mechanical properties, heterogeneous calculations 
would vary while homogenized calculations 
would be constant. Figure 7 shows the modulus of 
periphery boards for homogenized properties 
(dashed line) and for heterogeneous calculations 
with three combinations of shear moduli for 
earlywood and latewood. The earlywood modulus 
was set  to 40 MPa, 50 MPa, or 80 MPa while the 
latewood modulus was selected to keep the bulk 
transverse shear modulus equal to 80 MPa. The 
required latewood shear moduli (from Fig. 3) 
were 800 MPa, 215 MPa, and 80 MPa, 
respectively. All models gave the same results at 
0˚, near 45˚, and at 90˚, but for other angles, 
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and “Periphery” boards (centroid 500 mm from the 
pith). The solid lines used uniform displacement 
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layering influenced the results. The 
counterintuitive increase in modulus as earlywood 
shear modulus decreased was because the 
latewood shear modulus increased more than the 
earlywood shear modulus decreased. In brief, the 
layered structure of wood and the relative 
properties of the layers influence transverse 
stiffness. A heterogeneous model is required to 
capture these layering effects. 

One approach to measuring the transverse shear 
modulus of anisotropic materials is do off-axis 
stress-strain experiments (Price 1929). If a 
material is rectilinearly anisotropic, rotation of the 
stiffness matrix gives modulus as a function of 
angle as (Jones 1975)
1

Eθ
=

cos4 θ

Ex
+

(

1

Gxy
−

2νxy

Ex

)

sin
2
θ cos

2
θ +

sin
4
θ

Ey  
(11)

This function is plotted in Fig. 7 (dotted line). The 
small differences between Eq. (11) and the 
homogenized analysis are due to slight growth 
ring curvature in periphery boards ignored in the 
equation, but included in the homogenized 
numerical results. If Ex and Ey are known, 
measurement  of Eθ can be solved to find Gxy. 
Experiments are usually done at 45˚ where the 
shear effect  is the largest and the test would be 
most sensitive for calculation of Gxy. The new 
heterogeneous model results (Fig. 7) show that 
45˚ experiments are insensitive to the analysis and 
thus can measure bulk GRT. For any other angle, 
however, the modulus depends on the relative 
shear moduli of earlywood and latewood. Perhaps 
this effect  could be exploited to measure 
earlywood and latewood shear moduli. The 
suggested experiment is to measure transverse 
modulus as a function of angle. Results at  0˚, 45˚, 
and 90˚ would measure bulk ET, GRT, and ER; 
results between those angles could be fit using a 
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heterogeneous model to determine earlywood and 
latewood GRT.

The differences between a heterogeneous and 
homogenized analysis are much larger for strain 
and stress distributions. Figure 8 has contour plots 
for strains and stresses in a 50X20 mm board with 
centroid (0,10); i.e., radial loading for a board 
with its lower edge at the center of the tree. For 
the homogenized model (right of Fig. 8), the 
patterns are similar to previous calculations 
(Shipsha and Berglund 2006). The applied strain 
was -1%, but  the shear effect  caused higher 
strains at 45˚; the maximum strain was -2.28%. 
The average stress was -4.40 MPa, but  the 
maximum stress near the specimen center was 
-10.9 MPa. The underlying patterns in the 
heterogeneous model (left  of Fig. 8) were similar, 
but the strains and stresses redistribute in 
earlywood and latewood due to their differing 
mechanical properties. The redistribution caused 
greater extremes. The maximum strains occurred 
in the lower-stiffness earlywood at  45˚ and 
reached -4.95%. While the average stress changed 
only slightly to -4.14 MPa, the maximum stresses 
occurred in the stiffer latewood at  the bottom of 
the board and reached -15.4 MPa. Thus, when 
local stress concentrations are crucial to 
modeling, such as in failure modeling, a 
heterogeneous model is required to capture those 
values. A homogenized model may significantly 
underestimate stress concentrations.

Effect of board dimensions

Since the effective modulus depends on growth 
ring curvature across a board, the results depend 
on board dimensions. To assess dimension effects, 
calculations were run for 25.4 mm (1.0 in) wide 
boards with thickness varying from 25.4 mm to 
76.2 mm (1.0 in to 3.0 in). These boards were 
narrower and thicker than in previous 
calculations. The radial loading results (xc = 0) as 
a function of distance from the pith (yc) are given 
in Fig. 9. For comparison, the previous results for 
50X20 mm boards are also plotted (dotted line). 
Each FEA calculation used a 0.5X0.5 mm square 
grid and uniform displacement boundary 
conditions.

Like previous results, the effective modulus for 
radial loading of narrower boards was lower when 
near the pith, but increased to the bulk radial 
modulus for periphery boards. Compared to wider 
boards, the transition to bulk modulus was faster 

because the edges of narrower boards had less 
growth ring curvature. These results are similar to 
previous numerical results for radial loading as a 
function of width by Jernkvist and Thuvander 
(2001). As the board got thicker, the difference 
between pith boards and periphery boards got 
smaller. For boards near the pith (e.g., yc = 0), 
increased thickness includes extra periphery 
material and thus the effective modulus increased. 
For boards in the middle (e.g., yc = 40 mm), 
increased thickness includes extra pith material 
and thus the effective stiffness decreased. For 
periphery boards, growth ring curvature 
eventually becomes negligible and the effective 
modulus approached the bulk radial modulus.

The board dimensions were selected to match 
experiments on Douglas fir by Bodig (1963, 
1965), where the radial modulus doubled as the 
thickness increased from 25.4 mm (1.0 in) to 76.2 
mm (3.0 in). Unfortunately, Bodig did not specify 
the distance of the boards from the pith. Although 
impossible to quantitatively model the 
experiments, the results in Fig. 9 show that a 
doubling of modulus is possible depending on 
board selection. Bodig’s (1965) second paper 
claims the boards were selected with constant yc, 
although it  also gave no value for yc. Such 
constant  yc experiments can be predicted by 
intersections of a vertical line through yc with the 
curves for different thicknesses. Thus, if yc was 0, 
the modulus would increase with thickness by 
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38%, But, if yc was 40 mm, the modulus would 
decrease by 17%. This latter prediction disagrees 
with Bodig’s results (1962, 1965), but  agrees with 
more recent  results for modulus as a function of 
gage-length by Hoffmeyer et al. (2000). 

Approaches to numerical modeling

Four common methods for numerical modeling 
of wood are discussed with emphasis on their 
suitability for problems involving stress analysis 
in the transverse plane:
1. Transversely Isotropic Material: The simplest 

model of wood assumes it  is transversely 
isotropic with the axial direction in the 
longitudinal direction. The rational is that 
longitudinal modulus is 10-20 times larger 
than radial or tangential moduli, while those 
transverse moduli may differ by less than a 
factor of two. Approximating transverse 
properties as isotropic, even if the radial and 
tangential moduli were identical, is a serious 
error because it  does not allow a low 
transverse shear modulus, GRT, which is 
important  to transverse properties. In an 
isotropic plane, the shear modulus is typically 
one-third the tensile moduli (depending on 
Poisson’s ratio), but  in wood, GRT is 10-20 
times smaller than the transverse moduli.

2. Rectilinear Orthotropic Material: This model 
accounts for wood being orthotropic, but 
simplifies the analysis by aligning coordinates 
of the anisotropy with the rectilinear global 
axes, i.e., tangential, radial, and longitudinal 
directions in x, y, and z directions or at a 
constant  angle to those directions. This 
approach simplifies finite element analysis 
because all elements have the same orientation 
for their material axes. Because this model can 
include low shear moduli, it can account for 
changes in effective modulus due to off-axis 
loading. The rectilinear assumption, however, 
makes it  only suitable for boards far from the 
pith. It  would completely miss board 
dimension and orientation effects caused by 
growth ring curvature within a specimen.

3. Homogenized Cylindrical  Orthotropy: This 
model accounts for growth ring curvature 
within a specimen, but  simplifies the analysis 
by using homogenized properties in the 
transverse plane. Compared to rectilinear 
orthotropy, cylindrical orthotropy complicates 

the mesh generation. In rectilinear orthotropy, 
one can use larger elements where stress 
gradients are small, but in cylindrical 
orthotropy, small elements are required 
throughout the specimen in order to resolve 
orientation of material axes along curved 
growth rings. An homogenized analysis can 
approximate effective mechanical properties, 
account for differences between pith and 
periphery boards, and account  for size effects.

4. Heterogeneous Cylindrical Orthotropy: The 
model used here accounts for both growth ring 
curvature within a specimen and variations in 
material properties between earlywood and 
latewood. This model is physically the closest 
to approximating the structure of real wood. 
Although a fine mesh is required to resolve the 
structure of wood, the extra effort versus 
homogenized cylindrical orthotropy is 
minimal. Since the homogenized approach 
needs a fine mesh to resolve material angle, 
the only extra work is to additionally assign 
each element  to either earlywood or latewood 
properties. If earlywood and latewood are 
particularly thin, the heterogeneous analysis 
would require an even finer mesh and thus 
could be more complicated. Differences 
between homogenized and heterogeneous 
analyses were discussed above. The most 
significant differences were the stress 
concentrations caused by stress and strain 
partitioning between earlywood and latewood. 
A heterogeneous analysis is recommended for 
modeling failure processes induced by 
localized stresses. The main problem with 
explicitly modeling earlywood and latewood is 
having reliable values for their mechanical 
properties. This paper used reasonable 
properties. New experimental work to measure 
their properties would be beneficial.

Conclusions

Numerical modeling of solid wood under 
transverse loading was done for all possible end 
grain patterns within rectangular specimens. The 
effective modulus was strongly affected by 
loading direction. It was particularly low when 
the loading direction was neither radial nor 
tangential over some parts of the board. This off-
axis loading effect  was due to wood’s low 
transverse shear modulus. Calculations explicitly 
modeling earlywood and latewood were 
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compared to calculations using homogenized 
transverse-plane properties. The results were 
qualitatively similar for effective modulus, but 
significantly different for stress concentrations. 
Modeling all effects of transverse stresses, 
particularly when cracking or failure properties 
are involved, thus requires explicit modeling of 
the layered structure of wood. Such calculations 
need more reliable information for the mechanical 
properties of earlywood and latewood..
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