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SUMMARY
An analytical method for calculating thermally-induced residual stresses in laminated plates is

applied to cross-ply PEEK laminates. We considered three cooling procedures — slow cooling
(uniform temperature distribution), convective and radiative cooling, and rapid cooling by quenching
(constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect
failure properties such as matrix microcracking.

INTRODUCTION
Thermally-induced residual stresses in laminated composites are introduced by fabrication and

by environmental exposure. They are an unavoidable consequence of (1) the nonuniform distribution of
cooling temperature due to the phenomenon of heat transfer and (2) the difference in thermal expansion
coefficients of lamina in the fiber direction and the transverse direction. For thin laminated plates the
residual stresses caused by (1) may be ignored. But, for thick laminated plates the residual stresses
caused by (1) can be as large as those caused by (2). Tensile residual stresses in off-axis plies (e.g. 90˚
plies) are particularly important because they may be large enough to promote damage by matrix
microcracking. The prediction and measurement of residual stresses are therefore important topics that
are relevant to production, design, and performance of composite components.

Residual (or thermal) stresses and heat transfer are classical problems for conventional
materials. A number of investigations specific to composite materials are available (e.g. Refs. [1-6]).
The theoretical and experimental investigations for residual stresses in Refs. [1-4] and [6] illustrate the
residual stresses due to unequal thermal expansion coefficients in the fiber and the transverse
directions. Using the finite difference method (for temperature) and finite element method (for thermal
stresses), Chen et. al. [5] studied the failure of laminates under thermal and mechanical loading with the
consideration of heat transfer. But only few investigators have considered the residual stresses caused
by the nonuniform distribution of temperature, which is especially significant for thick laminates. The
goal of present study is to gain insight into the mechanisms of thermally-induced residual stresses in
cross-ply laminates, which are caused by both disparate thermal expansion coefficients and by
nonuniform distribution of temperature during cooling.

Thermoplastic matrix (PEEK) composites have received much attention due to their high
stiffness and high fracture toughness. The stress-free temperature in PEEK composites was measured
to be about 310˚C [1,6]. The processing temperature, melting temperature, and crystallization
temperature are all above 310˚C. We therefore treat PEEK as being fully crystallized at the stress-free
temperature and calculate the residual stresses that develop on cooling from the stress-free temperature
to room temperature. The problem can be separated into two discrete parts. The first part is the analysis
of temperature distribution and the second part is the development of residual stresses for given
temperature distribution. The problem is separable because heat transfer is not affected by the presence
of residual stresses. We use a coordinate system centered inside the cross-ply laminates having the x-
axis aligned with the fiber direction of top ply group and the z -axis perpendicular to plane of the plate.
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Our goal is to study the effect of heat transfer on the distribution of the thermally-induced
residual stresses. To achieve this goal we consider three cooling procedures: 1) slow cooling in which
temperature is uniform over entire thickness and residual stresses are uniform over each laminate group
(i.e. heat transfer is ignored); 2) cooling under room temperature air by convection and radiation; 3)
cooling after the surface is “quenched” to room temperature, (i.e. the surface temperature is equal to
room temperature). The first and third cases provide two extreme conditions: infinitely large thermal
conductivity (slow cooling) and infinitely large convection (or radiation) coefficient (constant surface
temperature).

PART ONE — HEAT TRANSFER
To solve the problem analytically, we use the following assumptions: 1) Heat convection and

radiation are assumed to take place only in the thickness direction. Any heat transfer around the edge is
neglected. This assumption reduces the analysis to a one-dimensional problem. 2) Although the thermal
conductivity, k, mass density, ρ, and the specific heat, Cp, all are functions of temperature, the ratio
k/ρCp is assumed to be temperature independent. 3) Linearization of thermal boundary conditions is
assumed to be acceptable.

The governing differential equation for heat conduction without any inside heat source (Fourier
equation) is [7]
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where  α= k/ρCp. The analysis of slowly cooled laminates does not involve any heat conduction
analysis. The analyses of laminates cooled by convection and radiation or by quenching both use Eq.
(1), but require different boundary conditions.

The heat convection and radiation boundary condition has the form

 -k ∂z
∂T(d, t) = Ir + Ic

(2)
where d is the half thickness of the plate, Ir and Ic are the surface energy losses due to radiation and
convection, respectively, which are normally assumed to be

Ir = σε[T4
su  - T4(d,t)] (Stefan-Boltzmann law) (3)

Ic = hc[Tr  - T(d,t)] (Newton cooling law) (4)
where hc is the convection coefficient; Tr is the air recovering temperature; σ is the Stefan-Boltzmann
constant; ε is the surface emissivity of a “gray body” (instead of “black body”); and Tsu is the
temperature of an object surrounding the composite plate and receives the radiated heat. Because hc and
Tr  are very complex functions of surface temperature, T(d,t) [5], both  the convection and radiation
parts of this boundary condition are nonlinear. To solve the problem analytically, we have to
“linearize” the boundary condition. We linearize the convection part by assuming hc to be temperature
independent and letting Tr  equal room temperature — T0. We linearize the radiation part by letting Tsu
= T0 and using the following simplification

Ir = σε[T4
0  - T4(d,t)] = σε[T2

0  + T2(d,t)][T0 + T(d,t)][T0 - T(d,t)] = hr[T0 - T(d,t)] (5)



where hr = σε[T2
0  + T2(d,t)][T0 + T(d,t)] is assumed to be approximately independent of temperature

[8,9]. Further we let T*(z,t) = T(z,t) - T0 and consequently the boundary condition is not only linear but
also homogeneous:

 
∂z

∂T*(d, t) = ( k
hc + hr) T*(d, t) = βT*(d, t)

(6)
where β= (hc + hr)/k. Together with the boundary condition at the symmetric axis

 
∂z

∂T(0, t) = 
∂z

∂T*(0, t) = 0
(7)

and the initial conditions
T(z,0) = Tsf           and           T*(z,0) = Tsf  - T0 (8)

where Tsf is the stress-free temperature, we can solve Eq. (1) by the method of separation of variables.
The general solution takes the form

 T*(z, t) = e-λ2
αt(A1sinλz + A2cosλz)

(9)
Equation (7) yields A1 = 0 and Eq. (6) gives

λtanλd = β
This is a characteristic equation having an infinite number of roots — λn. Because the differential
equation (Eq. (1)) is linear, any possible linear combination of the solutions is also a solution. The
general solution then becomes

 T*(z, t) = ∑
n=1

∞

ane-λn
2
αtcosλnz

(10)
The remaining task is to determine an by the initial condition (Eq. (8)). This task can be done

analytically only if cos λnz is an orthogonal series, which happens when either cos λn or sin λn is zero
for all n (i.e. is λn = nπ or λn = nπ + π/2) and the problem has the appropriate boundary conditions.
Because β is positive, we apprehend that λn ♠ (n-1)π  for n=2, 3, 4, … and the larger the n, the closer
they are. Therefore Eq. (10) can be approximately treated as an orthogonal series. By normalizing the
half thickness of plate d to unity and using one of the criteria for the orthogonality condition in Ref. [8],
we obtain

 an = bn

1 ∫
0

d

(Tsf - T0)cosλnz dz

(11)
where

 
 bn = ∫

0

d

cos2λnz dz

Substitution of bn  into Eq. (11) gives



 an = 
2λnd + sin2λnd

4(Tsf - T0) sinλnd

(12)
and finally, we have

 T(z, t) = T0 + (Tsf - T0)∑
n=1

∞

2λnd + sin2λnd
4sinλnd  cosλnz e-λn

2
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(13)
Because the expression for an is approximate, we found it necessary to include more than 100 terms in
Eq. (13) to get convergence to the correct answer.
 For quenched laminates or laminates with a constant temperature surface, the boundary
condition is simply

T*(d,t) = 0
The general solution (Eq. (9)), symmetry condition (Eq. (7)) and initial condition (Eq. (8)) are still
valid. The above boundary condition reveals

cosλd=0
which results in

λn=nπ + π/2            n=1, 2, 3, ......
We can evaluate an by the same procedure used for convection and radiation cooling except that λn now
defines an exact orthogonal series and the corresponding expression for an is therefore exact instead of
approximate. The final expression of temperature distribution in quenched laminates is the same as Eq.
(13) except the values of λn are changed.

PART TWO — THERMALLY-INDUCED RESIDUAL STRESSES
The material used in the present study is ICI PEEK/Hercules AS4 carbon fiber prepreg whose

thermal expansion coefficient and Young’s modulus were provided by ICI Composites. Due to the
fiber dominant nature and the temperature insensitivity of the mechanical and thermal properties of
carbon fibers, the mechanical and thermal properties in the fiber direction of composites can be
assumed to be temperature independent. Experiments show that for this material only a 2.5% error will
be introduced by using this assumption [10]. In contrast, the transverse mechanical and thermal
properties are temperature dependent. ICI composites supplied experimental results for transverse
mechanical and thermal properties from room temperature to the stress-free temperature.

In the analysis of thermally-induced residual stresses in a cross-ply laminate, so-called Classical
Lamination Theory is used. Consider a flat plate of uniform thickness with an available temperature
distribution T(z,t). Classical Lamination Theory gives [11]:

{σ} = [Q]({ε} - {α}ΔT(z,t)) (14)
{ε} = {ε0} + z{κ}

where [Q] is the stiffness matrix, {ε0} are the strains in the mid-plane of the plate, {α} are the thermal
expansion coefficients and {κ} are the plate curvatures. Because we deal with symmetric laminates
only, their curvatures due to temperature change are zero and therefore

{σ} = [Q]({ε0} - {α}ΔT(z,t)) (15)
The residual stresses are zero at the stress-free temperature and start to build up as the laminate

cools below this temperature. We assume that below the stress-free temperature the plate is solidified
and the displacement along the thickness direction is uniform. Eq. (15) is a general expression for a
temperature-independent material. Because the material we investigate is strongly temperature



dependent, however, Eq. (15) has to be modified. If the temperature has an infinitesimal change from T
to T+ΔT, the stresses change by

{Δσ} = [Q(T)]{Δε0}  - [Q(T)]{α(Τ)}ΔT(z,t) (16)
where [Q(T)] and {α(T)} are the stiffness matrix and thermal expansion coefficient at temperature T.
We slice the laminate into m thin layers and assume that each layer is thin enough to ignore the
gradients of temperature as well as stress and strain. Because there are no applied forces, the
equilibrium equation is taken to be

 ∫
D

 σp dz = 0

where p = x or y and D is the thickness domain. For a discretized thickness domain we have

 
 ∑
i=1

m
 ΔσiΔzi = 0

(17)
With the substitution of Eq. (16) into Eq. (17) and taking Δzi as a constant we easily obtain

Σ[Q11i(Δεx - αxiΔT) + Q12i(Δεy - αyiΔT)] = 0

Σ[Q12i(Δεx - αxiΔT) + Q22i(Δεy - αyiΔT)] = 0
where Q11i, Q12i, αxi, etc. are elements of the stiffness matrix and of the thermal expansion coefficient
vector at temperature T; and Δεx  and Δεy are variations of total strains in x and y directions, which are z
independent, due to temperature variation from T to T + ΔT. These two equations lead to the
expressions for Δεx  and Δεy

 Δεx = 
ΣQ11i ΣQ22i  -  (ΣQ12i)

2

(ΣQ11iαxiΔT + ΣQ12iαyiΔT)ΣQ22i - (ΣQ12iαxiΔT + ΣQ22iαyiΔT)ΣQ12i

 Δεy = 
ΣQ11i ΣQ22i  -  (ΣQ12i)

2

(ΣQ12iαxiΔT + ΣQ22iαyiΔT)ΣQ11i - (ΣQ11iαxiΔT + ΣQ12iαyiΔT)ΣQ12i

and eventually two expressions for the residual stress variation of each slice:
Δσxi = Q11i(Δεx - αxiΔT) + Q12i(Δεy - αyiΔT)
Δσyi = Q12i(Δεx - αxiΔT) + Q22i(Δεy - αyiΔT)

Finally the total residual stresses for each slice can be determined by summing each variation of stress
in the temperature (or time) domain

σxi  = Σ Δσxi   

σyi  = Σ Δσyi

NUMERICAL STUDY AND CONCLUSIONS
According to data provided by ICI Composites, we selected thermal conductivity k = 0.25 W/m-

˚K, specific heat capacity Cp = 1.5 kJ/kg-˚K = 0.4167 W-hr/kg-˚K, and



average density ρ = 1.3 g/cm3. From other sources we selected the convective heat transfer coefficient
hc = 2.5 Btu/hr ft2-˚F = 14.186 W/m2-˚K [7], Stefan-Boltzmann constant σ = 0.1714x10-8 Btu/hr-ft2-
˚R4 =5.669x10-4 W/m2-˚K4 [7], and surface emissivity ε = 0.92 [5].

Figures 1 and 2 illustrate the distributions of x-axis residual stresses for thin laminates
[02/902]s and [902/02]s. Figures 3 and 4 show the results for thick laminates [090/905]s and [905/090]s
(about one inch thick). We draw the following conclusions:
(1) For thin laminates the slow cooling results are close to the convection and radiation results. This
implies that the assumption of a uniform temperature distribution is adequate for thin laminates. For
thick laminates the convection and radiation results are between those of slow cooling and quenching
results, which indicates that an assumption of uniform temperature distribution is not adequate. An
accurate estimation of the non-uniform residual stresses in thick laminates must use an analysis that
accounts for heat conduction similar to the one in this paper.
(2) The residual stresses in quenched laminates, as well as in thick laminates under convective and
radiative cooling, always have a high gradient at the laminate surface. The magnitude of stress variation
in this area remains unchanged regardless of the laminate thickness. The high normal residual stress
gradient caused by nonuniform cooling will likely produce a high shear stress gradient, which might
cause local delamination.
(3) Beyond this high gradient stress area the residual stresses within each ply group remain nearly
uniform. Thus, the residual stresses away from this area in thick laminates will be nearly unaffected by
processing conditions.

COMMENTS
The processing conditions affect the cooling temperature distribution and may consequently

cause nonuniform residual stresses. The effects of processing conditions are strongest near the
surfaces of laminate where the residual stresses can differ significantly from those calculated by a
simple laminated plate theory that assumes a uniform temperature distribution during cooling. At the
center of laminates, a simple uniform temperature distribution gives a good estimate of the ply residual
stresses.

Numerical results support the claim that the residual stresses in “quenched” laminates and in
slowly cooled laminates provide upper and lower bounds to the residual stresses. Either one may
provide the upper bound somewhere and the lower bound somewhere else. The results for convection
and radiation, however, will definitely be bounded by the upper and lower bounds. In real applications,
it will be very hard, if not impossible, to precisely describe the cooling boundary conditions in
processing. If the upper and lower bounds are given, it will help the designer to have an estimate on the
level of the residual stresses.

We believe that below the stress-free temperature of PEEK composites that the plate is
solidified and is also fully crystalized [6]. Any significant crystallization happening below the stress-
free temperature might cause volume reduction and result in extra residual stresses. We also assumed
that viscoelastic behavior of PEEK material does not significantly influence the residual stresses. If a
great amount of time is spent above the glass transition temperature, it is possible that stress-relaxation
will reduce the level of residual stresses. Most residual stresses form, however, when the matrix is stiff
and below the glass transition temperature. At these lower temperatures, stress relaxation effects are
probably minimal.
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Figure 1: The distributions of x-axis residual stresses in a [02/902]s laminate
cooled under uniform temperature distribution (slow cooling), by convection
and radiation, and by quenching to room temperature.
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Figure 2: The distributions of x-axis residual stresses in a [902/02]s laminate
cooled under uniform temperature distribution (slow cooling), by convection
and radiation, and by quenching to room temperature.
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Figure 3: The distributions of x-axis residual stresses in a [090/905]s laminate cooled under
uniform temperature distribution (slow cooling), by convection and radiation, and by
quenching to room temperature.
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Figure 4: The distributions of x-axis residual stresses in a [905/090]s laminate cooled under
uniform temperature distribution (slow cooling), by convection and radiation, and by
quenching to room temperature




