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Abstract

Shear-lag equations for analysis of stresses in a multilayered composite were derived using a series of approxima-
tions to exact two-dimensional elasticity methods. The shear-lag equations derived with the fewest assumptions was
termed the Optimal, Shear-Lag Analysis for planar problems in composites. A solution method for these equations
was outlined based on eigen-analysis of a matrix of shear-lag parameters. The optimal, shear-lag analysis differs from
most prior shear-lag methods in the literature. By adding more assumptions, we could reduce the optimal analysis
to two common, prior shear-lag methods. These prior methods were labeled as Interlayer, Shear-Lag Analysis and
Parametric, Interlayer, Shear-Lag Analysis. Because theses two interlayer methods required more assumptions than
the optimal method, they are less accurate than that method. Several examples illustrated the types of problems
that can be accurately solved by shear-lag analysis and the differences in accuracy between the various shear lag
methods. The results of this paper can be used to guide the derivation of future, improved shear-lag models or to
evaluate the quality of prior shear-lag models. c© 2001 Published by Elsevier Science Ltd.

1. Introduction

Shear-lag analysis as a tool for stress analysis in composite materials is usually traced to Cox (1952). In a
brief section of that paper, Cox proposed a simple one-dimensional, equation for analyzing stress transfer
between a fiber and a matrix. This initial work considered a single fiber in a matrix or an axisymmet-
ric stress-analysis geometry. There have been many subsequent, axisymmetric, shear-lag analyses (e.g.,
Gau, Mai, and Cotterell, 1988; Hsueh, 1988; Hsueh, 1995; Kim, Baillie, and Mai, 1991; Lacroix, Tilmans,
Keunings, Desaeger, and Verpoest, 1992; Liu and Nairn, 1999; McCartney, 1992; Nairn and Wagner, 1996;
Nayfeh, 1977; Piggott, 1987; Zhou, Kim, and Mai, 1992). A recent paper considered axisymmetric shear-
lag analysis in detail and showed how Cox’s original equation can be derived by a series of approxima-
tions to methods of axisymmetric elasticity (Nairn, 1997). This analysis gave more insight into the ac-
curacy of axisymmetric shear-lag methods. When done correctly (McCartney, 1992; Liu and Nairn, 1999;
Nairn and Wagner, 1996; Nairn, 1997; Nayfeh, 1977), which means the shear-lag parameter must be cal-
culated correctly and not calculated the way originally suggested by Cox (1952), axisymmetric shear-lag
analysis can lead to excellent results for finding axial stresses and displacement in fibers embedded in a ma-
trix (Nairn, 1997) and for finding energy release rate for some crack-growth problems (Liu and Nairn, 1999).
It is less accurate for finding interfacial shear stresses, although it is often misused for that purpose. It
should not be expected to be accurate for much else.

Shear-lag analysis of composites has also found many uses in planar problems. One early example is the
shear-lag analysis of unidirectional composites developed by Hedgepeth (1961; Hedgepeth and Van Dyke,
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1967). Although this work imagined cylindrical fibers, it is mathematically a planar analysis of a multilayered
structure with alternating fiber and matrix layers. Shear-lag models based on Hedgepeth’s approach have
often been used to study stress analysis problems in unidirectional composites (e.g., Dharani, Jones, and
Goree, 1983; Eringren and Kim, 1944; Goree and Gross, 1979b; Goree and Gross, 1979a; Hedgepeth, 1961;
Hedgepeth and Van Dyke, 1967; Kulkarni, Rosen, and Zweben, 1973; Nairn, 1988a; Nairn, 1988b; Nairn,
Liu, Chen, and Wedgewood, 1990; Phoenix and Beyerlein, 2000). Planar shear-lag methods have also been
used to study laminates where the x − y analysis plane becomes the edge of the laminate and the layers
in the model become the plies in the laminate. Such models have frequently been used to analyze stresses
around matrix cracks in 90◦ plies (e.g., Caslini, Zanotti, and O’Brien, 1987; Dharani and Tang, 1990;
Flaggs, 1985; Garrett and Bailey, 1977; Han, Hahn, and Croman, 1987a; Han, Hahn, and Croman, 1987b;
Laws and Dvorak, 1988; Manders, Chou, Jones, and Rock, 1983; McCartney, 1992; McManus and Mad-
docks, 1996; Reifsnider, 1977; Tan and Nuismer, 1990). When the planar shear-lag parameter is calculated
correctly (McCartney, 1992) (and most such analyses calculate it inaccurately), shear-lag analysis does an
excellent job of predicting the effect of microcracks on the axial modulus of the laminate (McCartney, 1992;
Nairn, 2000). It is not as accurate for making predictions of microcrack formation based on the en-
ergy release rate due to the formation of the next microcrack (Nairn, 2000; Nairn, Hu, and Bark, 1993;
Nairn and Hu, 1994).

This paper considers shear-lag analysis for planar problems using methods similar to those in the previous
paper (Nairn, 1997) that considered the use of shear-lag analysis for axisymmetric problems. We began with
the fundamental shear-lag assumption, which is an assumption common to all planar shear-lag analyses,
and derived the classes of stress states that exactly satisfy that assumption. These stress states do not
solve any interesting composite stress analysis problems, but they provided guidance to the development
of approximate shear-lag methods. By relaxing the form of the shear stress and introducing a few other
assumptions, we derived a new shear-lag analysis for multilayered structures. We termed this analysis method
an optimal shear-lag analysis because it is based on the fewest assumptions. The optimal, shear-lag analysis
differs from most previous shear-lag analyses, such as those based on Hedgepeth (1961). By introducing
more assumptions, however, it was possible to reduce the optimal, shear-lag analysis to a Hedgepeth-type
analysis. Adding yet another assumption reproduced another class of shear-lag analyses common in the
literature. The process of starting from elasticity theory and deriving various shear-lag models by successive
approximations can be used to categorize most planar shear-lag models in the literature and rank them by
expected accuracy. The optimal, shear-lag and the Hedgepeth-like, shear-lag analyses were applied to several
sample calculations.

The intent of this paper was not to advocate shear-lag analysis as a preferred method for stress analysis
of composites. There are many limitations to the types of problems that can be analyzed and to the type
of results that can be generated by shear-lag methods. But, the shear-lag equations are usually amenable
to simple solutions that makes it possible to get results. When shear-lag analysis is done correctly, those
easily-derived results can also be accurate results. This paper can be used as a guide to deriving optimal or
sub-optimal, shear-lag analyses and to assessing both their capabilities and their limitations.

2. Theory

Shear-lag analyses in the composites literature always contain several approximations although a complete
specification of assumptions is usually not given. A feature common to all shear-lag analysis is that one
assumption always involves a simplification of in-plane shear stress, τxy, to decouple the x and y directions.
This decoupling permits 2D-planar elasticity problems to be simplified to a 1D analysis. The standard
shear-stress simplification is to assume that

τxy ∝
∂v

∂x
(1)

where v is displacement in the y direction. By exact linear elasticity, the shear stress is

τxy = Gxyγxy = Gxy

(
∂v

∂x
+
∂u

∂y

)
(2)

where Gxy is in-plane shear modulus, γxy is in-plane shear strain, and u is displacement in the x direction.
Thus, although it is not usually stated in the following form, the fundamental assumption common to all
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Fig. 1. The geometry of an n-layered composite. Layer i extends from xi−1 to xi and has thickness
ti, tensile moduli E

(i)
x and E

(i)
y , in-plane shear modulus G

(i)
xy , in-plane Poisson’s ratio ν

(i)
xy , and thermal

expansion coefficients α
(i)
x and α

(i)
y . The zi coordinate is a dimensionless coordinate in layer i that varies

from 0 and 1 in that layer.

planar, shear-lag analyses is that

∂u

∂y
= 0, or at least that

∣∣∣∣∂u∂y
∣∣∣∣ << ∣∣∣∣∂v∂x

∣∣∣∣ (3)

In this section, we consider application of this fundamental shear-lag approximation to 2D plane-stress or
plain-strain, stress analysis problems. The composite geometry analyzed is the n-layered composite shown
in Fig. 1. The layers are assumed to be linear thermoelastic with orthotropic mechanical properties and
thermal expansion coefficients that are independent of temperature. Layer i extends from xi−1 to xi and
therefore has thickness ti = xi − xi−1. The x- and y-direction tensile moduli, in-plane shear modulus, and

in-plane Poisson’s ratio of layer i are E
(i)
x , E

(i)
y , G

(i)
xy , and ν

(i)
xy , respectively. The x- and y-direction thermal

expansion coefficients are α
(i)
x and α

(i)
y . Attention is focused on n-layered composites subjected to axial

loading in the y direction, possibly in-plane shear loading, and thermal loading of ∆T = T − T0 where T is
the current temperature and T0 is the reference stress-free temperature. In linear, thermoelastic composites
with temperature independent properties, T0 might be the processing temperature. Temperature-dependent
effects and viscoelastic relaxation of residual stresses can be handled by setting T0 to an effective stress-free
temperature such that ∆T in a linear-thermoelastic analysis recovers the true level of residual stresses.

Exact Shear-Lag Results

It is instructive to consider all possible stress states that are exact solutions to elasticity problems and
simultaneously satisfy the fundamental shear-lag approximation. Any stress state that does not fall within
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this class of stress states can only be analyzed approximately by shear-lag analysis; the more a composite
stress state differs from the possible exact stress states, the less accurate will be the shear-lag analysis for
that stress state.

Let φ(x, y) be an Airy stress function (Timoshenko, 1970) for planar analysis of layer i such that the
in-plane stresses, which automatically satisfy equilibrium, are given by:

σx =
∂2φ

∂y2
, σy =

∂2φ

∂x2
, and τxy = − ∂2φ

∂x∂y
(4)

The in-plane normal and shear strains, for possibly anisotropic material properties, are given by

εx =
∂u

∂x
=

σx

E
(i)
x

− ν
(i)
xyσy

E
(i)
x

+ α(i)
x ∆T (5)

εy =
∂v

∂y
=

σy

E
(i)
y

− ν
(i)
xyσx

E
(i)
x

+ α(i)
y ∆T (6)

γxy =
∂v

∂x
+
∂u

∂y
=

τxy

G
(i)
xy

(7)

Substituting these strains in the 2D compatibility condition for in-plane strains, φ(x, y) must satisfy the
fourth order differential equation (Lekhnitski, 1981):

1

E
(i)
y

∂4φ

∂x4
+

(
1

G
(i)
xy

− 2ν
(i)
xy

E
(i)
x

)
∂4φ

∂x2∂y2
+

1

E
(i)
x

∂4φ

∂y4
= 0 (8)

The fundamental shear-lag assumption implies that u, and therefore also εx, are functions only of x.
Thus differentiating eq. (5) with respect to y leads to

∂

∂y

[
1

E
(i)
x

∂2φ

∂y2
− ν

(i)
xy

E
(i)
x

∂2φ

∂x2

]
= 0 (9)

Additionally, differentiating eq. (6) with respect to x and equating to eq. (7) differentiated with respect to
y, while using the fundamental shear-lag assumption, leads to

∂

∂x

[
1

E
(i)
y

∂2φ

∂x2
+

(
1

G
(i)
xy

− ν
(i)
xy

E
(i)
x

)
∂2φ

∂y2

]
= 0 (10)

Any function φ(x, y) which satisfies both eqs (9) and (10) will give a stress state that satisfies the fundamental
shear-lag assumption. Because it is easy to show that all such φ(x, y) also satisfy eq. (8), the possible
solutions to eqs (9) and (10) define all exact shear-lag analysis stress states. Equation (9) implies that the
square bracketed term can be written as f(x) which is an arbitrary function of x only. Similarly, eq. (10)
implies that the square-bracketed term can be written as an arbitrary function of y only, g(y). Equating the
square-bracketed terms to these equations and solving for the derivatives of the φ(x, y) function gives

σx =
∂2φ

∂y2
=

ν
(i)
xy

E
(i)
x

g(y) +
1

E
(i)
y

f(x) (11)

σy =
∂2φ

∂x2
=

1

E
(i)
x

g(y)−

(
1

G
(i)
xy

− ν
(i)
xy

E
(i)
x

)
f(x) (12)

Differentiating eq. (11) twice with respect to x and equating to eq. (12) differentiated twice with respect to
y gives

f ′′(x) =
E

(i)
y

E
(i)
x

g′′(y) (13)
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This result implies that f ′′(x) and g′′(y) must be constants independent of x and y, which further implies
that f(x) is quadratic in x and g(y) is quadratic in y.

Finally, all possible stress states that exactly satisfy the fundamental shear-lag assumptions can be written
in the form:

σx = b0 + b1x+ a2x
2 + (a0 + a1y + a2y

2)ν(i)xy (14)

σy = a0 + a1y + a2y
2 −

(
b0 + b1x+ a2x

2
)(E(i)

y

G
(i)
xy

− ν(i)yx

)
(15)

τxy = b2 − b1y − (a1 + 2a2y)x (16)

where ai and bi are constants. The shear stress was found from the two tensile stresses by integrating the 2D
equations of stress equilibrium. Shear-lag analyses of multilayered composites are often used for problems
involving stress transfer between the layers through shear at the interfaces. In the exact shear-lag stress
states, interfacial shear stresses (τxy at constant xi) are linear in y. Linear interfacial shear stresses leads to
quadratic variations in the average axial stress (〈σy〉) in any layer.

Optimal, Approximate Shear-Lag Analysis

If shear-lag analysis was limited to stress states having the form of the exact stress states derived in the
previous section, it would not solve any interesting composite stress analysis problems. To solve more
complex problems by shear-lag analysis requires an approximate shear-lag method. One approach to deriving
an approximate method is to relax the constraints of the exact stress states (McCartney, 1992). We allowed

τxy to have a more general form; we assumed τ
(i)
xy in layer i to have the form:

τ (i)xy = f
(i)
0 (x)g

(i)
0 (y) + f

(i)
1 (x)g

(i)
1 (y) (17)

In the exact stress states, g
(i)
0 (y) and g

(i)
1 (y) are linear in y, f

(i)
0 (x) is a constant, and f

(i)
1 (x) is linear in x. In

this approximate analysis we allow g
(i)
i (y) and f

(i)
i (x) to have any variations with y and x. The goal of this

section is to derive shear-lag equations that can be used to determine these new functions or to determine
the stresses in the layers. We define an optimal, approximate shear-lag analysis as the one that derives the
final equations with minimal additional assumptions to supplement the fundamental shear-lag assumption.

First, we defined zi as a dimensionless coordinate in the x direction in each layer as

zi =
x− xi−1

ti
(18)

zi varies from 0 to 1 through the thickness of each layer (see Fig. 1). Second, we defined layer shape function
Li(zi) and Ri(zi) that are functions only of zi having the properties

Li(0) = 1, Li(1) = 0, Ri(0) = 0, and Ri(1) = 1 (19)

Li(zi) is the left-side shape function that is 1 on the left edge of the layer and 0 on the right edge of the layer;
similarly, Ri(zi) is the right-side shape function. Third, we defined τ(xi) as the interfacial shear stress at
the interface between layer i and i+ 1 located at xi. In terms of dimensionless coordinates, shape functions,
and interfacial shear stresses, the layer shear stress in eq. (17) can be rewritten as

τ (i)xy = τ(xi−1)Li + τ(xi)Ri (20)

Some previous shear-lag analyses treat τ
(i)
xy as linear in x in each layer (McCartney, 1992). This new analysis

can derive such linear results by setting Li(zi) = 1 − zi and Ri(zi) = zi. But, it is also possible to derive
shear-lag equations without requiring the shape functions to be linear. The examples in this paper show
how the use of non-linear shape functions can improve the accuracy of shear-lag methods.

From eq. (7), the fundamental shear-lag assumption (∂u/∂y = 0), and eq. (20)

∂v

∂zi
=

ti

G
(i)
xy

(
τ(xi−1)Li + τ(xi)Ri

)
(21)
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Using a transform method developed by McCartney (McCartney, 1992), we multiply both sides of eq. (21)
by (A− zi) and integrate by parts over the layer thickness to get〈

v(i)
〉

+ v(xi)(A− 1)− v(xi−1)A =
tiτ(xi−1)

G
(i)
xy

(
A 〈Li〉 − 〈ziLi〉

)
+
tiτ(xi)

G
(i)
xy

(
A 〈Ri〉 − 〈ziRi〉

)
(22)

where 〈·〉 indicates averaging over the thickness of the layer such as〈
v(i)
〉

=
1

ti

∫ xi

xi−1

v(x, y) dx =

∫ 1

0

v(zi, y) dzi (23)

The terms v(xi) and v(xi−1) are the axial displacements on the two edges of layer i. By continuity of axial
displacements, these edge displacements must equal the corresponding edge displacements in layers i − 1
and i + 1, respectively. This shear-lag analysis thus satisfies continuity in both shear stresses and axial
displacements. The terms

〈
v(i)
〉
, v(xi), and v(xi−1) are functions of y only. The terms 〈Li〉, 〈ziLi〉, 〈Ri〉,

and 〈ziRi〉 are all constants depending on the choice of shape functions. Setting A = 1 for layer i + 1 and
A = 0 for layer i, respectively, gives two relations〈

v(i+1)
〉

= v(xi) +
ti+1τ(xi)

G
(i+1)
xy

〈(1− zi+1)Li+1〉+
ti+1τ(xi+1)

G
(i+1)
xy

〈(1− zi+1)Ri+1〉 (24)

〈
v(i)
〉

= v(xi)−
tiτ(xi−1)

G
(i)
xy

〈ziLi〉 −
tiτ(xi)

G
(i)
xy

〈ziRi〉 (25)

Subtracting eq. (25) from eq. (24) gives〈
v(i+1)

〉
−
〈
v(i)
〉

=
ti+1 〈(1− zi+1)Ri+1〉

G
(i+1)
xy

τ(xi+1) +
ti 〈ziLi〉
G

(i)
xy

τ(xi−1)

+

(
ti+1 〈(1− zi+1)Li+1〉

G
(i+1)
xy

+
ti 〈ziRi〉
G

(i)
xy

)
τ(xi) (26)

A second relation between displacement and shear stress can be derived by using stress equilibrium and
Hooke’s law. By stress equilibrium in layer i

∂σ
(i)
y

∂y
+
∂τ

(i)
xy

∂x
= 0 (27)

Integrating over the thickness of the layer, it is easy to show that

d
(
ti

〈
σ
(i)
y

〉)
dy

= τ(xi−1)− τ(xi) (28)

Next, differentiate Hooke’s law in eq. (6) with respect to y and average over the layer thickness to get

d2
〈
v(i)
〉

dy2
=

1

E
(i)
y ti

d
(
ti

〈
σ
(i)
y

〉)
dy

− ν
(i)
xy

E
(i)
x

d
〈
σ
(i)
x

〉
dy

(29)

To proceed we need to introduce a second shear-lag assumption. We assume that∣∣∣∣∣∣ ν
(i)
xy

E
(i)
x

d
〈
σ
(i)
x

〉
dy

∣∣∣∣∣∣ <<
∣∣∣∣∣∣
d
〈
σ
(i)
y

〉
dy

∣∣∣∣∣∣ (30)

Combining this assumption with eqs (28) and (29) and eliminating
〈
σ
(i)
y

〉
gives

d2
〈
v(i)
〉

dy2
=
τ(xi−1)− τ(xi)

E
(i)
y ti

(31)
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The assumption in eq. (30) is made in virtually all shear-lag analyses, although it is not always explicitly
stated. It is typically introduced by making use of a 1D axial Hooke’s law of

εy =
∂v

∂y
=
〈σy〉
E

(i)
y

+ α(i)
y ∆T (32)

instead of the full 2D relation in eq. (6). The assumption in eq. (30) is less severe than the use of a 1D
Hooke’s law. Here, we do not require 〈σx〉 to be much less than 〈σy〉, we only require that 〈σx〉 varies much
slower in the y direction than does 〈σy〉. This assumptions is probably a good assumption for problems
of stress transfer during loading in the y direction, which is a problem commonly analyzed by shear-lag
methods.

Finally, differentiating eq. (26) twice with respect to y and making use of eq. (31) leads to

− τ(xi+1)

E
(i+1)
y ti+1

+

(
1

E
(i+1)
y ti+1

+
1

E
(i)
y ti

)
τ(xi)−

τ(xi−1)

E
(i)
y ti

=
ti+1 〈(1− zi+1)Ri+1〉

G
(i+1)
xy

τ ′′(xi+1)

+
ti 〈ziLi〉
G

(i)
xy

τ ′′(xi−1) +

(
ti+1 〈(1− zi+1)Li+1〉

G
(i+1)
xy

+
ti 〈ziRi〉
G

(i)
xy

)
τ ′′(xi) (33)

Equation (33) for i = 1 to n−1 defines a system of n−1 second order differential equations which can be solved
to find the n−1 interfacial shear stresses in the n-layered composite. Defining τ = (τ(x1), τ(x2), . . . , τ(xn−1))
as a vector of the interfacial shear stresses, the system of equations can be written as

[A]
d2τ

dy2
− [B]τ = −τ 0 (34)

where [A] and [B] are each tridiagonal matrices with elements

Ai,i−1 =
ti 〈ziLi〉
G(i)
xy

Ai,i =
ti+1 〈(1− zi+1)Li+1〉

G(i+1)
xy

+
ti 〈ziRi〉
G(i)
xy

Ai,i+1 =
ti+1 〈(1− zi+1)Ri+1〉

G(i+1)
xy

Bi,i−1 = − 1
E(i)
y ti

Bi,i = 1
E(i+1)
y ti+1

+ 1
E(i)
y ti

Bi,i+1 = − 1
E(i+1)
y ti+1

(35)

The vector τ 0 allows the analysis to account for non-zero shear-stress boundary conditions on the left edge of
layer 1 or on the right edge of layer n. This type of analysis can handle any variation in shear-stress boundary
conditions; here we only consider constant shear stress boundary conditions which have τ ′′(x0) = τ ′′(xn) = 0.
For such boundary conditions:

τ 0 =

(
τ0

E
(1)
y t1

, 0, . . . ,
τn

E
(n)
y tn

)
(36)

where τ0 and τn are the constant shear stress boundary conditions on the left and right edges, respectively.
For solution purposes, it is convenient to rewrite eq. (34) as

d2τ

dy2
− [Mτ ]τ = −[Mτ ]τ∞ (37)

where [Mτ ] = [A]−1[B] and τ∞ = [B]−1τ 0. As shown in the appendix, the ith element of τ∞ is

(τ∞)i = τ0 +

i∑
j=1

tjE
(j)
y

tE0
y

(τn − τ0) (38)

where t =
∑n
i=1 ti is total thickness of the composite and

E0
y =

1

t

n∑
i=1

tiE
(i)
y (39)
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is the rule-of-mixtures effective composite modulus of an undamaged structure in the y direction. Physically
τ∞ gives the far-field or steady state interfacial shear stresses as an interpolation between τ0 and τn weighted
according to the stiffnesses of the intervening layers. These are the interfacial shear stresses far away from
any end or from any discontinuities or breaks in any layers.

Once eq. (34) is solved for all interfacial shear stresses, the average axial stress in each layer can be
determined by integration of eq. (28). Alternatively, it is convenient to transform eq. (34) into an equation
for direct determination of the average axial layer stresses. By eq. (28) and an iterative analysis, the
interfacial shear stresses can be written in terms of the average axial stresses by

τ(xi) = τ0 −
i∑

j=1

d
(
tj

〈
σ
(j)
y

〉)
dy

(40)

Let p = (t1

〈
σ
(1)
y

〉
, t2

〈
σ
(2)
y

〉
, . . . , tn−1

〈
σ
(n−1)
y

〉
) be a vector of forces per unit plate depth on the layers. In

matrix form, τ becomes

τ = τ0(1, 1, . . . , 1)− [IL]
dp

dy
(41)

where [IL] is an (n − 1) × (n − 1) matrix with all diagonal and lower half-diagonal elements equal to one
while all upper half-diagonal elements are zero (i.e., (IL)i,j = 1 if i ≥ j, otherwise (IL)i,j = 0). Substitution
into eq. (34) gives

d3p

dy3
− [Mσ]

dp

dy
= −[Mσ]

dp∞
dy

(42)

where
[Mσ] = [IL]−1[Mτ ][IL] (43)

and the ith element of dp∞/dy is(
dp∞
dy

)
i

= [IL]−1
(
τ0(1, 1, . . . , 1)− τ∞

)
=
tiE

(i)
y

tE0
y

(
τ0 − τn

)
(44)

The final form of dp∞/dy was derived by noting that [IL]−1 has all diagonal elements equal to one, all
elements immediately below the diagonal equal to −1, and all other elements zero (i.e., (IL)−1i,i = 1,

(IL)−1i,i−1 = −1, otherwise (IL)−1i,j = 0). Integrating eq. (42) once gives

d2p

dy2
− [Mσ]p = −[Mσ]p∞ (45)

The integration constant, which here has been incorporated into p∞, must be the far-field or steady state
tensile stresses in each layer when there are no shear stress boundary conditions; in other words, the tensile
forces in the layers under constant axial stress far away from any end or from any discontinuities or breaks
in any layers. Combining this constant term with the integrated shear stress terms in eq. (44) gives the ith

element of p∞ as

(p∞)i = E(i)
y ti

[(
τ0 − τn

)
y + tσ0(0)

tE0
y

+ (α0
y − α(i)

y )∆T

]
(46)

where σ0(0) is the total applied stress in the y direction when y = 0, and α0
y is the rule-of-mixtures effective

y-direction thermal expansion coefficient of an undamaged structure given by

α0
y =

n∑
i=1

α
(i)
y tiE

(i)
y

tE0
y

(47)

Note that σ0(y) =
(
τ0 − τn

)
y + σ0(0) is the total applied axial stress in the y direction for problems with

constant, non-zero shear stresses applied to the sides of the specimen. When there are no shear-stress
boundary conditions, σ0(y) is constant and equal to the total applied axial stress.
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Solution Method and Properties

The solution to the system of coupled second-order differential equations in eq. (45) that has no first-
derivative terms can be written down using the eigenvalues and eigenvector of the matrix [Mσ]. Making use
of the obvious particular solution of ppart = p∞, the average stress in each layer is:〈

σ(i)
y

〉
= E(i)

y

[(
τ0 − τn

)
y + tσ0(0)

tE0
y

+ (α0
y − α(i)

y )∆T

]
+

n−1∑
j=1

(
aje

λjy + bje
−λjy

) ψj,i
ti

(48)

Here λ2j for j = 1 to n − 1 are the eigenvalues of [Mσ] and ψj,i is the ith element of the corresponding
eigenvector. The 2(n− 1) unknown constants aj and bj for j = 1 to n− 1 must be determined by boundary
conditions. Making use of eq. (40), the interfacial shear stresses are:

τ(xi) = τ0 +

i∑
k=1

tkE
(k)
y

tE0
y

(
τn − τ0

)
−

i∑
k=1

n−1∑
j=1

(
aje

λjy − bje−λjy
)
λjψj,k (49)

Alternatively, the solution for interfacial shear stresses can be found by an eigen-analysis of eq. (37) as:

τ(xi) = τ0 +

i∑
j=1

tjE
(j)
y

tE0
y

(τn − τ0) +

n−1∑
j=1

(
aje

λjy − bje−λjy
)
ωj,i (50)

Here λ2j for j = 1 to n − 1 are the eigenvalues of [Mτ ] matrix, which are identical to the eigenvalues of the

[Mσ] matrix because the transformation in eq. (43) leaves eigenvalues unchanged. ωj,i is the ith element of
the eigenvector of [Mτ ] associated with λ2j and aj and bj for j = 1 to n − 1 are constants determined by
boundary conditions. Because these two shear stress results must be identical, the eigenvectors of [Mσ] and
[Mτ ] must be related by:

ωj,i = −
i∑

k=1

λjψj,k or ψj,i =
ωj,i−1 − ωj,i

λj
(51)

In terms of the eigenvectors of [Mτ ], the average stress in each layer is:〈
σ(i)
y

〉
= E(i)

y

[(
τ0 − τn

)
y + tσ0(0)

tE0
y

+ (α0
y − α(i)

y )∆T

]
+

n−1∑
j=1

(
aje

λjy + bje
−λjy

) ωj,i−1 − ωj,i
tiλj

(52)

This optimal shear-lag solution satisfies axial equilibrium exactly, satisfies the simplified shear Hooke’s
law exactly (eq. (7) ignoring the ∂u/∂y term), and satisfies the simplified axial Hooke’s law (eq. (6) ignoring
the σx term) in an averaged sense. At the interfaces between layers, both the interfacial shear stress and the
axial displacement are continuous.

The matrices [Mτ ] and [Mσ] are fully populated and not symmetric. Although an eigenanalysis of
such general matrices can be difficult (Press, Flannery, Teukolsky, and Vetterling, 1988), there are some
simplifications that make this analysis straight forward. First, on physical grounds, [Mτ ] must be positive
definite (i.e., λ2j > 0). The eigenvalue problem for the unsymmetric [Mτ ] can thus be converted to an easier

problem by forming the new matrix [Mτ ][Mτ ]T which is symmetric and has eigenvalues λ4j ; the eigenvalues
of this symmetric matrix can be found with standard numerical methods (Press, Flannery, Teukolsky, and
Vetterling, 1988). Once λ2j are known, the eigenvectors can be found by an iterative method. Because [Mτ ]
comes from two tridiagonal matrices, the equations for the eigenvectors can be rewritten as

[B] ~ωj = λ2j [A] ~ωj (53)

For each eigenvalue, one can set ωj,1 = 1, substitute into eq. (53), and find all remaining elements using

ωj,2 =
B11 − λ2jA11

λ2jA12 −B12
(54)

ωj,i+1 =
(Bi,i−1 − λ2jAi,i−1)ωj,i−1 + (Bi,i − λ2jAi,i)ωj,i

λ2jAi,i+1 −Bi,i+1
for i = 2 to n− 1 (55)
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If necessary, the eigenvalues and eigenvectors respond well to refinement by inverse iteration (Press, Flannery,
Teukolsky, and Vetterling, 1988); such refinement was not needed for the calculations in this paper.

This one-dimensional, optimal, shear-lag analysis determines only the average y-direction tensile stresses,
the in-plane shear stresses, and the axial displacements. There have been various attempts to develop two-
dimensional shear-lag methods. For example, because τxy is known every place, one could, in principle,
substitute that stress into the transverse equilibrium equation.

∂σ
(i)
x

∂x
+
∂τ

(i)
xy

∂y
= 0 (56)

differentiate and then integrate to find the transverse stress and similarly find the transverse displacements.
In an analysis of axisymmetric shear-lag methods, it was found that shear-lag analysis is most accurate
for finding axial stresses and displacements. It is less accurate for finding shear stresses because they are
determined by differentiation of the approximate shear stresses (e.g. eq. (28)); any inaccuracies in the tensile
stresses will get amplified by the differentiation step. Finding transverse stress and displacement using
eq. (56) requires another differentiation step. It is unlikely that shear-lag analysis for average tensile stress
is sufficiently accurate that a second derivative can be used to find transverse stresses and displacements.
Furthermore, the transverse results will not satisfy any Hooke’s laws exactly, approximately, or in an averaged
sense. We suggest that shear-lag analysis of multilayered systems is only suitable for finding axial stresses
and axial displacements. It may be sufficiently robust for determining interfacial shear stress also, but
probably with less accuracy than the axial terms. For problems that require analysis of transverse stresses,
it is probably necessary to abandon shear-lag methods and adopt approximate two-dimensional methods
such as those developed by McCartney (1996; McCartney and Pierce, 1997) for multilayered structures.

The eigenvalues and eigenvectors in the above solutions depend on the particular choice for the shape
functions that describe the variation of shear stresses in the x direction in each layer. Note that most previous
shear-lag methods begin by introducing some assumption about the form of the shear stresses. Such analyses
need to restart from the beginning to change that assumption. The analysis here leaves the form of the shear
stresses undetermined. The final equations depend only on four dimensionless averages of the shape functions
in each layer: 〈ziLi〉, 〈(1− zi)Li〉, 〈ziRi〉, and 〈(1− zi)Ri〉. An optimal, shear-lag analysis for any desired
assumptions about shear stresses can be generated simply by evaluating these constants and using them in
the [A] matrix. A common approach in previous shear-lag analyses, is to assume the x variation in all layers
is linear which implies Li = 1− zi and Ri = zi and results in

〈ziLi〉 =
1

6
, 〈(1− zi)Li〉 =

1

3
, 〈ziRi〉 =

1

3
, and 〈(1− zi)Ri〉 =

1

6
(57)

Interlayer, Shear-Lag Analysis

There is a large literature on planar shear-lag analyses of unidirectional composites based on the shear-lag
analysis of Hedgepeth (1961). Hedgepeth analyzed specimens with an infinite number of fibers, but his
methods can be applied to geometries with a finite number of fibers (Nairn, 1988a). The final equations
for the axial stresses in a Hedgepeth-type, shear-lag analysis differs from the optimal, shear-lag result in
eq. (45). In this section, we show how the Hedgepeth-type analysis can be derived from elasticity theory in a
manner similar to that used above to derive the optimal, shear-lag analysis. The Hedgepeth-type derivation
requires additional assumptions and thus must be less accurate than the optimal, shear-lag analysis.

The layers for analysis of a unidirectional composite are shown in Fig. 2. This geometry is identical to
Fig. 1, except that n is always odd, all odd-i layers are matrix layers or interlayers, and all even-i layers are
fiber layers. One new assumption of a Hedgepeth-type analysis is that all fiber layers are much stiffer than
any matrix layers. When the fibers are sufficiently stiff, we can ignore shear deformations in the fiber and
thus

∂v

∂x
= 0 for fiber layers (i even) (58)

Integration leads to 〈
v(i)
〉

= v(xi−1) = v(xi) for i even (59)
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1

Fig. 2. The geometry of an n-layered (with n odd) unidirectional composite. The odd layers (in white) are
matrix layers; the even layers (in black) are fiber layers. In an interlayer, shear-lag analysis, the fibers layers
are assumed to be much stiffer than the matrix layers.

For the matrix layers, a second new assumption is that v(x) is linear in x. It can then be expressed as a
linear interpolation between v(xi−1) =

〈
v(i−1)

〉
and v(xi) =

〈
v(i+1)

〉
. In dimensionless units

v(i)(zi) =
〈
v(i−1)

〉
(1− zi) +

〈
v(i+1)

〉
zi for i odd (60)

Substituting these results into Hooke’s law for shear stresses and making use of the fundamental shear-lag
assumption leads to

τ (i)xy = 0 for i even (61)

τ (i)xy =
G

(i)
xy

ti

(〈
v(i+1)

〉
−
〈
v(i−1)

〉)
for i odd (62)

As derived here, it is seen that a Hedgepeth-type analysis satisfies continuity in axial displacement between
layers (v(x) is continuous). There are discontinuities, however, in shear stress at each fiber/matrix interface.
Because this analysis requires that the stiff fibers be separated by soft matrix interlayers, we denote a
Hedgepeth-type analysis as an interlayer, shear-lag analysis. It is clearly less accurate than the optimal,
shear-lag analysis which correctly satisfies continuity in both axial displacements and shear stresses at all
layer interfaces. From the interlayer analysis assumptions, its accuracy will approach the optimal, shear-lag
analysis as the stiffness ratio between the stiff and soft layers approaches infinity.

The equations for an interlayer, shear-lag analysis can be derived by substituting eq. (31) into eq. (62).

The method is similar to the derivation of the optimal, shear-lag equations. If we define τ I = (τ
(3)
xy , . . . , τ

(n−2)
xy )

to be a vector of the constant shear stresses in the internal interlayers, the equation for the shear stresses is

[AI ]
d2τ I
dy2

− [BI ]τ I = −τ I,0 (63)
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where [AI ] is an (n− 3)/2× (n− 3)/2 diagonal matrix with the ith diagonal element being

(AI)i,i =
t2i+1

G
(2i+1)
xy

(64)

and [BI ] is an (n − 3)/2 × (n − 3)/2 version [B] in eq. (35) except it uses only the moduli and thicknesses
of the stiff layers:

(BI)i,i−1 = − 1

E
(2i)
y t2i

, (BI)i,i =
1

E
(2(i+1))
y t2(i+1)

+
1

E
(2i)
y t2i

, and (BI)i,i+1 = − 1

E
(2(i+1))
y t2(i+1)

(65)

The vector τ I,0 allows the interlayer, shear-lag analysis to account for non-zero shear stress boundary
conditions. It is defined by

τ 0 =

(
τ
(1)
xy

E
(2)
y t2

, 0, . . . ,
τ
(n)
xy

E
(n−1)
y tn−1

)
(66)

The interlayer, shear-lag equation for interlayer, shear stresses can be transformed to alternate forms by
methods identical to those used in the optimal, shear-lag analysis. The shear stress equation can be written
as

d2τ I
dy2

− [MI,τ ]τ I = −[MI,τ ]τ I,∞ (67)

where [MI,τ ] = [AI ]
−1[BI ] and τ I,∞ = [BI ]

−1τ I,0 or

(τ I,∞)i = τ (1)xy +

2i∑
j=2,4

tjE
(j)
y

tIE0
I,y

(τn − τ0) (68)

Here, tI =
∑n−1
i=2,4 ti and E0

I,y only includes the contributions of the stiff layers:

E0
I,y =

1

tI

n−1∑
i=2,4

E(i)
y ti (69)

A transformation to an equation for average axial stresses in the stiff layers can be derived by using

τ I = τ (1)xy (1, 1, . . . , 1)− [IL]
dpI
dy

(70)

where pI = (t2

〈
σ
(2)
y

〉
, t4

〈
σ
(4)
y

〉
, . . . , tn−3

〈
σ
(n−3)
y

〉
) is a vector of net forces per unit plate depth in the stiff

layers. The result is
d2pI
dy2

− [MI,σ]p = −[MI,σ]pI,∞ (71)

where [MI,σ] = [IL]−1[AI ]
−1[B][IL] and the ith element of pI,∞ is

(pI,∞)i = t2iE
(2i)
y

[(
τ
(1)
xy − τ (n)xy

)
y + tIσ0(0)

tIE0
I,y

+ (α0
I,y − α(2i)

y )∆T

]
(72)

Here α0
I,y only includes the contributions of the stiff layers:

α0
I,y =

n−1∑
i=2,4

α
(i)
y tiE

(i)
y

tIE0
I,y

(73)

Although interlayer, shear-lag analysis is less accurate than an optimal, shear-lag analysis, it has two
important mathematical simplifications. First, an optimal, shear-lag analysis for n layers requires the solution
of n−1 coupled differential equations, while the corresponding interlayer, shear-lag analysis has only (n−3)/2
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equations. Second, the matrix [Mσ] may be fully populated with non-zero elements. In contrast, because
[AI ] is diagonal, the matrix [MI,σ] is always tridiagonal. For analysis of a unidirectional composite in which

all fiber layers have the same properties (E
(i)
y = Ef and ti = df ) and all internal matrix layers have the

same properties (G
(i)
xy = Gm and ti = dm), [MI,σ] reduces to

[MI,σ] =
Gm

Efdfdm



1 −1 0 0 · · ·
−1 2 −1 0 · · ·

0 −1 2 −1 · · ·
...

...
...

...
...

· · · 0 −1 2 −1
· · · 0 0 −1 1


(74)

The eigenvalues and eigenvectors of this tridiagonal matrix in eq. (74) can be derived analytically which
greatly simplifies the solution of the interlayer, shear-lag equations for unidirectional composites (Nairn,
1988a).

Parametric, Interlayer, Shear-Lag Analysis

Occasionally, Hedgepeth-type, interlayer, shear-lag models have been applied to multilayer composites in
which the properties of the layers are different, but the stiffer layers are insufficiently stiffer than the more
compliant layers to justify the requirements of an interlayer analysis. In some models, such a problem has
been converted to an interlayer analysis by inserting fictitious interlayers between the actual layers with

some shear modulus, G
(int)
xy , and thickness, tint (Reifsnider, 1977; Laws and Dvorak, 1988; McManus and

Maddocks, 1996). Such a structure is then amenable to an interlayer, shear-lag analysis. Because the inserted
interlayers are fictitious, however, the interlayer properties are unknown parameters. Here, we denote such
an analysis a parametric, interlayer, shear-lag analysis. Parametric, interlayer, shear-lag analysis is the least
useful shear-lag method. The optimal, shear-lag and interlayer, shear-lag methods give explicit results for
average axial stress and shear stress as a function of layer properties and thicknesses. In contrast, parametric,
interlayer, shear-lag analysis only gives results that depend on unknown parameters. The parameters must
be determined by fitting to experimental results. Parametric, interlayer, shear-lag analysis it is not actually
a stress analysis method. It is better described as an empirical representation of the stresses that can be
fit to experimental results. Because planar shear-lag methods are available that provide explicit stress-state
solutions, parametric, interlayer, shear-lag analysis should only be used when optimal, shear-lag analysis is
too complex and when the stiffnesses of the layers are too close to permit interlayer, shear-lag analysis.

3. Examples

Microcracked Laminates (n = 2)

Figure (3) shows an [(S)/90n]s laminate where (S) denotes any supporting sublaminate. When such lami-
nates are loaded in tension normal to the fibers in the 90◦ plies, those plies crack into periodic matrix micro-
cracks. There has been much experimental work on microcracking and various stress analysis methods have
been used to evaluate the effect of microcracking on the properties of the laminate. Two recent review articles
in Nairn, 2000 and Nairn and Hu, 1994 cover the topic of matrix microcracking and give many references.
Most early work on microcracking used shear-lag methods to analyze the stresses in the unit cell of damage be-
tween two microcracks as illustrated in Fig. 3 (Caslini, Zanotti, and O’Brien, 1987; Dharani and Tang, 1990;
Flaggs, 1985; Garrett and Bailey, 1977; Han, Hahn, and Croman, 1987a; Han, Hahn, and Croman, 1987b;
Laws and Dvorak, 1988; Manders, Chou, Jones, and Rock, 1983; McManus and Maddocks, 1996; Reifsnider,
1977; Tan and Nuismer, 1990). With the exception of McCartney (1992), however, shear-lag analyses of
microcracking have used sub-optimal methods that suffer in accuracy. In this section, we use the results of
the previous section to write down the optimal shear-lag analysis for a microcracked laminate and compare
it to some prior shear-lag analyses of microcracked laminates.
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Fig. 3. A unit cell of damage between two microcracks located at y = ±a in a microcracked [(S)/90n]s
laminate. This figure has an edge view of the laminate. By symmetry, the stress analysis only needs to
consider half the laminate which contains two layers. Layer 1 is the 90◦ plies; layer 2 is the (S) sublaminate.

Due to symmetry, the analysis of the microcracking unit cell reduces to an n = 2 problem with layer 1
being the 90◦ plies and layer 2 being the supporting plies. When n = 2, the system of second order equations
in eq. (45) reduces to a single equation. The optimal, shear-lag equation is

d2p1
dy2

− β2p1 = −β2p∞,1 (75)

where

β2 =

1
E(1)
y t1

+ 1
E(2)
y t2

t1 〈z1R1〉
G(1)
xy

+
t2 〈(1− z2)L2〉

G(2)
xy

(76)

Using boundary conditions that p1(±a) = 0 on the microcrack surfaces, eq. (75) is easily solved to give〈
σ(1)
y

〉
= E(1)

y

[
σ0
E0
y

+ (α0
y − α(1)

y )∆T

](
1− coshβy

coshβa

)
(77)

From this (or any shear-lag) stress analysis, the effective, axial modulus of the laminate, E∗y , in the presence
of microcracks can be determined to be (Nairn and Hu, 1994; Nairn, 2000):

E0
y

E∗y
= 1 +

t1E
(1)
y

t2E
(2)
y

tanhβa

βa
(78)
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The shear-lag equation for a microcracked laminate in eq. (75) was derived in many previous papers.
Although the equation is the same, these previous papers differ in the value of the derived shear-lag parameter
β. We claim the result in eq. (76) is the optimal, shear-lag parameter and that prior results with different
β’s are less accurate and should be abandoned. For example, two commonly-used microcracking shear-lag
parameters are (Garrett and Bailey, 1977; Bailey, Curtis, and Parvizi, 1979):

β2
1 =

1
E(1)
y t1

+ 1
E(2)
y t2

t1
G(1)
xy

and β2
2 =

1
E(1)
y t1

+ 1
E(2)
y t2

t1
3G(1)

xy

(79)

The first result reduces to the optimal result if 〈z1R1〉 = 1 and either G
(2)
xy >> G

(1)
xy or 〈(1− z2)L2〉 = 0; the

second result if 〈z1R1〉 = 1/3 and either G
(2)
xy >> G

(1)
xy or 〈(1− z2)L2〉 = 0. These additional assumptions

are not required; furthermore, for most laminate materials G
(2)
xy is not much greater than G

(1)
xy . Several other

papers have derived parametric, interlayer, shear-lag analyses (Reifsnider, 1977; Laws and Dvorak, 1988;
McManus and Maddocks, 1996). Because these analyses introduce an unknown parameter into the shear-lag
parameter, they are not useful as methods for making explicit predictions about stresses or effective modulus.
Only McCartney has previously derived an optimal, shear-lag analysis of microcracking (McCartney, 1992).
His shear-lag parameter is a special case of eq. (76) which assumes all shape functions are linear.

A sample calculation of modulus reduction for a microcracked [0/902]s E-Glass/Epoxy laminate is given
in Fig. 4. The lines are shear-lag calculations with various shear-lag parameters; the symbols are finite
element calculations. The shear-lag analyses using β1 are β2 are not accurate. The McCartney analysis,
in contrast, is extremely accurate. It agrees with the finite element analyses with an accuracy of better
than 0.54% for crack densities less than 0.9 mm−1 and 0.80% for the last crack density of 1.0 mm−1. The
shear-lag results can be slightly improved by adjusting the shape functions averages to 〈z1R1〉 = 0.3300 and
〈(1− z2)L2〉 = 0.3070. The resulting curve, labeled “Optimized Shape Functions,” agrees with finite element
analysis with an accuracy of better than 0.20% for crack densities less than 0.9 mm−1 and 0.48% for the
last crack density of 1.0 mm−1. The improvement over the McCartney analysis, which assumes linear shape
functions, is only marginal and probably not worth the effort of calculating the shape function averages
by minimization of errors. Thus, if one must analyze microcracked laminates using shear-lag analysis, that
analysis should be done in terms of the McCartney (1992) shear-lag parameter.

Although Fig. 4 shows that shear-lag analysis with linear shape functions can accurately predict modulus
reduction in microcracked, cross-ply laminates, shear-lag analysis is less accurate when applied to calculating
energy release rates for microcrack formation (Nairn, 2000; Nairn, Hu, and Bark, 1993; Nairn and Hu, 1994).
Calculation of the energy release rate for microcracking requires evaluation of the change in modulus which
is equivalent to finding the derivative of the effective modulus. Although shear-lag may be accurate for
the modulus, it is less accurate for finding the derivative of the modulus. When shear-lag analysis is
used with a fracture mechanics method for predicting the formation of microcracks in a variety of lam-
inates, it gives results that are less accurate than two-dimensional stress analyses based on variational
mechanics (Nairn, 2000; Nairn, Hu, and Bark, 1993; Nairn and Hu, 1994). Perhaps the shear-lag analy-
sis could be improved by optimizing the shape function averages for each specific layup, but the varia-
tional mechanics results can analyze a wide range of layups without the need for optimizing any parame-
ters (Nairn, 2000; Nairn, Hu, and Bark, 1993; Nairn and Hu, 1994).

Compression Double Lap Shear (n = 3)

A new double-lap shear specimen has recently been developed that consists of three equal-thickness metal
adherends connected by two equal-thickness adhesive layers (Mendels, Page, Leterrier, Månson, and Nairn,
2000). This specimen is tested in compression by supporting the two outer metal plates and loading the
central plate in compression until adhesive failure. By symmetry, a shear-lag analysis of this specimen only
needs to consider half the specimen as illustrated in Fig. 5. The optimal, shear-lag analysis of this specimen
is a three-layer problem or one more layer than the analysis of the microcracked specimen in the previous
section.

The optimal, shear-lag equation for the average axial stresses in layers 1 and 2 is given in eq. (45) where
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Fig. 4. Modulus reduction in an [0/902]s E-Glass/Epoxy laminate as a function of microcrack density
calculated by various shear-lag models and compared to finite element analysis. For the sample calculations
in this paper, E

(1)
y = 13 GPa, G

(1)
xy = 4.58 GPa, t1 = 0.42 mm, E

(2)
y = 41.7 GPa, G

(2)
xy = 3.4 GPa, and

t2 = 0.21 mm.

Fig. 5. The right half of a compression double-lap shear specimen. For the sample calculations in this paper,
the two Aluminum layers have E

(i)
y = 69000 MPa and ν

(i)
xy = 0.25, t1 = 2 mm, and t3 = 4 mm. The adhesive

layer has E
(2)
y = 3167 MPa, ν

(2)
xy = 0.33, and t2 = 0.15 mm. The total specimen length is l = 20 mm.
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matrix [Mσ] is derived from the [A] and [B] matrices

[A] =


t1 〈z1R1〉
G

(1)
xy

+
t2 〈(1− z2)L2〉

G
(2)
xy

t2 〈(1− z2)R2〉
G

(2)
xy

t2 〈z2L2〉
G

(2)
xy

t2 〈z2R2〉
G

(2)
xy

+
t3 〈(1− z3)L3〉

G
(3)
xy

 (80)

[B] =


1

E
(1)
y t1

+
1

E
(2)
y t2

− 1

E
(2)
y t2

− 1

E
(2)
y t2

1

E
(2)
y t2

+
1

E
(3)
y t3

 (81)

(82)

We consider a specimen with unit compression on the top of layer 1 (σ0(0) = −t1/t), zero shear stresses on
the lateral surfaces (τ0 = τn = 0), and zero residual stresses (∆T = 0, note: it is straightforward to add
residual stresses if they occur in the adhesive specimen). Using eq. (48), the average axial stresses in the
layers are:〈

σ(1)
y

〉
= − t1E

(1)
y

tE0
y

+
(
a1e

λ1y + b1e
−λ1y

) ψ1,1

t1
+
(
a2e

λ2y + b2e
−λ2y

) ψ2,1

t1
(83)

〈
σ(2)
y

〉
= − t1E

(2)
y

tE0
y

+
(
a1e

λ1y + b1e
−λ1y

) ψ1,2

t2
+
(
a2e

λ2y + b2e
−λ2y

) ψ2,2

t2
(84)

〈
σ(3)
y

〉
= − t1E

(3)
y

tE0
y

−
(
a1e

λ1y + b1e
−λ1y

) ψ1,1 + ψ1,2

t3
−
(
a2e

λ2y + b2e
−λ2y

) ψ2,1 + ψ2,2

t3
(85)

where λ1 and λ2 are the two eigenvalues of [Mσ] with eigenvectors (ψ1,1, ψ1,2) and (ψ2,1, ψ2,2). Using eq. (49),
the interfacial shear stresses at the two interfaces between the adherends and the adhesive are

τ(x1) = −
(
a1e

λ1y − b1e−λ1y
)
λ1ψ1,1 −

(
a2e

λ2y − b2e−λ2y
)
λ2ψ2,1 (86)

τ(x2) = −
(
a1e

λ1y − b1e−λ1y
)
λ1(ψ1,1 + ψ1,2)−

(
a2e

λ2y − b2e−λ2y
)
λ2(ψ2,1 + ψ2,2) (87)

By integrating a one-dimensional Hooke’s law (eq. (32) with ∆T = 0 in this example), the average axial
displacement in each layer is 〈

v(i)
〉

=
〈
v(i)(−l/2)

〉
+

∫ l/2

−l/2

〈
σ
(i)
y

〉
E

(i)
y

dy (88)

Doing the integrations, setting
〈
v(3)(−l/2)

〉
= 0 at the supported base of the specimen, and making use of

eq. (26) at y = −l/2 results in〈
v(1)

〉
= −

(
t1 〈z1R1〉
G

(1)
xy

+
t2 〈L2〉
G

(2)
xy

)
τ

(
x1,−

l

2

)
−

(
t3 〈(1− z3)L3〉

G
(3)
xy

+
t2 〈R2〉
G

(2)
xy

)
τ

(
x2,−

l

2

)
−
t1(y + l

2 )

tE0
y

+
[
a1

(
eλ1y − e−λ1

l
2

)
+ b1

(
eλ1

l
2 − e−λ1y

)] ψ1,1

λ1E
(1)
y t1

+
[
a2

(
eλ2y − e−λ2

l
2

)
+ b2

(
eλ2

l
2 − e−λ2y

)] ψ2,1

λ2E
(1)
y t1

(89)

〈
v(2)

〉
= − t2 〈z2L2〉

G
(2)
xy

τ

(
x1,−

l

2

)
−

(
t3 〈(1− z3)L3〉

G
(3)
xy

+
t2 〈z2R2〉
G

(2)
xy

)
τ

(
x2,−

l

2

)
−
t1(y + l

2 )

tE0
y

+
[
a1

(
eλ1y − e−λ1

l
2

)
+ b1

(
eλ1

l
2 − e−λ1y

)] ψ1,2

λ1E
(2)
y t2

+
[
a2

(
eλ2y − e−λ2

l
2

)
+ b2

(
eλ2

l
2 − e−λ2y

)] ψ2,2

λ2E
(2)
y t2

(90)
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〈
v(3)

〉
= −

t1(y + l
2 )

tE0
y

−
[
a1

(
eλ1y − e−λ1

l
2

)
− b1

(
eλ1

l
2 − e−λ1y

)] ψ1,1 + ψ1,2

λ1E
(3)
y t3

−
[
a2

(
eλ2y − e−λ2

l
2

)
+ b2

(
eλ2

l
2 − e−λ2y

)] ψ2,1 + ψ2,2

λ2E
(3)
y t3

(91)

Finally, the energy in the specimen can be calculated by a boundary integral of tractions and displacements
to be

U =
Wt1

2

〈
σ(1)
y (l/2)

〉〈
v(1)(l/2)

〉
(92)

where W is the width of the specimen in the z direction. From eq. (89) and
〈
σ
(1)
y (l/2)

〉
= −1, the energy is

U =
Wt1

2

[(
t1 〈z1R1〉
G

(1)
xy

+
t2 〈L2〉
G

(2)
xy

)
τ

(
x1,−

l

2

)
+

(
t3 〈(1− z3)L3〉

G
(3)
xy

+
t2 〈R2〉
G

(2)
xy

)
τ

(
x2,−

l

2

)

+
t1l

tE0
y

− 2(a1 + b1)ψ1,1

λ1E
(1)
y t1

sinh
λ1l

2
− 2(a2 + b2)ψ2,1

λ2E
(1)
y t1

sinh
λ2l

2

]
(93)

Because the adhesive layer is thin compared to the other layers, it is probably accurate to use linear
shape functions in the adhesive layer (L2 = 1 − z2 and R2 = z2). With this assumption, the shear stresses
in layer 2 are linear in the x direction. Thus, the average shear stress in the adhesive layer is〈

τ (2)xy

〉
= −1

2

[(
a1e

λ1y − b1e−λ1y
)
λ1(2ψ1,1 + ψ1,2) +

(
a2e

λ2y − b1e−λ2y
)
λ2(2ψ2,1 + ψ2,2)

]
(94)

The remaining shape functions, R1 and L3, may or may not be linear. Several possibilities for these shape
functions will be considered below. Finally, the four unknown constants, a1, b1, a2, and b2, can be found by
satisfying the four axial-stress boundary conditions〈

σ(1)
y (+l/2)

〉
= −1,

〈
σ(1)
y (−l/2)

〉
= 0,

〈
σ(2)
y (+l/2)

〉
= 0, and

〈
σ(2)
y (−l/2)

〉
= 0 (95)

Because the adhesive layer is thin relative to the adherend layers and has a much lower modulus, it is
possible that an interlayer, shear-lag analysis will give results similar to the optimal, shear-lag analysis. If
we imagine two phantom soft layers to the left of layer 1 and to the right or layer 3, the interlayer, shear-lag
equation in eq. (71) reduces to a single equation:

d2
〈
σ
(1)
y

〉
dy2

− α2
〈
σ(1)
y

〉
= α2 t1E

(1)
y

tIE0
I,y

(96)

where tI = t1 + t3, E0
I,y = (t1E

(1)
y + t3E

(3)
y )/tI , and

α2 =
G

(2)
xy

t2

(
1

E
(1)
y t1

+
1

E
(3)
y t3

)
(97)

For better comparison with the optimal, shear-lag analysis, the phantom layer to the left of layer 1 is called
layer 0. Now, the odd layers are the stiff layers and the even layers are the interlayers. Making use of the first

two boundary conditions in eq. (95) and noting that E
(1)
y = E

(3)
y in this specimen, the interlayer, shear-lag

solution is 〈
σ(1)
y

〉
=

(t1 − t3) sinhα l
2 coshαy − tI coshα l

2 sinhαy − t1 sinhαl

tI sinhαl
(98)

〈
σ(3)
y

〉
= − t1

t3

[
(t1 − t3) sinhα l

2 coshαy − tI coshα l
2 sinhαy + t3 sinhαl

tI sinhαl

]
(99)
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Making use of eq. (28), the average shear stress in the adhesive interlayer is

〈
τ (2)xy

〉
= −t1α

[
(t1 − t3) sinhα l

2 sinhαy − tI coshα l
2 coshαy

tI sinhαl

]
(100)

By integrating a one-dimensional Hooke’s law, setting
〈
v(3)(−l/2)

〉
= 0 at the supported base of the specimen,

and making use of eq. (62) at y = −l/2, the average displacements in the two stiff layers are

〈
v(1)

〉
= − t2

G
(2)
xy

〈
τ (2)xy

(
− l

2

)〉
+

1

tIE0
I,y

[
(t1 − t3) sinhα l

2 (sinhαy + sinhα l
2 )

α sinhαl

−
tI coshα l

2 (coshαy − coshα l
2 )

α sinhαl
− t1

(
y +

l

2

)]
(101)

〈
v(3)

〉
= − t1

t3tIE0
I,y

[
(t1 − t3) sinhα l

2 (coshαy − coshα l
2 )

α sinhαl

−
tI coshα l

2 (sinhαy + sinhα l
2 )

α sinhαl
+ t3

(
y +

l

2

)]
(102)

Finally, using a boundary integral of tractions and displacements, total energy in the specimen is

UI =
Wt1

2

[
t2

G
(2)
xy

〈
τ (2)xy

(
− l

2

)〉
+

t1l

tIE0
I,y

−
(t1 − t3) tanhα l

2

αtIE0
I,y

]
(103)

Figure (6) gives sample results for stresses in a double lap-shear specimen with aluminum adherends and
an epoxy adhesive. The mechanical properties assumed for the aluminum and epoxy and the dimensions
of the specimen are given in the caption to Fig. 5. These first calculations assumed linear shape functions
or 〈z1R1〉 = 〈(1− z3)L3〉 = 1/3. The plot includes calculations by an optimal, shear-lag analysis and by
an interlayer, shear-lag analysis. These two results are compared to finite element calculations (FEA). For
better comparison to FEA results, the FEA stresses were averaged over the thickness of the layers. For
this specimen properties and geometry, both shear-lag analyses agree reasonably well with FEA results. As
expected, the optimal, shear-lag analysis was always more accurate than the interlayer, shear-lag analysis.
Both shear-lag analyses gave non-zero shear stress at y = ±l/2. Because there is no applied shear stress on
the specimen ends, the end shear-stress should approach zero. The FEA results tended towards zero at the
ends, but they showed high shear-stress peak very close to the ends. The shear-lag results were good for
shear stress with the exception of the small zone near the ends.

By adjusting the shape functions in the optimal, shear-lag analysis, it was possible to improve agreement
between that analysis and FEA results. For any particular value selected for 〈z1R1〉, we found that the best
agreement with FEA results was obtained when 〈(1− z3)L3〉 was approximately twice as large as 〈z1R1〉.
This ratio is similar to the thickness ratio between layers three and one from the specimen analyzed (see
Fig. 5). Closer inspection revealed that the optimum 〈(1− z3)L3〉 to 〈z1R1〉 ratio was very closely equal to
the stiffness ratio of layer three to the other two layers combined:(

〈(1− z3)L3〉
〈z1R1〉

)
Best Fit

=
E

(3)
y t3

E
(1)
y t1 + E

(2)
y t2

(104)

This ratio is close to two because t3 = 2t1, E
(3)
y = E

(1)
y , and E

(2)
y t2 is small compared to E

(1)
y t1. Fixing

the above shape function ratio, the optimal, shear-lag analysis can be matched to various features of the
FEA results. Figure (7) is the result of adjusting the shape function to match the average axial stress in the
adherend layers to the FEA results. The best-fit shape functions were 〈z1R1〉 = 0.506 and 〈(1− z3)L3〉 =
1.009. With these shape functions, the optimal, shear-lag analysis for axial stresses was effectively identical
to the FEA results. The shear-lag shear stress was also very close to the FEA results except for a small
region near the specimen ends.
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Fig. 6. The average tensile stresses in the Aluminum adherends and the average shear stress in the epoxy
adhesive as a function of position in the specimen. The three plots for each result are for an optimal,
shear-lag analysis with linear shape functions, an interlayer, shear-lag analysis, and finite element analysis.

-10 -8 -6 -4 -2 0 2 4 6 8 10
Position (mm)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4
Generalized

FEA

y

y

(1)

(3)

(2)

<σ    >

<σ    >

<τ     >xy

St
re

ss
 (M

Pa
)

Fig. 7. The average tensile stresses in the Aluminum adherends and the average shear stress in the epoxy
adhesive as a function of position in the specimen. The two plots for each result are for an optimal, shear-lag
analysis with “best-fit” shape functions and finite element analysis.
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When the displacements from an optimal, shear-lag analysis using shape functions adjusted to match
FEA stresses were compared to FEA results for displacement and energy, it was found that optimizing the
results to match stresses comes at the expense of getting worse results for displacement and therefore for
energy. The shear-lag analysis could be adjusted to fit the FEA displacement almost exactly by using shape
functions (still in the same ideal ratio) of 〈z1R1〉 = 0.284 and 〈(1− z3)L3〉 = 0.566, but these shape functions
led to worse results for axial stress. The trade off between fitting stresses and displacements is caused by the
shear-lag displacement being calculated from a one-dimensional Hooke’s law that ignores transverse stresses
(see eq. (32)). If the shear-lag analysis is adjusted to match axial stresses, then the axial displacement will
be in error by the consequence of ignoring transverse stresses. Similarly, if the shear-lag analysis is adjusted
to match displacements, the error in axial stresses will reflect the magnitude of the error caused by ignoring
transverse stresses. We suggest that a good compromise method is to adjust the shear-lag analysis to match
the FEA results for energy. Because energy is a product of stresses and displacement (see eq. (92)), this
approach gives a compromised, simultaneous fit to stresses and displacement. For this specific double-lap-
shear specimen, the total energy in the shear-lag analysis matched the total energy in the FEA results when
the shape functions were 〈z1R1〉 = 0.317 and 〈(1− z3)L3〉 = 0.632.

Some more variations in the shape function parameters showed that the optimal, shear-lag analysis re-
duces to the interlayer, shear-lag analysis as 〈z1R1〉 and 〈(1− z3)L3〉 approach zero. Physically, an interlayer,
shear-lag analysis assumes there is zero shear stress in the stiff layers. Zero shear stress translates into shape
functions averages equal to zero. Clearly, forcing the shear stresses in some layers to be zero is a much
more restrictive assumption than letting them vary according to some shape functions. In other words, the
interlayer, shear-lag analysis is always less accurate than the optimal, shear-lag analysis.

The previous results were all for a high modulus ratio between the adherend and the adhesive. The results
in Fig. 8 are for the same specimen except the modulus of the adhesive was increased to be identical to the
adherends. The small Poisson-ratio mismatch between the adhesive and the adherends was not changed. The
optimal, shear-lag results in this analysis were adjusted to match the energy of the FEA results. The best-fit
shape functions were 〈z1R1〉 = 0.317 and 〈(1− z3)L3〉 = 1/3 = 0.590; 〈z1R1〉 was identical to the previous
result and 〈(1− z3)L3〉 again followed the stiffness ratio in eq. (104). Despite the dramatic change in modulus
ratio, the optimal, shear-lag analysis still agrees well with FEA results. In contrast, the interlayer method
breaks down. The interlayer, shear-lag analysis grossly overestimates the shear stress near the specimen
ends. As a consequence, it also does a poor job of calculating axial stress transfer between layers one and
three.

Unidirectional Composite (n > 3)

For an example with many layers, we analyzed a unidirectional composite with 5 fibers (see Fig. 2 with

n = 11). The fiber layers had properties ti = tf , E
(i)
y = Ef , and G

(i)
xy = Gf . The matrix layers had

properties ti = tm, E
(i)
y = Em, and G

(i)
xy = Gm. The thickness of the first and last matrix layers were taken

as tm/2 to make the fiber volume fraction equal to Vf = tf/(tf + tm). We analyzed a sample of length 2L

extending from y = −L to y = +L. The sample was axially loaded on the ends with fiber stress
〈
σ
(f)
y

〉
= 1

and matrix stress
〈
σ
(m)
y

〉
= Em/Ef . The total axial load was thus σ0 = E0

y/Ef . The thermal load (∆T = 0)

and the transverse shear loads (τ0 = τ11 = 0) were both taken to be zero although it would be trivial to
include such loadings. A crack was introduced at y = 0 by breaking some layers. The broken layers had
zero stress at y = 0; the intact layers had zero displacement at y = 0. Specifically, we always assumed the
first two fiber and matrix layers were broken (i = 1 to 4) and considered problems where the next matrix
layer (i = 5) was either intact or broken. For each problem analyzed, we looked at the stresses in the first
unbroken fiber (fiber 3 or layer i = 6). Finally, the specimen dimensions were L = 40 mm and total width
5(tf + tm) = 10 mm. Some calculations were done for Vf = 0.5 (tf = tm = 1). Some calculations varied Vf
by varying the ratio of tf to tm while keeping their sum, and thus the specimen width, constant.

The system of equations for determining all layer axial stresses is given in eq. (45). The [A] and [B]
matrices required for finding [Mσ] are given in eq. (35) using the alternating layer properties given above.
The eigenvalues and eigenvectors of [Mσ] or [Mτ ] were found as described in the Solution Methods and
Properties section. The axial stresses in the layers were then given by eq. (48). The twenty unknown
constants (aj and bj for j = 1 to 10) were determined from the following twenty boundary conditions. From
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Fig. 8. The average tensile stresses in the Aluminum adherends and the average shear stress in an adhesive
with the same modulus as the adherends as a function of position in the specimen. The three plots for each
result are for an optimal, shear-lag analysis with shape functions optimized to match energy, an interlayer,
shear-lag analysis, and finite element analysis.

the fiber and matrix loads on the end of the specimen:

10∑
j=1

(
aje

λjL + bje
−λjL

) ψj,i
ti

= 0 for i = 1 to 10 (105)

When the first nb layers are broken, the zero axial stress at y = 0 in those layers gives the following boundary
conditions:

n−1∑
j=1

(aj + bj)
ψj,i
ti

=

 −
Em
Ef

i odd (matrix layers)

−1 i even (fiber layers)
for i = 1 to nb (106)

The unbroken fibers have zero displacement at y = 0. These boundary conditions were set by setting the
last-layer, y = 0 displacement to be zero (〈v11(0)〉 = 0) and then using eq. (26) for each remaining unbroken
layer. The resulting equations are:

n−1∑
j=1

(aj − bj)

[
ti+1

G
(i+1)
xy

(
〈(1− zi+1)Ri+1〉ωj,i+1 + 〈(1− zi+1)Li+1〉ωj,i

)
(107)

+
ti

G
(i)
xy

(
〈ziRi〉ωj,i + 〈ziLi〉ωj,i−1

)]
= 0 for i = nb + 1 to 10

To make this equation work for i = n−1 = 10, we set ωj,11 = 0. Numerically solving the boundary condition
equations had scaling problems because the aj and bj constants differed by many orders of magnitude. The
scaling problems could be eliminating by replacing the aj constants by new constants cj defined by

cj = aje
λjL (108)
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Fig. 9. The average axial fiber stress in the first unbroken fiber for a 5 fiber composite in which the first
two fibers and all matrix layers before the first unbroken fiber are broken calculate three different ways. For
the Ef/Em = 16.667 results, Ef = 40000 MPa, Gf = 16667 MPa, Em = 2400 MPa, Gf = 902.25 MPa, and
Vf = 0.5. For the Ef/Em = 1.6667 results, Em was increased to 24000 MPa.

and rewriting the boundary condition equations accordingly. Finally, all shape functions (Li and Ri) were
assumed to be linear.

Fiber stresses in unidirectional composites can also be determined using an interlayer shear-lag method.
The governing equations are in eq. (71). Such a Hedgepeth-type analysis for a finite number of fibers
is available in the literature (Nairn, 1988a; Nairn, 1988b); the analysis from those papers was used here
except for a minor difference in the calculation of Vf which leads to a scaling factor that must be changed
for comparison to the above optimal shear-lag results. An advantage of the interlayer method for these
unidirectional composite problems is that the eigenvalues and eigenvectors of the key matrix (see eq. (74))
can be found analytically (Nairn, 1988a; Nairn, 1988b).

Figure 9 plots the axial stress in the third fiber (layer 6) as a function of distance from the plane of the
crack. These calculations were for layers 1 to 5 being broken. The results from both an optimal, shear-lag
and an interlayer, shear-lag analysis are compared to finite element calculations (FEA). The two sets of
results are for two different ratios between the fiber and matrix moduli. For high-contrast composites (or
Ef/Em large), both shear-lag methods agreed well with FEA results. The optimal analysis was always
between the interlayer analysis and FEA results and thus was always more accurate than interlayer analysis.
The differences were larger for the low-contrast composite. When Ef/Em was low, the optimal analysis
still agreed reasonably well with FEA results. The interlayer method, however, got worse. The peak axial
stress at y = 0 is the stress concentration in the first unbroken fiber. By an interlayer analysis, the stress
concentration is independent of Ef/Em. FEA calculations show that it is not independent of Ef/Em and
the optimal analysis agreed with the FEA results.

To probe stress concentration calculations further, we calculated the stress concentration in the first
unbroken fiber as a function of fiber volume fraction. The two calculations in Fig. 10 are for when the
matrix layer just before the first unbroken fiber was either broken or intact. A characteristic of an interlayer
analysis is that this stress concentration factor is independent of the fiber and matrix properties, independent
of the fiber volume fraction, and insensitive to whether or not the last matrix layer is broken. The FEA
results (symbols), however, show that the interlayer analysis is wrong; the stress concentration factor does
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Fig. 10. Stress concentration is the first unbroken fiber (fiber 3 or layer 6) as a function of the fiber volume
fraction calculated three ways. The two cases analyzed are when the matrix layer neighboring the first
unbroken fiber is either broken or intact. The fiber and matrix properties are given in the caption of Fig. 9
(for Ef/Em = 16.667.

depend on Vf and on the state of the last matrix layer. The optimal shear-lag analysis can calculate these
effects. It agreed very well with FEA results when the neighboring matrix layer was broken and reasonably
well when that matrix layer was intact. The interlayer, shear-lag method is best described as a limiting
analysis that is only correct in the limit as EfVf/EmVm → ∞. In other words, all results converge to the
interlayer result in the limit as Vf → 1. An interlayer analysis is thus not capable of doing calculations
about the effect of EfVf/EmVm. Because the matrix carries no load, interlayer analysis is also incapable of
analyzing the effect of cracks in matrix layers. This limitation to high-contrast composites is a property of
interlayer, shear-lag analysis; it is not an inherent property of shear-lag methods. When shear-lag analysis
is done more accurately using an optimal, shear-lag analysis, it can be used for any EfVf/EmVm ratio and
it can investigate matrix cracking effects.

4. Conclusions

By starting from elasticity theory for planar stress analysis problems, it was possible to derive shear-lag
equations for analysis of stress-transfer problems in multilayered composite materials. The first shear-lag
equations were derived with only three assumptions:

1. The fundamental shear-lag assumption in eq. (3) that defines a “shear-lag” analysis.

2. An assumed form for the shear stresses in each layer (see eq. (20)).

3. An assumption that simplifies Hooke’s law for each layer (see eq. (30)).

We termed this analysis the Optimal, Shear-Lag Analysis because it used the fewest assumptions possible
for derivation of shear-lag equations. The sample calculations in the Examples section show that optimal,
shear-lag analysis can accurately calculate axial stresses, shear stresses, and total energy in many composite
stress analysis problems. The key equation to solve is given in eq. (45). The solution can be derived by
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an eigen-analysis. Improved accuracy can sometimes be obtained by adjusting of the shear-stress shape
functions for each particular problem.

Very few shear-lag analyses of composites use the optimal, shear-lag analysis derived here. Most previous
shear-lag methods use sub-optimal methods that require additional assumptions not required in the optimal,
shear-lag analysis. For example, by additionally assuming that all stiff layers are interspersed with compliant
interlayers and that the axial displacements are linear in each layer, it was possible to derive shear-lag
equations that are commonly used for stress analysis of composites. We termed these two approaches
Interlayer, Shear-Lag Analysis and Parametric, Interlayer, Shear-Lag Analysis. The first interlayer method
means problems where the interlayers correspond to actual physical layers; the second means problems where
the interlayers correspond to fictitious layers with effective shear properties. These interlayer methods are
always less accurate than optimal, shear-lag analysis. These sub-optimal methods have sometimes given
shear-lag analysis a reputation for being fairly crude. In many problems, the methods in this paper can be
used to easily replace sub-optimal methods by optimal methods and thereby to convert crude models into
more accurate models. Sometimes this change can be done with no additional mathematical complexity;
sometimes optimal methods require more involved calculations.

There is a common misconception that shear-lag methods can only be used for composite structures in
which the modulus ratios between the layers is very high. That belief is true for interlayer methods. This
modulus ratio effect, however, is not inherent to shear-lag methods. None of the above three assumptions
used for the optimal, shear-lag analysis require any assumption about the moduli of the layers. The results in
the Examples section show that optimal, shear-lag analysis works well for layers with any relative moduli.
An interlayer, shear-lag analysis might be an acceptable method for a polymer adhesive with metal adherends
or for polymer-matrix composite problems with stiff fibers. It should never be used, however, for problems
with phases having closer moduli, such as for ceramic- or metal-matrix composites. For such problems, an
optimal, shear-lag analysis might offer an useful replacement.
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5. Appendix

Because of the simple form of τ 0, the ith element of τ∞ = [B]−1τ 0 can be written as

(τ∞)i =
B−1i,1

E
(1)
y t1

τ0 +
B−1i,n−1

E
(n)
y tn

τn (109)

The elements of the inverse of the [B] matrix can be written as

B−1i,j =
cofj,i([B])

det[B]
(110)

where cofj,i([B]) if the (j, i) cofactor of matrix [B] and det[B] is the determinant of matrix [B]. Because of
the tridiagonal form of [B], it can be proved by induction that

det[B] =
tE0

y
n∏
i=1

E(i)
y ti

(111)

This result can be then be used to show that

cof1,i([B]) =

n∑
j=i+1

E(j)
y tj

n∏
j=2

E(j)
y tj

and cofn−1,i([B]) =

i∑
j=1

E(j)
y tj

n−1∏
j=1

E(j)
y tj

(112)

Substitution of these results into eq. (109) leads to the result in eq. (38).
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