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ABSTRACT
This paper derives analytical predictions for notched cross-laminated timber (CLT) plate
delamination using fracture mechanics for crack propagation from the notch root. The
analysis accounts for both CLT heterogeneity and residual stresses caused by seasonal vari-
ations in temperature and humidity. The accuracy of predictions coupled with shear cor-
rections, was confirmed by comparison to finite element analysis. The fracture mechanics
approach was validated as appropriate by comparison to recent experiments on notched
CLT beams. Residual stress effects are significant and depend strongly on notch depth. En-
vironmental changes that promote swelling, such as increases in temperature or moisture
content, are more detrimental to plate integrity than are changes that promote shrinkage.
Relatively modest levels of swelling stress can potentially cause spontaneous delamina-
tion. A new design guide for notched CLT plates that includes effects of heterogeneity and
residual stresses is proposed.
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1. Introduction

Cross-laminated timber (CLT) is a relatively new composite mass-timber product com-
prised of cross-laminated layers of dimensioned lumber glued on the faces between lay-
ers. Despite some similarities in manufacturing processes, CLT is very distinct from glue-
laminated timber beams (Glulam) or laminated veneer lumber (LVL). Compared to Glu-
lam and LVL, where grain direction is the same in all layers, CLT has a heterogeneous
structure consisting of alternating layers with 0◦ and 90◦ grain directions. The hetero-
geneity of CLT has two consequences. First, it causes new failure modes where type of
failure depends on whether it occurs within a 0◦ or 90◦ layer. Second, whenever CLT ex-
periences changes in moisture or temperature, differential moisture or thermal expansion
properties between layers will cause internal residual stresses. Because many wood prod-
uct failures are caused by changes in environmental conditions, all failure analyses for
CLT must account for residual stresses that develop during lifetime of a structure.

This paper examines one problem — the design of notched CLT plates. The methods
that have been successfully used for Glulam or LVL cannot automatically be extended to
CLT problems. For example, failure depends on whether the notch is within a 0◦ layer of
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a 90◦ layer and that issue does not occur in Glulam or LVL (Serrano 2018, Serrano et al.
2019). One analysis option for notched CLT plates is to use numerical methods, such as
finite element analysis (FEA) (Serrano 2018, Serrano et al. 2019). Although FEA could
work, it would not provide practical design equations. A better option for design guides is
to derive analytical results using beam theory. Williams (1988), Schapery and Davidson
(1990), and Hutchinson and Suo (1992) derived general methods for calculating energy
release rates for crack propagation in layered specimens. Schapery and Davidson (1990)
and Hutchinson and Suo (1992) considered heterogeneous beams. Williams (1988) con-
sidered only homogeneous beams, but it is trivial to extend it to include heterogeneity.
This author extended these prior beam methods to include both heterogeneity and resid-
ual thermal stress (Nairn 1997, 2006).

The analysis here extends the beam methods of Nairn (2006) to include moisture-
induced residual stresses common in wood products. These new methods were then used
to derive analytical expressions for energy release rate for crack growth in CLT plates as a
function of notch depth accounting for both heterogeneity and residual stresses. The ac-
curacy of beam theory results was confirmed by comparison to FEA calculations. The FEA
calculations revealed that beam theory calculations for mechanical loads need corrections
for shear deformation. A prior shear correction developed by Gustafsson (1988) for homo-
geneous beams was found to be reasonably accurate for heterogeneous CLT plates. FEA
calculations also showed that beam theory results for residual stress effects are accurate
without any corrections.

Once energy release rate is known, Gustafsson (1988) proposes that delamination of a
notched, homogeneous beam can be predicted by equating that energy release rate for a
crack length equal to notch width to an effective beam toughness. This paper’s beam the-
ory analysis allows that approach to now include both heterogeneity and residual stresses.
The fracture mechanics failure criterion was confirmed to be appropriate for CLT plates
by comparison to recent experiments (Serrano et al. 2019, Friberg 2017). It was then
used to propose a conservative design guide for calculating the maximum load to avoid
delamination in any notched CLT plate. The design guide requires input of both effective
CLT toughness and the anticipated level of residual stresses to be seen by a plate during
its lifetime.

The derived analytical expressions were enabled by assuming identical 0◦ and 90◦ lay-
ers, by assuming all layers are subjected to uniform changes in temperature and moisture
content, and by assuming delamination is determined by total energy release rate for
crack growth. The final section considers refinements that can relax these assumptions.
The options considered include modeling of mixed-mode fracture, assessing the role of
gradients in temperature and moisture content, considering layers with different mechan-
ical and toughness properties, and accounting for non-glued edges and end grain patterns
in the 90◦ layers.

2. Notched CLT Energy Release Rate

Figure 1 shows an x-y cross section of a CLT plate having a notch of width b and depth
h2 with a crack of length a (see Table 1 for a list of nomenclature). Failure of a notched
plate is modeled by a crack starting at the notch root and propagating into the plate.
Figure 1 shows such a crack between two layers, but the analysis considers notches of
any depths and the crack at any locations within a layer. Observed crack length in a failed
plate would be from the notch root, but for analysis purposes, “crack length” is measured
from the bearing load P location and therefore includes both notch width (b) and crack
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Table 1. Nomenclature for various terms used throughout this paper in approximate alphabetical order. CTE and CME
refer to coefficients of thermal and moisture expansion. ERR refers to energy release rate.

Term Definition Term Definition
a Crack length αL, αt CTE of 0◦ & 90◦ layers
α(i)ε , β (i)ε Arm CTE & CME α(i)κ , β (i)κ Arm curvature CTE & CME
B Plate depth (z direction) b Notch width
βL, βt CME of 0◦ & 90◦ layers ∆c Moisture change
C (i)κ , C (i)ε , D(i) Layer i beam properties ε Axial strain
∆εres Differential residual strain EL, Et Modulus of 0◦ & 90◦ layers
G Energy release rates g ERR components
Gc Toughness GI c, GI I c Mode I and II toughnesses
Grel Dimensionless ERR GRS Rolling shear modulus
h1, h2 Arm thicknesses h3 = h Plate thickness
I0 0◦ layer moment of inertia I Plate moment of inertia
κ Curvature λ Ratio t90/t0
Mi Moment Ni, li Axial force at li
n, n− 1 Number of 0◦ & 90◦ layers P Bearing load
Pc Contact force Pf ail Failure load
Prel Dimensionless failure load R Ratio Et/EL

Σres Residual stress energy term σ(i)res
2

Weighted residual strain
t0, t90 Thickness of 0◦ & 90◦ layers ∆T Temperature change
ω Fraction layer removed ξ Fraction plate remaining
χ Shear correction term (·)con When arms in contact
(·)(m) Mechanical stress term (·)(r) Residual stress term
(·)sep When arms separated (·)(x) Cross term

propagation into the plate (a − b). The layers indicate a symmetric (2n− 1) layer plate
made by alternating n 0◦ layers of thickness t0 with (n − 1) 90◦ layers of thickness t90.
A small region of width δL around the crack tip is divided into three arms — arm 1 of
thickness h1 is above the crack, arm 2 of thickness h2 is below the crack, and arm 3 is full
plate to the right of the crack with thickness h= h3 = h1+h2. The plate’s dimension in the
z direction is B. Bearing load P is applied to the left edge as a consequence of structural
forces. This modeling and prior experiments (Serrano et al. 2019, Friberg 2017) are for
CLT beams with B ∼ h, but the analysis applies to plates of any B subjected to the loading
P along the z axis. For a general analysis, the load P along with other external loads are
resolved into moments (M (0)

1 , M (0)
2 , and M (0)

3 ) on the arms and point axial forces (N1, N2,
and N3 not shown in Fig. 1) at locations `1, `2, and `3. By force and moment equilibrium,
the arm and full-beam resultants are:

M1 = M (0)
1 + N1

�

h1

2
− `1

�

M2 = M (0)
2 + N2

�

h2

2
− `2

�

N3 = N1 + N2 M3 = M (0)
1 +M (0)

2 − N1(h2 − `3 + `1) + N2(`3 − `2)

Each arm is modeled in beam theory as having curvature, κ, and axial strain, ε0, given
by

κ= C (i)κ M + D(i)N +κ(i)res and ε0 = D(i)M + C (i)ε N + ε(i)res (1)
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Figure 1. A section of CLT plate with a notch of width b and a crack of length a. The plate is divided into three multilayered
arms with total thicknesses h1, h2, and h= h3. Arms 1 and 2 are above and below the crack; arm 3 is the intact portion of
the plate. In the crack-tip region, the arms have applied moments, M (0)1 , M (0)2 , and M (0)3 , and normal forces. N1, N2, and
N3. The normal forces are applied at positions `1, `2, and `3, above the bottoms of the arms.

where C (i)κ and C (i)ε are curvature and mid-plane axial strain compliances, D(i) is a strain–
curvature coupling compliance, and κ(i)res and ε(i)res are curvatures and axial strains caused
by thermal and moisture expansion:

κ(i)res = α
(i)
κ ∆T + β (i)κ ∆c and ε(i)res = α

(i)
ε ∆T + β (i)ε ∆c

Here α(i)κ and α(i)ε are curvature and linear thermal expansion coefficients while β (i)κ and
β (i)ε are curvature and linear moisture expansion coefficients. ∆T and ∆c are constant
temperature and moisture content differentials leading to residual stresses (a method
for dealing with gradients in ∆T and ∆c is discussed below). The moments in Fig. 1
are positive with positive κ defined as upward curvature. The coupling term, D(i), and
the curvature expansion coefficients, α(i)κ and β (i)κ , are non-zero only for non-symmetric,
heterogeneous arms.

The exact energy release rate for a notched CLT plate with residual stresses subjected
only to traction loads, T 0, is given by (Nairn 2006, 1997):

G =
1
B

d
da

�

1
2

∫

S

T 0 · um dS +

∫

S

T 0 · ur dS +
1
2

∫

V

σr · (α∆T +β∆c) dV

�

where um and ur are displacements due to mechanical and residual stresses and σr are
the residual stresses. Each integral can be evaluated over the dotted region of width δL in
Fig. 1. Differentiation of that result gives energy release rate. The process is explained in
Nairn (2006). The only changes here were to include moisture-induced residual stresses,
which is trivially accomplished by replacing α(i)κ ∆T and α(i)ε ∆T in Nairn (2006) with κ(i)res
and ε(i)res, and to restrict attention to symmetric CLT plates (such that D(3) = κ(3)res = 0). The
general energy release rate for crack growth becomes

G =
1

2B

�

(C (1)κ M1 + κ(1)res)
2

C (1)κ
+
(C (2)κ M2 + κ(2)res)

2

C (2)κ
− C (3)κ M2

3 + C (1)ε N2
1 + C (2)ε N2

2

− C (3)ε N2
3 + 2D(1)M1N1 + 2D(2)M2N2 + 2ε(1)resN1 + 2ε(2)resN2 − 2ε(3)resN3

− Bh1E(1)c σ
(1)
res

2 − Bh2E(2)c σ
(2)
res

2
+ Bh3E(3)c σ

(3)
res

2
�

Here E(i)c is effective axial modulus of arm i andσ(i)res
2

is variance of the modulus-weighted
residual strain in the arm (Nairn 2006). Note that this analysis is simple beam theory that
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Figure 2. When residual stresses cause arms 1 and 2 to curve towards each other and load P is insufficient to separate
them, a contact force Pc is induced at position b. This contact force leads to an opened crack plane up to crack tip at position
a. The arm displacements were exaggerated for clarity.

ignores shear forces and deflections caused by those forces; a shear correction is given
below.

3. Results and Discussion

3.1. CLT Plate Results

For loading by mechanical forces that result only in applied moments, the plate in Fig. 1
has N1 = N2 = N3 = 0. In the presence of residual stresses, the total energy release rate
becomes:

G(tot) =
1

2B

�

(C (1)κ M1 + κ(1)res)
2

C (1)κ
+
(C (2)κ M2 + κ(2)res)

2

C (2)κ
− C (3)κ (M1 +M2)

2

�

+Σres

where

Σres =
1
2

�

h3E(3)c σ
(3)
res

2 − h1E(1)c σ
(1)
res

2 − h2E(2)c σ
(2)
res

2�

The indicated moments are M1 = Pa and M2 = 0, but a complication when dealing
with residual stresses is that if the two arms curve towards each other (which happens
whenever κ(2)res − κ

(1)
res > 0), and applied load is too low to separate them, the arms will

be in contact at the notch root (distance b from the load). This situation is illustrated in
Fig. 2 and was analyzed in Nairn (2006) by adding contact force Pc such that moment
Mc = Pc(a − b) is added to arms 1 and 2. In other words, contact changes the moments
to M1 = Pa+Mc and M2 = −Mc where Mc to prevent interpenetration was derived to be:

Mc =
3(κ(2)res −κ

(1)
res)− (2a+ b)C (1)κ P

2(C (1)κ + C (2)κ )
(2)

For positive P, contact occurs at any load with Mc > 0 or for

P <
3(κ(2)res −κ

(1)
res)

(2a+ b)C (1)κ
(3)

For loads above this P, the arms are separated and Mc = 0.
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For separated arms, total energy release rate reduces to

G(tot)
sep = g(m)sep P2(a+χh)2 + g(x)sep P(a+χh) + g(r)sep (4)

where g(m)sep , g(x)sep , and g(r)sep are energy release rate components due to mechanical loads,
to an interaction between mechanical loads and residual stress, and to residual stresses,
respectively. They are defined by:

g(m)sep =
C (1)κ − C (3)κ

2B
, g(x)sep =

κ(1)res

B
and g(r)sep =

1
2B

 

κ(1)res
2

C (1)κ
+
κ(2)res

2

C (2)κ

!

+Σres

Note that a was replaced by (a + χh) to anticipate beam theory corrections described
below. When the arms are in contact and b = a, total energy release rate decreases to:

G(tot)
con = G(tot)

sep −
3
�

C (1)κ P(a+χh)− (κ(2)res − κ
(1)
res)
�2

8B(C (1)κ + C (2)κ )
(5)

Note that when a → b (which is used in design to predict initiation of failure from the
notch root), the contact-force induced moment suggests that Mc = Pc(a − b) = 0. The
contact analysis in Nairn (2006), however, shows that Pc → ∞ as a → b while their
product Mc = Pc(a− b) is finite and nonzero (see Eq. (2) with b = a).

All terms above are easily found by composite beam analysis (see the appendix). The
physical properties needed for each layer are thickness, t j, modulus, E j, thermal expansion
coefficient, α j, and moisture expansion coefficient, β j, all along the plate’s x axis. In terms
of properties for layer j and k in arm i, the variance term needed for residual stress effects
simplifies to:

hi E
(i)
c σ

(i)
res

2
=

∑

j,k; j<k E j Ek t j tk(α j∆T + β j∆c −αk∆T − βk∆c)2
∑

j E j t j
(6)

This equation is derived in Nairn (2006), but modified here to add moisture strains.
Although any combination of layers could be analyzed, one goal here was to derive

analytical results. To achieve that goal, the analysis was restricted to CLT plates comprised
of identical 0◦ layers alternating with identical 90◦ layers. The 0◦ layer properties are
denoted as t0, EL, αL, and βL indicating properties in the longitudinal direction of wood.
The 90◦ layer properties are denoted as t90, Et , αt , and βt , indicating properties in the
transverse direction of wood. Whether these properties are tangential, T , radial, R, or
someplace between tangential and radial properties depends on end-grain patterns of the
timber in the 90◦ layers.

The remaining tasks were to find C (3)κ , C (1)κ , C (2)κ , κ(1)res, κ
(2)
res, and Σres for all possible

notch depths. First, C (3)κ is independent of notch depth and for a plate with n 0◦ layers
can be simplified to:

C (3)κ =
1/(EL I0)

(1+λ)2
�

(1+ Rλ)n3 − 3Rλn2
�

+λ
�

3(1+λ)Rλ− (2+λ)(1− R)
�

n− Rλ3
(7)

where I0 = Bt3
0/12, R = Et/EL, and λ = t90/t0. For a plate with equal-thickness layers,
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this result simplifies to

C (3)κ (λ= 1) =
1

EL I0

�

4(1+ R)n3 − 12Rn2 − 3(1− 3R)n− R
�

For a solid wood beam (or for Glulam or LVL with all 0◦layers), this result simplifies to the
homogenous beam result of C (3)κ (R= 1) = 12/(BELh3

3). The expression for C (3)κ in Eq. (7),
like all results quoted below, was derived by substituting alternating CLT layer properties
into beam equations (see the appendix) and simplifying in Mathematica (Wolfram Re-
search 2017). The process was tedious but straight forward. Only final forms, which were
simplified as much as possible, are quoted here.

All remaining quantities can be found by evaluating two cases — a notch that ends
within a 0◦ layer or a notch that ends within a 90◦ layer. For each case, let ω be the
fraction of that layer removed by the notch where 0≤ω≤ 1. Each case needs to evaluate
σ(i)res

2
for each arm for input to Σres. Imagine a square matrix with a row for each layer

in an arm (counting the layer of fraction ω as one layer) and the summand of Eq. (6) in
row j and column k of that matrix. For identical layers, this matrix is populated by either
zeros (when layers j and k are in the same direction) or by a constant term (when layers
j and k are in different directions). Evaluation of σ(i)res

2
is thus reduced to counting the

number of non-zero elements in the upper half of the matrix and scaling fractional layer
terms by ω to account for their reduced thickness The results can be enumerated to:

hi E
(i)
c σ

(i)
res

2
= EL t0Rλ(∆εres)

2







ni(ni +ω)
ni(1+ Rλ) +ω [0/90/0.../0(ω)]

ni(ni − 1+ω)
ni(1+ Rλ)− (1−ω)Rλ [0/90/0.../90(ω)]

(8)

where ∆εres = αt∆T +βt∆c−αL∆T −βL∆c and ni is number of 0◦ layers (not counting
a fractional 0◦ layer). Note that∆εres is the differential free-expansion strain between the
0◦ and 90◦ layers; it is not strain seen in the CLT panel. The second form with ni = n and
ω= 0 (or first with ni = n− 1 and ω= 1) corresponds to the full plate term:

h3E(3)c σ
(3)
res

2
= EL t0Rλ(∆εres)

2 n(n− 1)
n(1+ Rλ)− Rλ

The remaining notch-specific terms are listed next.
Notch top within a 0◦ layer: For this location, explicit expressions for C (2)κ and the resid-

ual curvature term κ(2)res for arm 2 reduce to:

C (2)κ =
1

EL I0W (2)
and κ(2)res = −6Rλn2

(1−ω)
�

n2(1+λ) +ω
�

n2(1+ Rλ) +ω
∆εres

t0W (2)
(9)

where

W (2) = (1+λ)2
�

(1+ Rλ)n2 + 3ω
�

n2
2 +

�

3ω2 +
�

3Rω2 − 2(1− 3ω)(1− R)
�

λ+ 2(1− R)λ2
�

n2

+ω3 −
3(1− R)2n2

2λ
2(1−ω)2

n2(1+ Rλ) +ω

and n2 is the number of complete 0◦ layers in arm 2. Note that a notch top within the first
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0◦ layer has n2 = 0 and this result correctly simplifies to C (2)κ (n2 = 0) = 1/(ELω
3 I0). C (1)κ

and κ(1)res are found by replacing ω with 1 −ω, setting n2 = n1 (which is the number of
complete 0◦ layers in arm 1 and n1 + n2 = n− 1 for this case), and changing the sign for
κ(1)res. Finally, Σres combines to:

Σres =

�

(n− 1)ω− n2

�2
EL t0R2λ2(∆εres)2

�

(n− n2)(1+ Rλ)− Rλ−ω
��

n2(1+ Rλ) +ω
��

n(1+ Rλ)− Rλ
� (10)

Notch top within a 90◦ layer: For this location, explicit expressions for C (1)κ and the
residual curvature term κ(1)res for arm 1 reduce to:

C (1)κ =
1

EL I0W (1)
and κ(1)res = 6Rλn1

(1−ω)
�

n1(1+λ)−λω
�

n1(1+ Rλ)−ωRλ
∆εres

t0W (1)
(11)

where

W (1) = (1+λ)2
�

(1+ Rλ)n1 − 3Rλω
�

n2
1 +λ

�

3ω2Rλ2 +
�

3ω2 + 2(1− R)(1− 3ω)
�

λ− 2(1− R)
�

n1

−Rλ3ω3 −
3(1− R)2n2

1λ
2(1−ω)2

n1(1+ Rλ)−ωRλ

C (2)κ and κ(2)res are found by replacing ω with 1−ω, setting n1 = n2 (note that n1 + n2 = n
for this case), and changing the sign for κ(2)res. Finally, Σres combines to

Σres =

�

n(1−ω)− n2

�2
EL t0R2λ2(∆εres)2

�

(n− n2)(1+ Rλ)−ωRλ
��

n2(1+ Rλ)− (1−ω)Rλ
��

n(1+ Rλ)− Rλ
� (12)

3.2. Mechanical Loading Alone

In the absence of residual stresses, any positive P results in separated arms and energy
release rate is always given by G(m) = g(m)sep P2(a+χh)2. A fracture mechanics prediction of

failure follows by equating G(m) to an effective CLT toughness Gc and solving for P. Guided
by the forms of C (1)κ and C (3)κ for all crack locations, the failure prediction for mechanical
stress alone can be written as:

P(m)fail =
P(m)rel

p

2BEL I0Gc

a
where

1

P(m)rel

=
�

1+
χh
a

�
r

EL I0

�

C (1)κ − C (3)κ
�

(13)

is a dimensionless, relative failure load. From P(m)rel for a (2n − 1)-layer CLT plate with
a given number of broken layers (n2), notch depth location (ω), λ, R, and beam-theory
correction (χh/a), failure load can be predicted for any values of a, B, EL, I0, and Gc. The
prediction is applied to a notched plate by setting initial crack length a equal to the notch
width b.

Equation (13) combined with Eqs. (7) and (11) provides analytical expressions for
notched plate failure for any notch depth. Figure 3A plots P(m)rel as a function in notch
depth for plates from 3 to 9 layers using λ = 1, R = 500/12000 = 0.0417, and χ = 0.
The notch depth is plotted as number of removed layers ranging from half the first 0◦
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Figure 3. A. Dimensionless failure load, Prel , for mechanical loads only as a function of number of layers removed in CLT
plates with 3, 5, 7, and 9 equal-thickness layers. B. An alternate dimensionless failure load, Prel,2, for mechanical loads only
as a function of plate fraction removed for CLT plates with constant total thickness but variable thickness layers. The thick
line is for a CLT plate with an infinite number layers or for a homogeneous plate with axial modulus of all layers equal to
rule-of-mixture modulus Ec .

layer up to all removed except half the last 0◦ layer. The failure load has a stair-step shape
with corners when the notch top is at a 0◦/90◦ interface. This shape is a consequence of
plate heterogeneity. The failure load drops rapidly when notch ends within a 0◦ layer and
then plateaus at nearly constant load when notch ends within a 90◦ layer. For notches
within a 0◦ layer, cracks are expected to proceed along the plate’s x axis as directed by
wood grain direction in 0◦ layers. For notches within 90◦ layers, however, cracks are free
to run in any direction through the transverse cross-section of wood. Because P(m)rel for a
crack growing at the top of a 90◦ layer is slightly lower than for a crack at the bottom
(i.e., G(m) increases as a crack moves from bottom to top of a 90◦ layer), the prediction
is that a notch cut anywhere within a 90◦ layer will fail by a crack that diverts to the top
of that layer and then follows the grain direction at the bottom of the next 0◦ layer. This
prediction agrees with experimental observations (Serrano et al. 2019, Friberg 2017).

Figure 3A shows that P(m)rel increases as the number of layers increases. This effect is
simply because for a given notch depth, a CLT plate with more layers has more material
remaining to carry load. An alternate comparison is to plot failure load for CLT plates of
constant total thickness h = h3 as a function of the number of layers; plates with more
layers have thinner layers of thickness t0 = h/(n(1 + λ) − λ). To compare plates with
different t0, a better dimensionless form is:

P(m)fail =
P(m)rel,2

p

2BEL IGc

a
where

1

P(m)rel,2

=
�

1+
χh
a

�
r

EL I
�

C (1)κ − C (3)κ
�

(14)

where I = Bh3/12 replaces I0. Figure 3B plots P(m)rel,2 as a function of plate fraction re-
moved by the notch. The stair-step shape remains, but step widths decrease as the num-
ber of layers increases. The smooth line plots P(m)rel,2 as n → ∞, which is equivalent to
a homogeneous plate with axial modulus given by average of 0◦ and 90◦ layer moduli
or Ec = E(3)c (n → ∞) = EL(1 + Rλ)/(1 + λ). Using Eq. (14) with C (3)κ = 1/(Ec I) and
C (1)κ = 1/(Ec Iξ3), where ξ= h1/h is plate fraction remaining above the notch, the dimen-
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sionless failure load for a homogeneous plate is:

1

P(m)rel,2,n→∞

=
�

1+
χh
a

�

√

√ 1+λ
1+ Rλ

�

1
ξ3
− 1

�

(15)

Deviations between P(m)rel,2 in CLT plates vs. homogeneous plates quantifies errors caused
by design methods that ignore heterogeneity. A design based on homogeneous plates
would over predict strength whenever the notch is at or near the bottom of a 90◦ layer
and under predict it when the notch is at or near the bottom of 0◦ layer. The magnitude
of the errors, especially when using many layers, might suggest that designs based on
homogeneous plates with suitable safety factors would be acceptable. But that approach
is unacceptable whenever a plate experiences residual stresses caused by changes in tem-
perature or moisture content. Residual stress effects are considered below.

3.3. Verification of Beam Theory Calculations

To verify that analytical beam theory is accurate for finding energy release rate, the pre-
dictions were compared to finite element analysis (FEA) of a 5-layer CLT plate. The layer
thicknesses were t0 = t90 = 40 mm (λ = 1) for total plate thickness of 200 mm. The
FEA modeled a symmetric three point bending specimen of length 3200 mm or aspect
ratio of 16 with notch width b = 320 mm and crack length a = 640 mm. The orthotropic
wood properties (Serrano 2018) used in FEA calculations are listed in Table 2. Half the
specimen (by symmetry) was meshed using 10× 10 mm, 8-node, quadratic elements in
2D, plane stress analyses resulting in 4 elements across each layer. The energy release rate
was found using crack closure (Nairn 2011). Because exact solutions for pure bending re-
sult in quadratic variations in arm displacements, quadratic elements converge extremely
well in bending problems while linear elements converge much slower (Nairn 2011). The
10 × 10 mm elements were confirmed to be converged results by observing that dou-
bling resolution did not change energy release rate results. Although it is common to
refine meshes around crack tips in the hopes of improved accuracy, that approach is coun-
terproductive in bending problems. Mesh refinement always uses elements that distort
spatial coordinates through isoparametric transformations. Those distortions cause those
elements to represent quadratic variations in displacement less accurately than would a
mesh of larger, equally-sized rectangular elements. All calculations were done with the
public domain NairnFEA software (Nairn 2019).

Figure 4 compares beam theory results (solid lines) to FEA calculations (symbols) using
two different boundary conditions. The FEA calculations were done for cracks at each
0◦/90◦ interface and at each layer’s mid-plane. First, the plate was loaded with a point
load as illustrated in Fig. 1. The FEA results (square symbols) predicted lower load than
uncorrected beam theory (χ = 0) with maximum difference of 29.8%. This difference is
caused by beam theory ignoring effects of shear deformation when χ = 0. Furthermore, in
materials with high E/G ratio (EL/GL = 20 in 0◦ layers and Et/GRS = 8.33 in 90◦ layers),
shear effects can be significant. To verify that differences were caused by shear effects,
FEA calculations were repeated by end loading the plate with a pure moment, which was
done by applying an axial stress that varied from +σ = 6Pa/(Bh2

1) to −σ on the left edge
or arm 1 such that moment resultant was M = Pa. All beam theory (χ = 0) results were
within 0.3% of the “Moment Load” FEA results (circles).

In brief, the beam analysis methods are accurate, but they do no account for shear
deflections. Two options to account for shear are 1) extend heterogenous beam analy-
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Table 2. FEA Properties for 0◦ and 90◦layersa. The 90◦

layers assumed tangential wood direction in the x direc-
tion. All layers assumed radial wood direction in the y
direction.

Property Value Property Value

E(0)x x = EL 12000 MPa E(90)
x x = Et 500 MPa

E(0)y y 600 MPa E(90)
y y 600 MPa

G(0)x y = GL 600 MPa G(90)
x y = GRS 60 MPa

ν(0)x y 0.427 ν(90)
x y 0.35

β (0)x = βL 0.0 β (90)
x = βt 0.26 c−1

β (0)y 0.13 c−1 β (90)
y 0.13 c−1

aThermal expansion coefficients were not used in FEA
calculations.
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Figure 4. The solid lines are beam theory calculations for Prel due to mechanical loads only. The χ = 0 line is uncorrected
beam theory; the “using χ” curves are corrected using the Gustafsson (1988) method. The shaded region corresponds to
correction for shear modulus between the lower bound (bottom line) and upper bound (top line) values. The symbols are
FEA calculations for energy release rate. The circles are when applying a moment to the end of arm 1; the squares for for
a point load applied at the bottom or arm 1.

11



sis to account for shear; 2) use prior methods to correct beam theory for homogeneous,
anisotropic beams. The second option was used here and two prior results are available.
Both, Hashemi et al. (1990) and Gustafsson (1988), claimed that simple beam theory for
homogeneous beams can be corrected for shear deflections (and some other deflections)
by defining an effective crack length aef f = a+χh, where χ is defined by

χ =







r

Ex
11Gx y

�

3− 2
�

Γ
1+Γ

�2�

and Γ =
1.18
p

Ex Ey

Gx y
Hashimi et al.

r

Exξ2

10Gx y (1+ξ+ξ2) Gustafsson

Here Ex , Ey , and Gx y are homogenized properties of the full CLT plate. While Ex = E(3)c
and Ey = Et should be accurate for the modeled CLT plates, calculation of Gx y is more
difficult. Rather than attempt analytical or numerical modeling for Gx y , one can use com-
posite bounding methods where trivial bounds on Gx y (found by subjecting layers to either
constant shear stress or constant shear strain (Hashin 1969)) are:

n+ (n− 1)λ
n

GL
+ (n−1)λ

GRS

≤ Gx y ≤
nGL + (n− 1)λGRS

n+ (n− 1)λ

Here GL is wood longitudinal shear modulus in the 0◦ layers and GRS is wood rolling shear
modulus in the 90◦ layers.

The shaded area in Fig. 4 shows the range in corrected beam theory results calculated
using the Gustafsson (1988) χ with either upper bound Gx y (top curve) or lower bound
Gx y (lower curve). This homogeneous correction applied to beam theory provides a sat-
isfactory result for failure load in heterogeneous CLT plates. The specific model used for
Gx y has relatively small effect, but the lower bound Gx y correction is closer to FEA than
the upper bound Gx y .

The Hashemi et al. (1990) correction did not work as well. The Gustafsson (1988)
method is preferred because the correction depends on notch depth through ξ while the
Hashemi et al. (1990) correction is independent of notch depth. A comparison of simple
beam theory to FEA results verifies that the correction should depend on notch depth. That
comparison also shows that a homogeneous correction is an approximation that misses
some heterogeneity effects. In brief, the homogeneous χ is too high for cracks at the top of
0◦ layers and too low for cracks at the top of 90◦ layers. This effect shows up more for short
a (or larger h/a), but overall the correction works reasonably well for any crack length.
While a homogeneous correction is used here and judged satisfactory, the beam theory
analysis could potentially be improved by deriving heterogeneous correction terms.

Finally, note that substituting the Gustafsson (1988) χ into Eq. (15) with R = 1 (i.e.,
for Glulam), the homogeneous beam result can be written as:

P(m)fail,2,n→∞

Bh1
=

q

Gc
h

r

0.6
Gx y
ξ(1− ξ) + a

h

r

6
Ec

�

1
ξ − ξ2

�

which is identical to Gustafsson (1988) and the basis for Eurocode 5 (1995). In other
words, this analysis is identical to prior methods for homogeneous beams but now extends
those methods to account for heterogeneity and subsequent sections extend it to account
for residual stresses.
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Figure 5. Fit of failure predictions to experimental results in Serrano et al. (2019) and Friberg (2017). The best fits used
Gc = 350 J/m2. The solid line is fit using Eq. (13); the dashed line is a refined fit that assumes a notch in the 90◦ layer fails
as if the entire 90◦ layer was removed.

3.4. Validation of Fracture Mechanics Methods

The previous section verified that corrected beam theory accurately calculates energy re-
lease rate, but a question remains — can notched plate delamination be predicted by en-
ergy release rate for crack growth at the notch corner? Answering this question requires
model validation by comparison to experiments. Here the predictions were compared to
recent experiments in Serrano et al. (2019) and Friberg (2017). The experiments were
on five-layer CLT beams with t0 = 40 mm and λ = 0.5. The layer properties from Ser-
rano (2018) are in Table 2. By varying Gc, experimental results were fit to predictions by
Eq. (13) using χ determined with a lower bound Gx y . The fitting process assumed that
plates were tested soon after fabrication such that ∆T =∆c = 0 or that the mechanical-
loading-only analysis is acceptable. The best-fit results in Fig. 5 show that a fracture me-
chanics failure model fits experiments well.

The best-fit toughness of Gc = 350 J/m2 falls within the range of mode I (Schniewind
and Pozniak 1971, Wilson et al. 2013) and mode II (Conrad et al. 2003, Stanzl-Tschegg
et al. 1996, Yoshihara 2004) toughness values for typical wood species and is therefore a
reasonable value for the mixed-mode crack growth expected by point load within a notch.
This analysis assumed failure occurs at a critical, total energy release rate and therefore
ignored any effects of varying mode mixity caused by changes in notch depth. Possible
consequences of ignoring mode mixity are discussed below.

The predictions show a slight increase for failure load between a crack at the bottom
or top of a 90◦ layer that is not seen in experiments. The experiments did show, however,
that cracks at the bottom of a 90◦ layer failed by propagating quickly to the top of that
layer (Serrano et al. 2019, Friberg 2017). From this observation, beam theory predictions
could be refined by assuming that failure load for a crack at any location within a 90◦

layer equals the failure load for a notch that removes that entire layer. The dotted line in
Fig. 5 illustrates this approach and improved the fit to experimental results. The uptick in
predictions might also be a consequence of using a shear correction for a homogeneous
beam; deriving a heterogeneous correction might improve predictions.

13



3.5. Residual Stresses Alone

Whenever one (or both) of the arms created by splitting a layered plate along a crack is
a non-symmetric plate, residual stresses can cause that arm (or both arms) to curve as
the crack propagates. This curvature contributes to energy release rate (Nairn 2006) that
would predict spontaneous delamination without any applied load if it reaches toughness
of the CLT plate. Because CLT is typically made with an odd number of alternating layers,
every possible split location results in at least one non-symmetric arm. In contrast, because
Glulam is made from identical layers, every split location results in two symmetric arms
(i.e., two thinner Glulam beams). Although design of notched Glulam beams can ignore
internal stresses, design of notched CLT plates must always account for them. Note that
Glulam beams may develop residual stresses due to differential shrinkage between radial
and tangential directions within and between timber layers, but those internal stresses do
not cause arm curvature and therefore have little or no effect on notch delamination.

Guided by the forms of κ(i)res
2
/C (i)κ and Σres for each crack location, the energy release

rate due to residual stresses alone is written as:

G(r) = EL t0(∆εres)
2G(r)rel

where

G(r)rel =















g(r)sep

EL t0(∆εres)2
if κ(2)res −κ

(1)
res ≤ 0

1
EL t0(∆εres)2

�

g(r)sep −
3(κ(2)res − κ

(1)
res)

2

8B(C (1)κ + C (2)κ )

�

if κ(2)res −κ
(1)
res > 0

is a dimensionless energy release rate. The two arms will separate under swelling con-
ditions (∆εres > 0) or be in contact under shrinking conditions (∆εres < 0). Note that
G(r)rel ≥ 0 for both separated and contact arms, but it is always larger when arms separate.
Thus heating or an increase in moisture content are more likely to promote delamination
than is cooling or a decrease in moisture content.

Equating G(r) to effective CLT toughness, the differential strain to cause spontaneous
delamination of a notched CLT plate is

|∆εres|=

√

√

√

Gc

EL t0G(r)rel

(16)

Figure 6 plots |∆εres| as a function of notch depth for plates with three or seven 40 mm
layers for properties in Table 2 and Gc = 350 J/m2. The solid lines are analytical results for
separated arms. The dashed lines are analytical results for arms in contact. The notches
most prone to spontaneous delamination are the minima values that occur at layer in-
terfaces. The notches least prone to delamination are the maxima near the mid-planes
of layers. A crack at a layer mid-plane divides that layer between the two arms thereby
reducing κ(2)res − κ

(1)
res and G(r)rel . Note that notches at the mid-plane of 0◦ layers have more

delamination resistance than notches at the mid-plane of 90◦ layers. The notch locations
most prone for internal-stress-induced failure are depths two layers from either surface
(at 40 or 80 mm for three-layer CLT and at 80 or 200 mm in seven-layer CLT). Those
locations result in one arm being a bilayer strip that maximizes κ(i)res among all possible
sub-plates derived from the full CLT plate.
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Figure 6. The residual strain, |∆εres|, to cause spontaneous failure as a function of notch depth for CLT plates with
Gc = 350 J/m2: A. Three-layer plate. B. Seven-layer plate. The solid lines are for ∆εres > 0 such that the arms separate.
The dashed lines are for ∆εres < 0 such that the arms are in contact. The symbols are FEA calculations for separated arms
(circles) or arms in contact (squares).

Energy release rates due to residual stresses were verified by FEA calculations using the
above-mentioned methods but loading was replaced by uniform residual strain applied
to each layer. The FEA results for interfaces and layer mid-planes are the open symbols
in Fig. 6 (circles for separated arms and squares for arms in contact). The FEA results
agreed well with beam theory without any corrections. The reason no shear corrections
were needed was because G(r)rel is independent of crack length. The FEA analysis for arms
in contact required special handling. To avoid the need for contact elements (which is
a non-linear effect not available in the linear elastic FEA software that was used), FEA
calculations with ∆εres < 0 set the nodes at the contact point to zero displacement in
the y direction while the nodes on the plate’s right edge had zero deflection only in the
x direction to define the plate’s symmetry direction. This approach worked well for all
locations except for the mid-plane of the central layer of the three-layer CLT and the mid-
planes of the three central layers in the seven-layer CLT. For these locations, parts of the
arms near the contact point had interpenetration despite matching displacements at the
contact point. These four locations were reevaluated by replacing the zero-displacement
condition with contact force Pc as illustrated in Fig. 2. Pc was increased until the arms sep-
arated and then decreased by trial an error to the point of contact. With this modification,
analytical and FEA results agreed well for the central 90◦ layer. An observable difference
between analytical and FEA results remained for cracks in the middle of layers three and
five of the seven-layer CLT, which are 0◦ layers. These differences were likely caused by
treatment of arm contact.

Figure 6 shows that internal stresses should play a significant role in designing notched
CLT plates. Plates exposed to residual strains as low as 1% may fail without any ap-
plied load. Typical wood species shrink in volume about 12% from green to dry, which
is comprised of about 4% in the radial direction, 8% in the tangential direction, and
0% in the longitudinal direction (Forest Products Laboratory 2010). Thus a fraction of
shrinkage seen in wood is enough to cause spontaneous failure. This calculation assumed
Gc = 350 J/m2. If a plate has a lower grade of timber near the notch root, if the notch root
is near an adhesive bond with lower toughness than the wood, or if the plate has applied
load, the residual strain to cause failure could be much lower. Notched CLT plate design
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Figure 7. Residual stresses effects on notch delamination in the CLT plate on the left can be reduced by changing the
lamination structure. A. Arm curvature effects are eliminated if the two arms on either side of the dashed failure plane are
symmetric subplates. B. Thinner layers reduce residual stresses effects for any notch depth.

should always anticipate the maximum value of ∆εres that will be experienced over the
plate’s lifetime.

Two options to reduce residual stress effects on notch failure are illustrated in Fig. 7.
First, the CLT plate can be customized such that the two arms on either side of the crack
plane are symmetric CLT plates (the center layer could be two adjacent 0◦ layers or one
extra-thick layer). Because symmetric arms have κ(i)res = 0, the energy release rate due to
internal stresses is reduced to only the Σres term. Second, the CLT plate could be made us-
ing thinner layers. Thinner layers reduce κ(i)res and Σres, which reduces energy release rate
due to residual stresses. As seen by Eq. (16), the residual strain required for spontaneous
delamination is inversely related to square root of layer thickness. The use of thinner lay-
ers is the preferred option. This option works for any depth notch while symmetric arms
work for only one specific depth. Furthermore, thinner layers can reduce other effects of
internal stresses such as layer cracking and delaminations at the tips of those cracks or at
non-glued timber edges (Nairn 2018). Symmetric arms only reduce residual stress effects
on notch failure.

3.6. The Simplest Design Guide - Combined Mechanical and Residual Stress Loading

Imagine that an installed, notched, CLT plate is anticipated to experience ±∆εres over
its’ lifetime. A conservative design guide for maximum load, Pl imit , should assume failure
when Gc equals the maximum energy release rate over that range of ∆εres values. That
maximum is for swelling (use |∆εres|) and separated arms (use G(tot)

sep in Eq. (4)). The
design limit load is then found by solving for P:

Pl imit =







1
a+χh

�√

√

�

g(x)sep

2g(m)sep

�2

+
Gc−g(r)sep

g(m)sep
−
|g(x)sep |

2g(m)sep

�

g(r)sep < Gc

0 g(r)sep ≥ Gc

(17)

The zero value corresponds to a plate that would fail due to residual stresses alone (where
the first equation would give a negative or imaginary result). Ignoring residual stresses,
the limit load would match Eq. (13). Designing a structure to withstand both applied
load and environmental stresses, however, should include g(x)sep and g(r)sep evaluated at the
maximum anticipated value for |∆εres|.

Example Pl imit calculations for a 200 mm thick CLT plate with timber properties in Table
2, notch width a = b = 50 mm, thickness B = 100 mm, and Gc = 350 J/m2 are given in
Fig. 8. The solid lines plot Pl imit for∆εres from 0% (ignoring residual stresses) to 3% for a
conventional CLT plate having five 40 mm layers. Accounting for residual stresses, causes
design limit loads for notches less that half way through the plate to drop from 10% to
66%, 27% to 100% (i.e., spontaneous failure), and 46% to 100% for ∆εres from 1% to
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Figure 8. Limit load calculations using Eq. (17) for CLT plates for∆εres = 0%, 1%, 2%, and 3% and with Gc = 0.35 J/m2.
The solid lines are for five-layer CLT with 40 mm layers. The dashed lines are for 21-layer CLT with 9.52 mm layers (top to
bottom is for increasing ∆εres). The thick line is for a homogeneous plate.

3%, respectively. The minimal drops are for notches about half way through the plate;
the maximal drops are for notches that remove the first two layers or all but that last two
layers. Considering overall transverse shrinkage of wood from 4% to 8% from green to
dry (Forest Products Laboratory 2010), a long-lived structure might see∆εres = 1%, could
see ∆εres = 2%, but probably will not see ∆εres = 3%. Some value for ∆εres in this range
should be used in design calculations.

A recommendation above to reduce residual stress effects on notch failure was to use
thinner layers. The dashed lines repeat the calculations for a 21-layer CLT plate with
9.52 mm thick layers. This change signficantly reduces residual stress effects for notches
in the range of 20 to 180 mm. The maximum decrease in failure load for notch depths
from 20 to 100 mm due to residual stresses is reduced from 66%, 100%, and 100% with
40 mm layers to 13%, 26%, and 40% with 9.52 mm layers for ∆εres from 1% to 3%,
respectively. Note that shallow notches less then 20 mm deep through thin layers are
prone to residual-stress-induced failures for ∆εres = 3%. Finally, the thick, smooth curve
is for a homogeneous plate and such a plate is not influenced by ∆εres. Deviations from
this curve characterize the consequences of ignoring heterogeneity and residual stresses
in design calculations

All limit load calculations are conditions for initiation of delamination at the notch
root. Because energy release rate due to mechanical loads and residual stresses increases
or remains constant as the crack grows, once a crack starts it could rapidly delaminate all
layers below the notch root. If the remaining CLT plate in arm 1 is sufficient to carry all
loads, the delaminated layers may fall off, but the remaining plate would survive.

3.7. Refinements

The above calculations followed the Gustafsson (1988) approach that assumes failure
when total energy release rate for crack propagation equals an effective CLT toughness,
Gc. But the end loading in Fig. 1 induces mixed-mode loading where total G = GI + GI I
and GI and GI I are energy release rates due to tensile loading (mode I) and shear loading
(mode II), respectively. A refinement that could improve the predictions would be to use a
mixed-mode failure criterion f (GI , GI I , GI c, GI I c) = 1 where GI c and GI I c are toughnesses
for pure mode I or mode II loading. With such a criterion, failure occurs when f reaches
1, but implementing this refinement raises two issues.
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First, analyzing mixed-mode failure requires calculation of mode mixity defined here
as fraction of energy release that is mode I or φ = GI/G. Some early work on homoge-
neous beams suggested a method for partitioning G into GI and GI I (Williams 1988), but
that partitioning was at odds with numerical calculations for partitioning (Hutchinson
and Suo 1992). Although a revised beam theory might eventually improve partitioning
(Williams 2018), the only current method to partition with confidence is to use numer-
ical methods. As mentioned above, FEA with quadratic elements converges very rapidly
for energy release rate in beam fracture problems. But that convergence is only for total
energy release rate. This author has observed that convergence for mode partitioning is
much slower and may require very small elements. If the goal is a refined analysis based
on numerical methods, those FEA calculations must use high resolution. If the goal is
an analytical expression for design (e.g., Eq. (17)), such analysis may not be able to ac-
count for mixed-mode loading. The total G approach, however, is still useful provided Gc
is chosen appropriately.

The second issue is that even ifφ(ξ) could be calculated (i.e., mode mixity as a function
of notch depth), one has to assume a failure criterion f (GI , GI I , GI c, GI I c). Many such
criteria have been proposed, notably in the related problem of composite delamination
(Reeder 1992). Unfortunately, there are insufficient mixed-mode CLT failure data to justify
selection among these criteria. If that situation changes, mixed-mode loading effects could
be included. For illustration, assume a simple linear criterion where failure occurs when

GI

GI c
+

GI I

GI I c
=
�

φ(ξ)
GI c

+
1−φ(ξ)

GI I c

�

G = 1

or failure occurs when total G reaches a critical value of

G = Gc =
GI c

ψ+φ(ξ)(1−ψ)

where ψ = GI c/GI I c is ratio of mode I to mode II toughness. Substituting this Gc into
Eq. (17) would give a limit load calculation that accounts for mixed-mode loading. For
example, the FEA calculations in Fig. 4 were partitioned into modes resulting in failure
prediction when G = (1.65 ± 0.55)GI c for all notch depths assuming ψ = 1/3. In these
calculations, φ(ξ) varied from 0.18 to 0.89 with extreme values at top of the first 0◦

layer and bottom of the last 0◦ layer; besides these locations φ(ξ) was between 0.42
and 0.72 predicting failure when G = (1.43 ± 0.20)GI c. The FEA calculations were low
resolution and therefore may have inaccurately partitioned G, but they likely provide an
estimate of variations in G at failure due to mode-mixity effects. Using the lower end (e.g.,
Gc = 1.1GI c) would give conservative limit load calculations.

The above calculations assumed all 0◦ layers and all 90◦ layers were identical and that
the CLT plate was at some equilibrium temperature and moisture content such that ∆T
and ∆c were the same in all layers. The assumption of identical layers was needed to
derive analytical results for mechanical properties such as Eqs. (7), (9), and (11). The
assumption of constant ∆T and ∆c was needed to derive analytical results for residual
stress properties such as Eqs. (8), (9), and (11). But real CLT may have layers with differ-
ing properties (e.g., using different grades of timber in different layers), may have tem-
perature and moisture contents that vary with position in the plate, may have properties
that depend on variable temperature and moisture content, and may have residual stress
effects altered by mechanosorptive behavior of wood (Hunt 1994). Although accounting
for these effects severely complicates analytical predictions, most can trivially be included
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in a spreadsheet or in simple laminated beam software. In brief, the CLT plate is described
by 2n−1 arbitrary layers where layer j has properties E j, α j, β j, ∆T j, ∆c j, and t j. These
properties are substituted into the laminated beam analysis in the appendix to find C (i)κ ,

κ(i)res, and σ(i)res
2
. Finally, these beam results are used in general energy release rate equa-

tions to predict failure. To additionally handle temperature or moisture gradients within
a single layer, each layer can be subdivided into enough layers such that ∆T j and ∆c j in
those sublayers provide a piecewise-linear approximation to the gradients.

The following example uses a general beam analysis approach to assess the role gra-
dients in ∆T and ∆c. Imagine a CLT plate at equilibrium c0 = 12% moisture content
whose surface is subjected to wet conditions (e.g., standing water if exposed to rain during
construction) or dry conditions (e.g., seasonal reductions in humidity). Because diffusion
through wood is slow, surface moisture content will change faster than core moisture con-
tnet. An exact 1D solution for moisture content through the thickness can be derived as
a Fourier series, but here a simple expression was used to qualitatively describe moisture
gradients in a plate of thickness h with y = 0 at the center of the plate:

∆c(y) = (csurf − c0)
cosh

�

y
η

�

cosh
�

h
2η

�

Here csurf is surface concentration boundary condition and η is a parameter that charac-
terizes extent of moisture transport through wood. In diffusion theory, ηwould be directly
related to D× t ime where is D is transverse moisture diffusion constant for the wood. To
compare moisture gradients to uniform moisture content at the same total moisture con-
tent, the average moisture content as function of η is:

〈∆c(η)〉=
1
h

∫ h/2

−h/2

∆c(y) d y = (csurf − c0)
2η
h

tanh
h

2η

Figure 9A shows sample gradients in∆c for η= 20, 50, and 100 for csurf = 24% moisture
content along with their average values.

Figure 9B shows calculations of Pfail for a five-layer CLT plate using properties in Table
2 with t0 = 40 mm, λ = 1, and Gc = 350 J/m2 for η = 20, 50, and 100. The solid lines
give predictions by analytical modeling for constant 〈∆c(η)〉, which were 2.4%, 5.78%,
and 9.14% for the three values of η. With the input βt − βL = 0.26, these conditions
correspond to ∆εres = 0.62%, 1.50%, and 2.38%, respectively. The dashed lines show
the change in failure due to gradients in moisture content. These calculations were done
by dividing each layer into 19 sublayers with identical properties except changing the
moisture expansion coefficient in the 90◦ layers to

β j =
βt∆c(y j)

〈∆c(η)〉

where y j is midpoint of sublayer j. With this change, composite beam analysis using
β j〈∆c(η)〉 will equal βt∆c(y j) and provide the appropriate level of moisture effect in
layer j. The top half of Fig. 9B is for csurf = 24% such that ∆εres > 0 and the arms always
separate while the bottom half is for csurf = 0 such that some notches are in contact (and
when needed, the Pfail calculations switched to using the contact energy release rate in
Eq. (5)). For most notches, failure load in the presence of gradients is higher than for
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Figure 9. A. Illustrative moisture content gradients for three values of η. The horizontal lines show average moisture
contents for each eta. B. Failure loads predicted by equating Eq. (4) or Eq. (5) to Gc = 350 J/m2 for three values of η. The
solid lines are for constant ∆c; the dashed lines are for moisture content gradients. The thick line is for a homogeneous
beam. The top is for ∆εres > 0 and separated arms. The bottom is for ∆εres < 0 that has contacting arms at some notch
depths (see Eq. (3)).

a plate with the corresponding uniform moisture content. As expected, the result with
gradients approaches the uniform result as η increases. Notice that failure load when
∆εres < 0 is always higher then when ∆εres > 0 and often higher than homogeneous
plate predictions. Nevertheless, certain notch depths are still prone to delamination even
when ∆εres < 0 (e.g., at 80 mm or at the second interface from the bottom). For design
purposes, failure loads calculated with a constant ∆c and ∆εres > 0, which is the basis
for Eq. (17), would provide conservative failure predictions.

Other position-dependent layer properties may affect failure. Perhaps most important
would be position-dependent toughness. For design calculations, Gc should be set to the
local toughness at the notch root and consider effects of temperature and moisture content
on that toughness. If that root is at in an interface between two layers, Gc should be
set to min(Gc,wood , Gc,adhesive) or failure is determined by the weaker material near that
notch root. Note that while a poor adhesive (or a region near the notch with incomplete
adhesive coverage) could result in premature failure, even a perfect adhesive with infinite
toughness would not prevent failure by a crack path that diverts into a wood layer near
the interface.

This analysis treated the 90◦ layers as homogeneous layers with properties given by
transverse properties of wood. A common CLT manufacturing method glues the faces
between layers, but not the edges between timber within a layer. These non-glued edges
may affect failure at a notch, especially if a non-bonded edge is near the notch root.
One crude approach to modeling non-glued edge effects would be to replace properties
of 90◦ layers with effective properties that account for those edges. Some equations for
evaluating Et , GRS, αt , and βt for 90◦ layers as function of distance between non-glued
edges in those layers is given in Nairn (2017). Note that this calculation should anticipate
the formation of additional cracks that tend to form over time in installed CLT (Nairn
2018).

Finally, properties and failure within the 90◦ layers depend on the end-grain patterns of
the timber in those layers. For flat-sawn or radially-sawn timber, the layer properties for
beam analysis would be tangential (T) or radial (R) properties of the wood, respectively.
For most wood species, ER > ET , αR < αT . and βR < βT . These relations suggest radially-

20



sawn timber would be preferred, but that conclusion would depend on fracture toughness
for crack growth in the x direction. Wood fracture literature designates these crack paths
as TR fracture for radially-sawn timber and RT fracture for flat-sawn timber (Johnson
1973). Because it is difficult to control crack-propagation direction in the transverse plane,
few results are available for comparing TR to RT propagation toughness (Shir Mohammadi
and Nairn 2014). Furthermore, in practice, timber end-grain will be neither flat sawn nor
radially sawn, but instead will have curved end grains including some end grains near or
through a tree’s pith. A recommended approach to assessing the role of timber end-grain
effects is to measure effective CLT toughness values using tests on notched CLT plates with
various end-grain patterns.

4. Conclusions

Equations (4) and (5) together with specific results for notch roots within 0◦ layers
(Eqs. (9) and (10)) or within 90◦ layers (Eqs. (11) and (12)) provide accurate, analytical
expressions for predicting delamination failure of notched CLT plates. Equation (17) uses
swelling conditions and separated arms to provide a conservative design guide for CLT
plates. The important additions in these equations were to account for both heterogene-
ity and residual stresses. The presented calculations show that expected levels of residual
stresses caused by variations in environmental conditions play a significant role in notch
failure. Some options to reduce residual stress effects (if notches are needed) are to use
thinner layers, to avoid notch roots near layer interfaces, and to prefer notch roots near
the middle of 0◦ layers. An unacceptable option is to rely on design guides that ignore
residual stresses. That approach would be equivalent to building a timber structure in
Sweden and thinking it is acceptable to ignore snow loads.
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Appendix

The effective properties of the three sublaminates in Fig. 1 can be determined from lami-
nated beam analysis that is included here for completeness. For a laminated beam under
axial strain ε0 and curvature κ, the axial strain as a function of y is ε(y) = ε0−κy , where
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κ > 0 corresponds to curvature upward, y = 0 is the mid-plane of the sublaminate. The
axial stress in each layer, including residual stresses, is

σx x(y) = E(y)
�

ε0 −κy −α(y)∆T − β(y)∆c
�

where E(y), α(y), and β(y) are the position-dependent modulus, thermal expansion co-
efficient, and moisture expansion coefficient in the x direction. Integrating these stresses,
total axial force, N , and bending moment, M , can be written as

N =

∫

A

σx x(y) dA = −S(i)n1κ+ S(i)n2ε0 − S(i)n3

M = −
∫

A

σx x(y)y dA = S(i)m1κ− S(i)m2ε0 + S(i)m3

where for a layered structure, the integrals simplify to

S(i)n1 = S(i)m2 = B
ni
∑

j=1

E j t j ȳ j S(i)n2 = B
ni
∑

j=1

E j t j S(i)m1 = B
ni
∑

j=1

E j t j

�

ȳ j
2 +

t2
j

12

�

S(i)n3 = B
ni
∑

j=1

E j(α(y)∆T + β(y)∆c)t j S(i)m3 = B
ni
∑

j=1

E j(α(y)∆T + β(y)∆c)t j ȳ j

Here E j, α j, β j, t j, and ȳ j are the x-direction modulus, x-direction thermal expansion
coefficient, x-direction moisture expansion coefficient, thickness, and midpoint of layer j
in sublaminate i with ni total layers. Inverting these equations leads to Eq. 1 where

C (i)κ =
S(i)n2

S(i)m1S(i)n2 − S(i)n1S(i)m2

C (i)ε =
S(i)m1

S(i)m1S(i)n2 − S(i)n1S(i)m2

D(i) =
S(i)m2

S(i)m1S(i)n2 − S(i)n1S(i)m2

κ(i)res =
S(i)m2S(i)n3 − S(i)n2S(i)m3

S(i)m1S(i)n2 − S(i)n1S(i)m2

ε(i)res =
S(i)m1S(i)n3 − S(i)n1S(i)m3

S(i)m1S(i)n2 − S(i)n1S(i)m2

These results are general laminated beam analysis and can be used with any mixture of
layer properties. The analytical results quoted in the text of this paper are special cases of
these equations for alternating 0◦ and 90◦ layers common in CLT plates.
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