Copyright(©) 2003 Tech Science Press CMES, vol.4, no.6, pp.649-663, 2003

Material Point Method Calculations with Explicit Cracks

J. A. NAIRN?

Abstract: A new algorithm is described which extendshanics problems including those with large deforma-
the material point method (MPM) to allow explicit cracksons or rotations and involving materials with history de-
within the model material. Conventional MPM enforcgsendent properties such as plasticity or viscoelasticity ef-
velocity and displacement continuity through its backects [Sulsky, Chen, and Schreyer (1994), Sulsky, Zhou,
ground grid. This approach is incompatible with craclehd Schreyer (1995), Sulsky and Schreyer (1996), Zhou
which are displacement and velocity discontinuities. §$998)]. MPM is amendable to parallel computation
allowing multiple velocity fields at special nodes nedParker (2002)], implicit integration methods [Guilkey
cracks, the new method (called CRAMP) can modahd Weiss (2002)], and alternative interpolation schemes
cracks. The results provide an “exact” MPM analysis ftilnat improve accuracy [Bardenhagen and Kober (2003)].

cracks. Comparison to finite element analysis and to fthough MPM uses a background grid and is frequently
periments show it gets good results for crack problenggmpared to finite element methods, a new derivation
The intersection of crack surfaces is prevented by impl- mpm [Bardenhagen and Kober (2003)] presents it
menting a crack contact scheme. Crack contact canjaea petrov-Galerkin method that has similarities with
modeled using stick or sliding with friction. All resultsneshless methods such as Element-Free Galerkin (EFG)
are two dimensional, but the methods can be extendeg{&thods [Belytschko, Lu, and Gu (1994)] and Meshless-
three dimensional problems. Local Petrov-Galerkin (MLPG) methods [Atluri and
. i Shen (2002a), Atluri and Shen (2002b), Atluri and Zhu
keyword: Material point method, cracks, fracture, nu(lggg)], The “meshless” aspect of MPM, despite the use
merical methods, contact of a grid, derives from the fact that the body and the solu-
tion are described on the particles while the grid is used
1 Introduction solely for calculations. The body can translate through
the grid. Furthermore the grid can be discarded each time

The material point method (MPM) has recently been dg ) a0 redrawn which makes MPM suitable to adaptive

veloped as a numerical method for solving problems jgosh methods. It is essential for any extension to MPM,
dynamic solid mechanics [Sulsky, Chen, and Schreygf., 55 presented here, to preserve the separation be-
(1994), Sulsky, Zhou, and Schreyer (1995), Sulsky a_f\]/geen the grid and the particles. MPM, EFG, and MLPG
Schreyer (1996), Zhou (1998)]. In MPM, a solid body gitter in their methods used to derive shape functions and
discretized into a collection of points much like a oMy qir selection of test functions during numerical im-

puter image is represented by pixels. As the dynamjgentation [Bardenhagen and Kober (2003), Atluri and
analysis proceeds, the solution is tracked on the mades, (2002a)].

rial points by updating all required properties such as poo- tenial licati FMPM i toolind .
sition, velocity, acceleration, stress stat¢;. At each ne potential application o 'S as atoolin dynamic

time step, the particle information is extrapolated tof&acture modeling. It was recently shown that MPM can
background grid which serves as a calculational tool%curately calculate fractu.re parameters such as energy
solve the equations of motions. Once the equations garlgase rate [Tan and Naim (2002)], but those results

solved, the grid-based solution is used to update all paWEre fora crack at a symmetry plane and thus the crack

cle properties. This combination of Lagrangian and Eﬁgmd be described by symmetry conditions alone. Con-

lerian methods has proven useful for solving solid m\égntional MPM is not capable of handling explicit, inter-
nal cracks. The problem is that conventional MPM meth-

1 Material Science and Engineering, University of Utah, Salt LaiRdS €xtrapolate particle information to a single velocity
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field on the background grid. A property of the baclcalculations for existing, internal cracks. The subject of
ground grid, which is analogous to finite element analgvaluating fracture parameters at crack tips and predict-
sis grids, is that all displacements in the single velocityg crack propagation will be in future work. The crack
field are continuous. Because representation of cradescription used, however, is very flexible. It is a triv-
requires displacement discontinuities, MPM can not rept matter to extend the crack during a dynamic analysis
resent cracks. once the harder problem of deciding when and where to

This paper describes a modified material point method @fend the crack has been solved. Finally, the CRAMP
beled as CRAMP for "CRAcks” with "Material Points.”@lgorithm is efficient. Comparison between conventional

The following list gives the essential differences betwedf’M and CRAMP show the crack calculations to be
CRAMP and conventional MPM: only about 10% slower. The most time consuming part

of the CRAMP algorithm is determining which particles
1. Cracks are described in 2D as a series of line s@gerpolate to which velocity field at each node.
ments. The end-points of the line segments can be

additional mass-less particles to make it easy to agd MPM With Explicit Cracks — CRAMP

crack descriptions to standard MPM data structures. _ . . .
This section describes the CRAMP algorithm for includ-

2. Each node in the background grid is allowed to haygy explicit cracks in MPM calculations. The features of
multiple velocity fields. If the node is far from anythe algorithm are given here; the full algorithm is pro-
crack, the node will have a single velocity field agided in the Appendix. The first task is to describe the
in conventional MPM. For nodes near a crack, hownternal cracks. One simple way to introduce displace-
ever, each node will have separate velocity fields fatent discontinuities into MPM would be to introduce
information interpolated from particles on oppositeracks in the background grid. Although this approach
sides of a crack. can handle certain problems, it severely limits the flexi-

3. Most calculations in the MPM algorithm needed t%”ity of MPM.’ The background grid is supposed to Serve

. - as a calculational tool and not as a device to carry infor-
be adjusted to account for the possibility that a par-__. . )
ticular node might have multiple velocity fields. mation apqut the .SOIUUOD or about the solid. It would

also be difficult or impossible to translate the crack along

4. When nodes have separate velocity fields and digth the body during large deformation calculations. In
placement continuities, it is possible for the tw&€RAMP, the crack is instead described as a series of line
sides of the crack to cross over each other. To peegments. For compatibility with MPM data structures,
vent non-physical crossing, all calculations at nod#¥ endpoints of the line segments are massless material
with multiple velocity fields must implement conjoints. By translating the crack segments along with the
tact methods. The algorithm in this paper can modsglution, it is possible to track cracks in moving bodies.
crack contact by stick or by sliding with friction. A problem can contain any number of cracks.

5. A modified scheme for updating stresses and stramg  Multiple Velocity Fields

was added which appears to improve energy calcu- o
lations. An important application of crack calcuIaThe |_anuence of cracks_ on_the MPM solution |s_ that
y influence the velocity fields at some nodes in the

tions is to do fracture predictions. Because fractujfee

work requires accurate energy calculations, it whackground grid. In conventional MPM, the first step in

important to optimize the MPM energy resullts. Thihe algorithm is to extrapolate the particle momenta and

last correction can be applied to conventional MPR#asses to the background grid. The equations are [Sul-

as well as to CRAMP. sky, Zhou, and Schreyer (1995)]:
. . . Np Np
All results in this paper are for 2D calculations. In most K_ S m.k Dk — § m 1
cases, the extension to 3D is simple and obvious. The one P p; PTPTLP m Zl ps<p @

exception is the crack description. In 3D, the crack needs
to be described by connected surfaces instead of line segerepl is nodal momentumyf is particle velocitymy
ments. The algorithm presented here does stress analggigarticle masﬁfp is the shape function for nodeval-
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uated at the current position of particke andmP¥ is  momenta become

the nodal mass in the lumped (or diagonal) mass matrix.

The superscripk indicates these terms apply to tki@ pE;=pf+AtH j=0,1, 2(asneeded (5)
MPM step. In this approach, each nodal point has a sin- i . i . )
gle momentum and displacement discontinuities are M\g{ereAt IS Fhe time step. When “Pda“”g part|c|_e pOSI-
allowed. To allow displacement discontinuities, CRAMPP"S: velocme_s, s'tresses, and' strains, the equa}tlons only
allows each node to have three types of velocity field&'S® the velocity field appropriate to each particle/node

one for particles on the same side of all cracks as R For example, updating of position becomes

node (0), one for particles above a crack relative to the n pk g
node (1), and one for particles below a crack relative to xkrl — x"‘)+At Zi"’gl’(')p
= M)

, . ) . p
the node (2). The first step in crack calculations is thus to
ove are some examples of the modified equations; all

examine each particle-node combination (with non-zero
the required modifications are detailed in the Appendix.

(6)

shape function) and determine the appropriate veloc'|At9

field denoted by
If the body is translating, all cracks need to translate

v(p,i)=0,10r2 (2) along with it. This task is accomplished by calculating

. S _ _ . the center of mass velocity of each node with multiple
This determination is done by a line-crossing algor'th%locity fields:

First, a line is drawn from particle to nodei. If the

line does not cross any crack, the velocity field is O; if it ) 21321 pK i
crosses a crack from above, the velocity field is 1; if it Viem= 3 Dk
crosses a crack from below, the velocity field is 2. The 23-1 M0

field determination is the mos_t f[ime consunjir_lg part Wherecbu is 1 or 0 depending on whether or not veloc-
CRAMP and must be done efficiently; an efficient algqy field j is present at node Once all nodal velocities
rithm is given in the Appendix. Once the velocity field'gre reduced to a single field, the mass-less particles that

Z

(7)

become for updating particle position.
Np
k
phj — Zlmpvpsk,paj,v(p,i) 2.2 Crack Surface Contact
pr{) =012 (3) Severaltimes during each MPM step, the nodal momenta
n}'?Jk = Z mpSfpéj v(p.) and velocities are updated. These updates may occur as a
p=1 consequence of boundary conditions or when implement-

Each node may have one to three velocity fields denot@@l the equations of motion. Whenever the nodal mo-
by index j on p!‘j and ijk_ Each velocity field inter- menta change, it is essential to verify that the change cor-
polates only from particies contributing to that field 4§SPonds to a physically allowed change which is defined
determined by the Kronecker delta functidp, p). Al- here as meaning that opposite sides of cracks do not cross

though three velocity fields are defined, no node sho@¥e" €ach other. To prevent non-physical changes, the

ever have more that two velocity fields — one each {GRAMP algorithm includes contact methods. The meth-
particles on the two sides of a crack. ods are based on the contact methods develop by Barden-

hagen [Bardenhagen, Brackbill, and Sulsky (2000), Bar-

The possible existence of multiple velocity fields carrie . : . .
) . h , lkey, R , Brackbill, Witzel, Fos-
through the remainder of the algorithm. Each conve?’lse-}n agen, Guilkey, Roessig, Brackbi itzel, and Fos

) ) . . ter (2001)], but there are two key differences. First, the

tional MPM calculation must consider all velocity fields. . )

For example, the total nodal forces (with dampin )aremethOds in Bardenhagen, Brackbill, and Sulsky (2000)
Pie, ping and Bardenhagen, Guilkey, Roessig, Brackbill, Witzel,

flot— £t f&_ypk. j=0, 1, 2 (as needed (4) and Foster (2001) were for contact between dissimilar

. _ ) ) ) materials; here contact is within the same material but on

where f'!' and f are internal and external forces at &wo sides of a crack. Second, their methods used to iden-

node andk is a damping coefficient. The updated nodéfy contact did not work well for internal cracks; they
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would either identify contact too soon or identify it unthe angle between the relative velocities and the crack
reliably. This section describes the contact methodssimrface normal, the cracks are assumed to be separated if
CRAMP. they are moving apart as defined by

The identification of crack surface contact is based K k.4

. . (VI a— Vi b) n< 0 (12)
mostly on nodal volume at crack node£( nodes with ’ ’
multiple velocity fields). The total nodal volume (whichvheref is the crack surface normal. If the crack surfaces
is a nodal area in 2D calculations) is calculated duri@ge moving towards each other, the cracks are assumed

each MPM step using to be in contact and the momenta are adjusted. The crack
. surface normal can be calculated earlier in the algorithm
K_ ok during the line-crossing algorithm. Whenever a line from
V=3 Vs, ®) :
= ’ a particle to a node crosses a crack, the normal to that

crack segment is saved for that node. The normal at a
whereV is the volume of particlep or an area in 2D given node is the average of all such normal vectors. The

calculations defined by normal is defined as directed from above the crack to be-
low the crack.
k_ k k y Mp
Vo = (1+&p0)(1+Epyy) Polo ©) Once contact is identified (el > Veontact OF by crack

) ) surfaces moving towards each other), the momenta are
wherepp andt, are the density and thickness of the 2By; ,ste by two alternate methods. The simplest contact
particle. Whenever momenta change, the nodal volumes, o is contact bygtick conditions. Thestick method
at all nodes with multiple velocity fields are normallzegimply reverts to conventional MPM where the momenta
by the undeformed volume. For regular grids the uQp,ye and below the crack are set equal to each other
deformed volume is the volume of each element in thg o4 1o the center-of-mass momenta. The required

background grid; for irregular grids, the undeformed volz ) 1enta changes to implemestick conditions are
ume includes a portion of each element containing that kK DKk
M aPip — MipPia

node. The relative volume is defined as
K Dk
mil?a + mi,b

These changes conserve total momentum.

Apf, = Apl, = —0pf,  (13)

Viel = V_urlldef (10)

A frictional sliding contact method follows the approach
of Bardenhagen, Guilkey, Roessig, Brackbill, Witzel,

nrquoster (2001). In physical terms, this method adjusts
the velocity above the crack to be

Two critical relative volumes are preselected/as, (less
than 1) andVcontact (greater than 1). Ve < Vsep
the crack surfaces are assumed to be separated an
changes in momenta are needed.Vilf > Vcontacs the
cracks surfaces are assumed to be in contact and mo- K V!fa—AVn(ﬁ+u’f) (14)

ia=—
menta are adjusted as explained below. The redi

Viel < Veontactis @ gray area and a second method is us\é(geref is a unit normal tangential to the crack surface in
to decide whether or not contact is present. the direction of sliding ang’ is aneffectivecoefficient of

. friction defined b
Several second methods are possible, but the calculations y

here used relative velocity of the two crack surfaces [Bar- W = min ( p Av (15)
denhagen, Brackbill, and Sulsky (2000), Bardenhagen, " Ay,
Guilkey, Roessig, Brackbill, Witzel, and Foster (2001)i-'lerep is the actual coefficient of friction, anfiv, and

Once.z_a crack node withep< Vel < Veontactis found, the Av; are the components of the relative crack face veloci-
velocities above and below the crack are calculated fr%r& normal and tangential to the crack:

“Tupr T gk
a b ’ L
Wheny! reduces td\v; /Avy, the surfaces are sticking due
wherea andb indicate the velocity fields correspondingpo friction or the velocities are adjusted to equal the cen-
to particles above and below the crack. By examinimgr of mass velocities. Whau reduces tqu, the contact

k k . R
V= Dk P 11)  An=(VG—vly) A A =(va—Vv)t (16)
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is by friction. In the limit of frictionless slidingl{= 0), were examined and slightly revised from previous meth-
i is always zero, the crack surface velocities normads in the literature [Sulsky, Chen, and Schreyer (1994),
to the surfaces are adjusted to be equal and the tandarisky, Zhou, and Schreyer (1995), Sulsky and Schreyer
tial velocities remain unchanged. All CRAMP algorithni1996), Zhou (1998), Bardenhagen (2002)].

steps are in terms of nodal momenta instead of velocitigsg. explained in the appendix, updating the stresses and

The above velocity equations in terms of momenta C@frains on the particles involves calculating the strain in-
respond to adjusting the momenta above and below ghgment for the current step and then using a constitu-

crack by tive law to determine the stress increment. The strain
DKk Kk increment is a function of the current strain rate which

Apk, = m’aplia’ﬁ — ”’ﬁzfla(pha Al (A—pi) is calculated from the current nodal velocities (see Sub-

’ Ma+Mp task 2 for updating stresses and strains in the Appendix).

Ap}fb = —Ap}fa There are several alternatives for which nodal velocities

A (17) to use for the updating process. In an early MPM paper
wheret is now a unit vector tangential to the crack su[Sulsky, Chen, and Schreyer (1994)], the nodal velocities
face that is in the same direction as the crack line segere calculateafter updating the nodal momenta. This

ments and! is a signed quantity given by approach, referred to as the “Update Stress Last” or USL,
Av has serious numerical difficulties which are revealed by
—uif R —u considering a node which interacts with only a single par-
_ %\\’,? ticle. Following through the algorithm in the Appendix,
W= +p if Ay, > TR (18) the nodal velocity used for strain rates would at such a
Avg "o node would be
—  otherwise
Av,
: : . =k =k k
0,-Gi _ f
Finally, the normal and tangential velocity components v :VE+At _Pp ' Vip erer7p (20)
can be calculated from 3<p mp
kK koK
Av, — ml?api,b_k aPib f

A 19 For simplicity, this analysis only considers a single ve-
nﬂ;p}fb - ‘gpik’b (19) locity field and ignores damping. Only a single velocity

ng ' field is considered, because only one is possible when

’ there is only a single particle. As a consequence, all dis-

One difference between this frictional contact methadission in this section applies to both conventional MPM
and the one in Bardenhagen, Guilkey, Roessig, Brackkilhd to CRAMP. The first term in the brackets causes a
Witzel, and Foster (2001) is that the same normal is uggdblem. When the one particle is on the opposite side of
for both crack surfaces (it is defined from the crack liribe element from the node, the shape functﬁm)(will
segments) and thus momentum is exactly conservedapproach zero, but its gradier@(,) will not. The first
Bardenhagen, Guilkey, Roessig, Brackbill, Witzel, andrm is thus unstable. ’

Foster (2001), the two contacting materials had separgffyre are two solutions to the USL dilemma. The first so-
normal vectors and momentum was oply conserved WheRon was given by Sulsky, Zhou, and Schreyer (1995).
those normals were equal and opposite. Their approach was to adopt a momentum based algo-
2.3 Modified Method to Update Particle Stresses anrclithm similar to the approach n the Appendix. It was
Strains not the use of momentum thg’F improved the algorithm,
but rather the way nodal velocities were calculated before
One part of each MPM step involves updating the partipdating particle stresses and strains. In their approach,
cle stresses and strains. If this task is not done optimatiferred to as “Modified Update Stress Last” or MUSL,
there can be numerical difficulties and inaccuracies in éhe updated particle momenta are extrapolated to the grid
ergy calculations. Because accurate energy results aasecond time before calculating the nodal velocities (see

essential for fracture calculations, the updating metholissk 6¢ in the appendix). Tracing a node with a single

—>

Avy =
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particle, the nodal velocities used for strain rates become

Nn tOtS(p

v, :vp+AtZ

(21) :

Although some nodal masses in the denominatdt<}
may approach zero, whenever the mass is close the zetQ
there will be a correspondir@fID identically close to zero
to cancel it out. This approach greatly improves the st . _
bility of MPM. An alternate fix is to update strairise- HF
fore updating momentum [Bardenhagen (2002)]. In th}

approach, referred to as “Update Stress First” or USF,

the nodal velocities (for a single-particle node) used for
strain rates are simply Figure 1 : CRAMP analysis (top) and conventional

MPM analysis (bottom) of an end-loaded double can-
(22) tilever beam. The colors indicate magnitude of the tensile
stress in tha direction (blue compression to red tension).
which clearly have no numerical difficulties. The material had propertié&s= 0.1 MPa,v = 0.33, and
MUSL and USF are nearly identical. MUSL finds vep = 1.5 g/cn?. The full specimen was 10(B6x1 ( in
locities for momenta extrapolated at the end of an MPIMm); the crack length was 50 mm. The end loads were
step while USF finds velocities from the same momerigt mN.
by extrapolating at the beginning of the next time step.
The only mathematical difference between these two ap-
proaches is the shape functions used in the extrapolation.
MUSL usmgsk while USF useSk+1 In numerous cal- simulation was continued until the stress stabilized. The
culations, both give greatly |mproved energy calculationsmerical details are given in the figure caption. As ex-
compared to USL methods. MUSL tends to slowly disgpected, the crack opens, there are tensile bending stresses
pate energy while USF tends to slowly increase in enemgy the inner surfaces of the DCB arms and compression
[Bardenhagen (2002)]. This observation leads to an altresses on the outer surfaces.

vious compromise which combines MUSL and USF tithough the above DCB calculation was a full calcu-
updating stresses and strains both before updating ngg&bn with an explicit crack, the same problem can be
momenta and after updating (and re-extrapolating) nodglved by symmetry without the need to model explicit
momenta. In this approach, referred to as “Update Strgpgcks. The method is to analyze half the specimen and
Averaged” or USAVG, the strain increment at each Uy fix the grid points on the left half of the lower edge of
dating is divided by 2 to use the two methods equally. {Re specimen to have zeyadirection displacement (or
numerous calculations, MPM results using USAVG coBero y-direction velocity) throughout the analysis. The
serves energy nearly exactly. Sample calculations coigsylts, given in the bottom of Fig. 1, show that a sym-
paring USAVG to USL, MUSL, and USF are given in thghetry analysis gives numerically identical results to the

D

A A AAA

_ K
=Vp

next section. full analysis, thus confirming the crack algorithm cor-
rectly accounts for the presence of a crack. Of course,
3 Results and Discussion this result was a goal of CRAMP — to develop an algo-

rithm that gives the “exact” MPM result in the presence
of cracks. Here “exact” means that the MPM calcula-
The top of Fig. 1 shows the results of a CRAMP calculéens for the top half of the full specimen are exactly the
tion on a double cantilever beam specimen (DCB) wittrsame as the calculations done when considering only half
crack half way through the specimen at the mid-plartbe specimen (bottom of Fig. 1). Similarly, the calcula-
The sample was end-loaded at time zero and damgieds in the bottom half of the full specimen are exactly
to have the results converge to the static solution. Time same as calculations that would be used in analysis

3.1 Opening Crack in Double Cantilever Beam
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of a lower-half specimen. The complication in a full 0.0010—————————
specimen is that both halves need to use the mid-plane
nodes for normal MPM calculations. This simultaneous 0-0008
use of the mid-plane nodes is accomplished naturally in
the CRAMP algorithm by those nodes having two velog- 0.0006
ity fields. e I

An alternate approach to handling explicit cracks i
MPM is to modify the calculations using node-visibility
criteria. In node-visibility methods, a line is drawn from
each particle to each node. If that line crosses a crack, | = | o
than that node no longer influences the calculations for ~— © 20 40 60 80 100

that particle. Node visibility [Belytschko, Lu, and Gu Distance (mm)

(1994)] and the related diffraction criteria [Organ, Flentigure 2 : Comparison of FEA results to CRAMP re-
ing, and Belytschko (1996)] have been the most commauits. The plot is folox as a function of position along
choices for implementing cracks in EFG [Belytschko aride mid-plane of the specimen. The peak stress is at the
Tabbara (1996)] and MLPG [Ching and Batra (20019rack tip. The material properties are given in the caption
Batra and Batra (2002)] methods. Although node visi Fig. 1

bility can also implement cracks in MPM, it leads to less

accurate results than the CRAMP method. The above

definition of “exact” MPM could be rephrased as a “crack

patch” test in which the results of any crack algorithm ag-2 ~ Cracks Experiencing Contact

plied to a symmetric problem with an explicit crack ar. . .
compared to a standard analysis with no crack algoritrfrﬂe PCB a_nalys_|s was for an opening crack. The resu_lts
that includes the crack by symmetry conditions alon'g.th's section give a 5|.mulgt|on when.crack co'ntact IS
An algorithm passes the test if the results of the tv%]portant. The 5|mulat|on_|s for two disks moving to-
analysis are numerically identical. The CRAMP methoﬁfrds, each other, contacting, 'and then boqncmg apart.
passes the “crack patch” test while MPM with node vis- e disk on the left has a horizontal cra_lck in the mid-
ibility does not. Similarly, because node visibility anEL"? of the disk. The length of the crack is equal to one
diffraction criteria in EFG and MLPG modify the shap ird the dlz_;lmeter of the d'.Sk' Thg disk on _the rlght has
functions differently than when the crack is defined on e same size crack but oriented in the vertical direction.

by symmetry conditions, those methods also would n ftr? n;hekdlslishflrlstftmake conta((:jt, tne azj(!al cofr?é)ressm;
pass a “crack patch” test. of the disk on the left causes mode | loading of the crac

. and the crack opens [Shetty, Rosenfield, and Duckworth
For an additional check, the MPM results were compar 87)]. The transverse compression to the disk on the

to static finite element analysis results (FEA). The FEfynt causes the cracks faces to contact and the contact
analysis used the same grid of rectangular, 4-noded elg, ithm keeps the surfaces from crossing. After the im-
ments that was used for the MPM calculations. Figugg .+ event, the two disks begin to vibrate and the cracks

2 plots thex direction stress along the mid-plane of thg, oy ang close. The contact algorithm keeps the solution
specimen. To find the MPM stresses at the m'd'pla'%?oceeding correctly
e

the particle stresses were extrapolated to the grid b - .
P P g y ]f?ae plots in Fig. 3 show four snapshots of the solution.

same methods used to extrapolate momenta to the C K indicated by a black i d th |
The FEA and MPM results are very close. Although 4- € cracks are indicated by a black in€ and the colors

node elements are not ideal for bending problems and ?\ret.he n|1:ater|al pt:)mts ,'[Ed'?g:.e ItenS'(Ift.StreSS.;E yrlda- d
element size was large, the results show the accurac;r/e&l'on' rame shows he Initial conditions with close

MPM to be similar to that of FEA and provide furtheFraCkS and zero stress; the disks have initial velocities

evidence that CRAMP is getting the correct solution Fﬂwards each othgr. Frgntneshows a ”.‘O”‘em soon af-
the presence of cracks. ter contact. The diametrical compression has opened the

crack in the left disk and red zones show crack tip stress
concentrations in the-direction normal stress. The crack

0.0004

0002
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on the right has closed and the contact algorithm kept the
surfaces from crossing each other. In fracpe¢he disk
vibrations have caused the crack on the left to close and
the contact algorithm prevents cross over. The crack on
the right has opened slightly. By franag the crack on
the left has opened again.

The contact algorithm handles crack surface contact well,
but it was essential to implement the volume method
to determine contact rather than rely on other methods
such as relative velocity [Bardenhagen, Guilkey, Roes-
sig, Brackbill, Witzel, and Foster (2001)] or normal
traction methods [Bardenhagen, Brackbill, and Sulsky
(2000)]. When other contact methods were used, the
crack surfaces would think they were in contact long be-
fore visual evidence indicated there were actually in con-
tact. For example, the contact between the two disks is
handled by conventional MPM. In conventional MPM,
two particles will interacti(e., be in contact) whenever
they both interact with a particular node. The contact
space between the disks in frame B is a typical exam-
ple of MPM contact where the closest approach is de-
termined by the mesh density. When analyzing internal
cracks, it is important to have new contact methods that
allow closer approach before numerical contact. The vol-
umetric scheme used here worked well for allowing re-
alistic contact. The critical volumes used for these soft
disks wereVsep= 0.9 andVontact = 1.1. These critical
values can work for any materials, but stiffer materials
might be handled more efficiently and more accurately
by using critical values closer to one.

The volumetric method is robust for internal cracks, but
has deficiencies for edge cracks. When there are edge
cracks, the relative volume at a node might be less then

Figure 3 : Four snapshots for two disks with crackene even when the cracks are in contact. The above al-
colliding and separating. The colors indicatedirec- gorithm might mistakenly consider such cracks as sepa-
tion tensile stress (blue minimum to red maximum) Thiated. The problem is that the undeformed volume is cal-
material properties werg& = 0.1 MPa,v = 0.33, and culated from the element area while the true undeformed
p = 1.5 g/cn?. The disks were 30 mm in diametevolume should account for the node being near the edge
and 1 mm thick. The cracks were centrally located anfla material. This problem did not affect the above edge-
10 mm long. The crack surfaces were frictionless. Atack DCB results because the cracks were always sepa-
the beginning the disks were moving towards each oth@ted. To better handle edge cracks in contact, enhanced

each with a speed of 1000 mm/sec.

volumetric methods are needed. One approximate ap-
proach is to normalize the nodal volume to the total num-
ber of particles interacting with that node. This approach
improves the contact detection at edge nodes, but some-
times gives invalid contact detection at internal nodes.
This problem will be the subject of future work.
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3.3 Comparison to Experiment

This example considers a much larger problem (58017
material points), stiffer materials, and comparison to
experiments. The configuration, illustrated in Fig. 4
shows five transparent disks (poly methylmethacylate
(PMMA)) constrained by a jig to remain planar and
aligned. At time zero, the left side is impacted (at
6 m/sec) and high speed photography was used to recordg!
photoelastic fringes [Roessig and Foster (2001), Roessigll
(2001)]. To study crack effects, the central disk contained
a crack aligned with the loading direction having a length
equal to half the diameter of the disk. The top half &figure 4 : Five poly methylmethacylate disks impact
Fig. 4 shows experimental results for one particular tirleaded from the left side. the central disk has a crack
The stress concentrations at the crack tip are evidentigyallel to the loading direction of length equal to half

the increased number of fringes. The front of the stréf¢ diameter of the disk. The top figure gives the exper-
wave has just reached the last disk. iment birefringence pattern at one particular time. The

Bpttom figure gives the calculated birefringence pattern.

The MPM simulations modeled the five disks by an a
proach similar to that described in Bardenhagen, Guilkey,

Roessig, Brackbill, Witzel, and Foster (2001). The disk

material was set to a high modulus materiak 174860, the CRAMP code is correctly modeling the presence of
v = .214,p = 1.90). A high modulus material was use&e crack.

instead of actual PMMA modulus because the analy§lse might think that this problem is symmetric along
involved less total displacement. The simulations atfte mid-plane or that the analysis could be done by con-
experiments were compared by normalizing to the wasiglering half the sample with fixed displacements along
speeds in the different materials [Bardenhagen, Guilkdye mid-plane except for no constraints on the crack sur-
Roessig, Brackbill, Witzel, and Foster (2001)]. Simdace. Examination of the full results, however, reveals
lations with lower moduli that had larger displacementise the crack surfaces experience contact as the stress
developed noise in regions where particles crossedwhves pass by the crack. It was thus necessary to do a
ement boundaries. The methods in Bardenhagen &mtanalysis and use the crack contact methods to handle
Kober (2003) can solve some or all of such noise issuesntact. An analysis of half the specimen develops non-
but those methods were not available in the CRAMysical crack surface displacements as the crack surface
code. The impactor was modeled as a material with mugisplacements extend past the mid-plane.

higher density £ = 17486,v = 0.214,p = 190) to em-

ulate the impact event. The photoelasticity fringes wes¢t Energy Calculations

calculated by taking a periodic function of the principlgpe final example is not a crack problem, but an exam-

stress difference. The equation used was ination of the energy results using the four methods for
5 updating stresses - USL, MUSL, USF, and USAVG. The
COS<kf\/(Gxx—ny) +4T>2<y) (23) problem, illustrated in Fig. 5, is for transverse impact

on a polymer specimen. The simulation mimics exper-
wherek; is physically a fringe constant for the materialmental results in Nairn (1989). The beam (of dimen-
By comparison to experimentls; was determined to besions 88<6x12.95 mm with span of 68 mm) was Delrin
0.0889 (for stresses in MPa). There were 30 elemeptdyoxymethylene polymerH = 2900 MPa,v = 0.33,
or 60 material points across the diameter of each dipk—= 1.5). The impactor was given a modulus 10 times
The simulation results in the bottom of Fig. 4 are for thdgher, a higher density, and a thickness chosen to have
simulation time closest to the experimental time. This' total mass match the experimental impact mass of
predicted fringes agree well with experimental results. 87 g. The impact velocity was set to the experimental
particular the fringe patterns around the crack show thmasult of 2.43 m/sec. No gravity was used and thus the
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sum of kinetic and strain energy should remain constant
throughout the simulation.

Figure 6 shows total energy in the MPM simulation us-
ing each of the four stress updating methods. By track-
ing the kinetic energy in the impactor, the beam impac
started at about 0.4 ms and continued until about 4.2 ms
The original MPM method, or USL, gave poor results.
The simulation had to be stopped at about 3.6 ms b
cause it became unstable and one of the material points
left the grid. The three other methods gave stable resul
and better energy results. The MUSL approach slowly -
dissipated energy (with two step drops) while the US
approach slowly increased in energy (with two step in
creases). These observations are similar to results by
these two methods in Bardenhagen (2002). The USAVG

approach conserved energy. The total energy rema"&?gure 5 : Initial configuration and material point dis-

within £0.18% of the average throughout the entire sim->"." " . .
. ) . cretization for transverse impact of a disk on a polymer
ulation. By the algorithm, USAVG is an average of thé . . . . :
. eam. The dimensions and material properties are given
USF and MUSL methods, but it does not lead to results o .
. In text of the paper. The colors indicate beam material
that are simple average of the other methods. For exam- . .
: : d), impactor material (blue), and beam support mate-
ple, because USF increased in energy more than MU
. . . . rial (green).
decreased in the energy, their average increased in energ
with time. The USAVG result, however, did not follow
this average but rather gave nearly exact conservation of
energy. Similar comparisons between USF, MUSL and

USAVG were found in numerous other MPM results.

v

[T
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3.5 Algorithm Efficiency

Profiling of the CRAMP code showed that most additions 1.20f
due to crack effects add very little overhead to MPM | USF
code. The one exception is the need to examine parti(ge-
node pairs to determine the appropriate velocity field. '1°F ll
This step involves determining whether or not a line from i

a particle to a node crosses a crack. It is importanto ol \\} MUsL
implement this step as efficiently as possible. The Ap-
pendix gives one algorithm that works well. There are
two key components. First, the line crossing algorithm gl . . | . |

should be efficient. Second, great improvement is pos- ! 2 8 4 ° 6

sible by screening particle-node pairs and skipping the T"“e_ ““S)_ _
check entirely for those that can not cross a crack. FAure 6 : Total energy (kinetic + strain energy) dur-

simple way to do this screening, which led to an order ¥ impact of a disk on a polymer beam (see Fig. 5) by
magnitude efficiency increase in this step, is to keep trdd€M using four different methods for updating stress
of the extent of each crack or the minimum and ma@nd strain in each time step — USL (red), MUSL (black),
mumx andy values for all end points of the segments &fSF (blue), and USAVG (green). The methods are ex-
the crack. Then, when checking any particle node pdll@ined in the text of the paper.

the line crossing code can be skipped whenever the rect-

angle defined by the particle and node points has no in-

USAVG

usL
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tersection with the extent of the crack. With optimal linétluri, S. N.; Zhu, T. (1998): A New Meshless
crossing algorithm combined with screening using crackcal Petrov-Galerkin (MLPG) Approach in Computa-
extents, the fracture calculations in this paper averadgmshal Mechanics. Computational Mechanigssol. 22,
only 10% longer than the comparable MPM calculatiqgrp. 117-127.
with no cracks.

Bardenhagen, S. G(2002): Energy Conservation Error
4 Conclusions in the Material Point Method.J. Comp. Physvol. 180,

pp. 383—-403.
This paper describes a CRAMP algorithm which extends

MPM to naturally handle explicit cracks. When the fra(Bardenhagen, S. G.; Brackbill, J. U.; Sulsky, D.
ture code is written efficiently, especially the new lin@000): The Material Point Method for Granular Ma-

crossing section, the CRAMP code achieves crack cglrials. Computer Methods in Applied Mechanics and
culations with very letter extra cost in calculation timengineering vol. 187, pp. 529-541.

The results show that CRAMP gets the correct MPM so-
lutions and comparisons to both FEA and experimermBardenhagen, S. G.; Guilkey, J. E.; Roessig, K. M.;
show that it gets good results for crack problems. Brackbill, J. U.; Witzel, W. M.; Foster, J. C. (2001):
account for crack surface contact, there are checks Aor Improved Contact Algorithm for the Material Point
contact and both stick and sliding with friction can belethod and Application to Stress Propagation in Gran-
handled. The method to detect crack contact is robustiteir Material. Computer Modeling in Engineering &
internal cracks but may need some adjustment for pr@&eiencesvol. 2, pp. 509-522.
lems involving edge cracks. Crack propagation is eas-
ily handled by simply moving the crack or adding cradkardenhagen, S. G.; Kober, E. M.(2003): The Gen-
segments at any time step. The important problem tiesalized Interpolation Material Point Method. in press,
remains is the calculation of crack tip or fracture pararda003.
eters followed by prediction of crack propagation. This
problem will be the subject of future work. AlthougtBatra, R. C.; Batra, H.-K. (2002): ~Analysis of Elas-
this paper describes a 2D algorithm, extension to 3Dt@§lynamic Deformations Near a Crack/Notch Tip by the
possible. In 3D, the crack line needs to be replaced Mgshless Local Petrov-Galerkin (MLPG) Methodom-
a crack surface described by planar elements instead RHéer Modeling in Engineering & Sciencegol. 3, pp.
segments. The line crossing algorithm needs to be fé/—730.
placed by a 3D area crossing algorithm.

Belytschko, T.; Lu, Y. Y.; Gu, L. (1994): Element-Free
Acknowledgement:  This work was support byagranpalerk'n Methods. Int. J. Num. Meth. Engrgvol. 37,
from the Department of Energy DE-FG03-02ER459 1P 229-256.
and b)_/ the Unlyersny of Utah _Center for the SImUIatlolgelytschko, T.: Tabbara, M. (1996): Dynamic Frac-
of Accidental Fires and Explosions (C-SAFE), fundedt% Using El t-Free Galerkin Methodtnt. J. Nu-
the Department of Energy, Lawrence Livermore Nationgl ¢ - >nd Element-rree Lalerkin Methodit. S VU
Laboratory, under Subcontract B341493. mer. Methods in Engol. 39, pp. 923-938.

Ching, H.-K.; Batra, R. C. (2001): Determination
of Crack Tip Fields in Linear Elastostatics by the Mesh-
Atluri, S. N.; Shen, S.(2002):  The Meshless Lo-less Local Petrov-Galerkin (MLPG) MethodComputer

cal Petrov-Galerkin (MLPG) method: A Simple & LessModeling in Engineering & Sciencesol. 2, pp. 273-
Costly Alternative to the Finite Element and Boundal%ﬁg-

Element Methods. Computer Modeling in Engineering
& Sciencesvol. 3, pp. 11-52.
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and the particle is below the crack relative to the nodey directions, set the total forces for all velocity fields at
If v(p,i) =1 or 2 and node does not have that ve- that node to zero to prevent acceleration in the next task.
locity field, then allocate a new velocity field for tha .

node. Only nodes near cracks will have multiple velo ask 4. Update nodal point momenta
ity fields and except in unusual conditions, no node will pKj=pf +ALHY  j=0,1,2 (29)
ever have more than two velocity fields — one for par-

ticles on one side of the crack and one for particles oﬁdJUSt any _momenta for crack contact effects by the
the other side. procedure listed below.

In the same loop, calculate nodal momenta and lumpEagk 5: Loop over the particles to update particle po-

masses for all needed velocity fields using sition and velocity using Sulsky, Zhou, and Schreyer
) (1995):
p
K , ,
pij = > MpvpSpSivpi §=012 1 ks
o (26) S ALY T
i 1= V(pi
= > My =012 . fitcv)t(pi)s%p (30)
it = vy S
=1 Mupi)

whered; ) is the Kronecker delta function. For use o
in the contact algorithm, calculatetal nodal volumes Notice that the momentum, force, and mass used is this

using update come from the specific velocity field for each
. Np . particle/node pair determined by the line crossing re-
Vit=% VS, (27)  sults forv(p, i) evaluated in Task 1.
p=1

Task 6: a. For USL method only, update particle

Task 2: Apply any t?oundary C(_)ndltlons to nodal Mo- gy eqqe5 and strains as described below toﬁ‘ﬁ*‘i&l and
menta calculated in the previous task and check for, ; KoK
and sepy; = py; for later use.

crack contact by the procedure listed below. For USFP ] .
or USAVG methods only, update particle stresses arfey For USF only, thekitlressiimd I(stgaln Lf(pdate was done
strains by the procedure listed below. The new particleefore and thus sei,"™™ = G, g5 = €. Also set

4
pr p P
i { K K — oK' for lat
stresses and strains are denoﬁdand €y For USL  pijj = pj); for later use.

and MUSL methods, the stresses and strains are not UpFor MUSL or USAVG only, extrapolate the new par-
' _ 5K / . - e .
dated and thus s@l — G5 ande¥ = &, ticle velocities to the grid to get a revised set of nodal

Task 3: Loop over the particles again. For each particltgnomenta using.

calculate internal, external, and total forces for all ve- K Mp ket ]
locity fields in use. The equations [Sulsky, Chen, and Pi.i = > Mpvp Spdivpi  §=0.12 (31)
Schreyer (1994), Sulsky, Zhou, and Schreyer (1995)] p=1
now adjusted for multiple velocity fields are (each forAdjust any momenta for crack contact effects by the
i=0,1, 2): procedure listed below. Note that this extrapolation uses
s the new particle velocities but the shape functions and
int K~k — o line crossing results from the original particle positions.
iy = le (—mpop Gipt mpbpSfp) O v(pi) This approach was found to give better results than one
y Np ‘ (28) using updated information. Update particle stresses and
fi?j = pzl fpSk,pE’LV(p?i) strains using the new nodal momenta by the procedure

- i kL k+1
fitﬁt: fi',r}t +fi?1?(t*Kp!(,j listed below to finds;"~ andey;™.

- . _ Task 7: Calculate center of mass velocity for each node
whereby, are any specific body forces on a particle, suckyith multiple velocity fields:
as gravity,f['§ are forces applied directly to particles, and .
K is a damping constant which can be used to damp the K 2j=1 Piidi.j

k = SI=Lth] 32
analysis. If any nodes have fixed displacement or Lem 21-3:1 mPkey (32)
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whereg; ; = 1 if there exists g such tha®, ,,jy =1, first case is the most common; the other three corre-
otherwisep; j = 0. In other wordsg; j is 1 or 0 depend- spond to the node being on the crack segment, on the
ing on whether or not velocity fielglis present for node  start point of the crack segment, or on the end point of
i. Use this nodal velocity field to update the positions the crack segment, respectively. The cases where the
of all line segments that define the cracks by standardmaterial point is on the crack segment can be ignored.
position updating methods. Similarly, the particle is below the crack if the signs
are(+——+), (+—-0), (0——0), or (+0—0). All

Task 8: All information is now on the particles and if o1 compinations of signs indicate the line does not
needed the cracks have translated. All nodal and mesR,,<s the line segment. In practice, many signed area

information can be discarded and then return to Task Ocalculations can be skipped. For example is the signs

to begin the next MPM calculation step. of (123) and(123) are(++), there is no need to eval-

_ _ _ _ _ uate the signs of341) and(342) because the line can
Line Crossing Algorithm: The most time consuming, not cross the segment.

new calculation required for CRAMP is the line-
crossing calculation in Task 2. It is important for this
calculation to be optimal and precise. The only numer-
ical difficulty occurs when a node lies very close to the
crack path. In some line-crossing algorithms, numerical

routr;]d off in th'.z Sltlszilon Coilﬂ r_esullt I:)n Itvxéo patr)tlgles ments in a crack before deciding if there is a crossing,
onthe same side of the crack being labeled as being OnBut if Subtask 1 finds no intersection, the check for all

opposite sides. The complementary problem of Whensegments in that crack can be skipped.
a material point lines very close to a crack path never
occurs because the contact methods keep particles fiogmtact Algorithm: Any time the nodal momenta are
reaching the crack path. calculated i(e., in Tasks 2, 4, and 6¢), the above al-

A line-crossing algorithm in 2D based on signed argorithm must check cracks for contact. If contact is
eas of certain triangles solved the problem of nodes dfund, adjust nodal momenta for all velocity fields at
cracks. For any three points;, X, andxs, the signed nodes experiencing contact. If any momenta change

area of the triangle with those vertexes is given by in Task 4, back calculate the corresponding total nodal
forces to match the new momenta. This recalculation is

Area=x1(Y2—Y3) +X2(y3—VY1) +X3(y1—Y2) (33) needed to insure particle velocities update correctly in
Task 5. The algorithms for deciding on contact and for

This area is positive if the path fromy to X3 is counter adjusting momenta are given in tMPM With Explicit
clockwise, negative if it is clockwise, and zero if thecrackssection.

points are collinear. Using this signed area, the algo- _
rithm is as follows: Updating Stresses and Strains:Because the above al-

gorithm includes four different methods for updating
Subtask 1: Before doing any calculations, determinestresses and strains (USL, MUSL, USF, and USAVG),
if the rectangle defined by the particle; (= x,) and  itincludes several locations for the updates (Tasks 2, 6a,
the node %> = xn) under consideration intersects theand 6c¢). All stress and strain updates use the following
extent of the segment endpoints in the crack. If it doegrocedure:

not, the line does not cross the crack and rest of th§ btask 1- Calculat dal point velociti ing th
algorithm can be skipped for that crack. ubtask 1. Lalculate nodal point velocities using the

current nodal point momenta

Subtask 4. One complication is that a givexy, to Xy

line might cross more than one segment in a single
crack. In this situation, the crossing is ignored unless
there are an odd number of crossings. To include this
possibility, the previous two steps must check all seg-

Subtask 2: For each crack segment with endpoirgs

Kk
and x4, calculate the sign of the areas of triangles Vi — Piij j=0,1,2(asneeded (34)
(123), (124), (341), and(342) denoted as-”, “ —” WPl Y
or*0". wherekx means the most recently calculated momenta

Subtask 3: The particle is above the crack if the signs and v, ; is only calculated for active velocity fields

are(—++-), (—++0), (0++0), or (—0+0). The  (¢;j=1).
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Subtask 2: Loop over particles and find the strain in-
crement for the current step from

k kT
Ak — At Ovp + Dvp

. . (35)

In two dimensions, the velocity gradient at the material
points involves four terms calculated from the outer

products
Nn

Dv*;, — ZV"““”” ® G{fp (36)

Here At* is the time step for USL, MUSL, and USF,
but half the time step for USAVG. Notice that USAVG
updates stresses and strains twice during each step (in
Tasks 2 and 6c¢); each update gives half the update for
the current step.

Subtask 3: Input the strain incremenn¢X, and the in-
dividual components of the velocity gradienty, if
needed) into a material constitutive law and update the
particle stresses. Any constitutive law may be used.
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