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Abstract The material point method (MPM) has prov-

en to be an effective particle method for computational

mechanics modeling of problems involving contact, but

all prior applications have been limited to Coulomb fric-

tion. This paper generalizes the MPM approach for con-

tact to handle any friction law with examples given for

friction with adhesion or with a velocity-dependent co-

efficient of friction. Accounting for adhesion requires an

extra calculation to evaluate contact area. Implementa-

tion of velocity-dependent laws usually needs numerical

methods to find contacting forces. The friction process

involves work which can be converted into heat. This

paper provides a new method for calculating frictional

heating that accounts for interfacial acceleration dur-

ing the time step. The acceleration terms is small for

many problems, but temporal convergence of heating

effects for problems involving vibrations and high con-

tact forces is improved by the new method. Fortunately,

the new method needs few extra calculations and there-

fore is recommended for all simulations.

Keywords Material point method · MPM · friction ·
imperfect interfaces · contact

1 Introduction

One potential advantage of the material point method

(MPM) over other computational mechanics tools is for

handling problems involving contact. The original de-

velopment of MPM used a single velocity field on a grid
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[17]. Because such a field enforces a continuous veloc-

ity field on the particles, single-field MPM automat-

ically prevents particle-particle penetration. But this

“contact-for-free” feature can only model contact by

stick conditions meaning surfaces move in the same ve-

locity field when in contact but move independently

when apart. The contact capabilities of MPM were en-

hanced by moving to a multimaterial mode MPM where

particles are designated as belonging to a material type

and each material extrapolates its own velocity field

to the grid [2]. Nodes that end up with information

from a single material proceed by standard MPM while

nodes with more than one material need to resolve

and implement contact physics on that node. Subse-

quent enhancements in MPM contact have included an

improved contact algorithm [4], alternate methods for

finding the crucial contacting normal vector [10, 13],

extension to axisymmetric contact [14], and modeling

of imperfect interface laws [13].

Most prior MPM contact modeling has considered

only simple Coulomb friction. This paper generalizes

the MPM contact methods to allow any contact law

and specifically considers friction with adhesion, fric-

tion laws with a velocity-dependent coefficient of fric-

tion, and implementation of static and dynamic coeffi-

cients of friction. The generalizations are mostly straight-

forward but require some extra calculations and require

a subtle modification when implementing velocity-de-

pendent laws. Implementation of some new contact laws

were verified by comparison to analytical solutions.

Another motivation for this work was to improve

the methods for modeling frictional heating. The tar-

get problem was rapid loading of plastic-bonded explo-

sives (PBXs) [1]. These materials are composite mate-

rials of energetic particles (such as HMX particles [16])

held together by a plastic binder. During rapid loading,



2 Nairn, Bardenhagen, and Smith

it is likely that weak interfaces or cracks in particles

will slide as stress waves induce extensive, high force,

and rapid sliding. If frictional heating resulting from

this sliding causes sufficient temperature increase, the

material may develop hot spots that cause detonation

[6]. MPM is likely an excellent tool for modeling hot

spots and other effects in PBXs [3]. In our preliminary

work, however, we noticed that frictional heating calcu-

lations had slow temporal convergence requiring a much

smaller time step then needed to resolve the specimen’s

mechanical response. We traced the issue to calcula-

tion of frictional heating being equal to frictional force

times sliding velocity, which was was assumed constant

during the time step. We were able to get improved

convergence by modifying the frictional heating calcu-

lation to account for sliding acceleration and for slip

and stick conditions during the time step. The result-

ing frictional heating needs minimal extra calculations

and potentially offers improved convergence for heat-

ing effects in PBXs or any other systems experiencing

oscillating, high-force contact.

2 Multimaterial Contact

2.1 Multimaterial Mode Extrapolations

In MPM, bodies are discretized into particles on a back-

ground grid [17]). Each time step involves extrapolating

quantities to the grid, implementing contact mechanics

(if applicable), solving the momentum equation, and

then updating all needed quantities on the particles.

This paper will not review the MPM algorithm (it has

appeared in many papers [5]) but instead focuses on

multimaterial mode MPM and only those algorithm

steps associated with contact mechanics [3].

In multimaterial MPM, each material extrapolates

to its own velocity field. The extrapolated quantities

needed for contact calculations on node i for material

j’s field are [13]:

mi,j =
∑
p∈j

Sipmp (1)

pi,j =
∑
p∈j

Sippp (2)

f i,j =
∑
p∈j

(
−mp

τ
(n)
p ·G(n)

ip

ρ0

)
+ fexti,j (3)

mi,jxi,j =
∑
p∈j

Sipmpxp (4)

Ωi,j =

{∑
p∈j SipVp 3D∑
p∈j SipAp 2D

(5)

gi,j =

{∑
p∈j GipVp 3D∑
p∈j GipAp 2D

(6)

Here mi,j , pi,j , and f i,j are material j’s mass, momen-

tum, and force. The sums over particles are only for

particles of material type j. Prior modeling on contact

has depended only on mi,j and pi,j [2, 4], but the new

frictional heating method described below needs f i,j as

well. τ
(n)
p is Kirchoff stress on the particles and fexti,j

are external forces due to body forces (e.g., gravity) or

boundary conditions. The extrapolated position, xi,j ,

domain, Ωi,j , and domain gradient, gi,j are specific

to contact calculations and are used to improve con-

tact detection and to find the contacting normal vector

and contact area [13]. Finally, Sip and Gip are gen-

eralized shape functions and shape function gradients

commonly used in MPM [5].

2.2 Contact Mechanics

Once all quantities are extrapolated to the grid, each

node is examined to see if it has only one material or

more than one material. All nodes with a single mate-

rial proceed by standard MPM. All nodes with more

then one material must determine if the materials are

in contact. If they are not in contact, they proceed inde-

pendently (i.e., they are not interacting). If contact is

detected, however, the extrapolated quantities (namely

momenta and forces) must be changed to implement

the modeled contact mechanics. Note that multimate-

rial contact in MPM handles contact between different

materials (although two contacting objects can be dif-

ferent “materials” with the same properties), but does

not handle self contact. Although MPM automatically

handles self contact, such contact follows a stick contact

law. Implementation of self contact with other contact

laws would require alternate methods [8].

2.3 Finding Contacting Normal Vector

We first describe contact between exactly two, non-rigid

materials — material a and b as illustrated in Fig. 1 (the

changes for more than two materials and for rigid mate-

rials are given later). The first task is to find the normal

vector at the contacting surface. This task was initially

done by finding mass gradient of the material [2], but

this approach could give inaccurate results. In our expe-

rience, the most common reason MPM fails in problems

involving contact is that the normal is inaccurate. This

observation means that contact calculations need suffi-

cient resolution to resolve normals and may need to use

different methods for different problems. The issue is

discussed thoroughly in Ref. [13] and summarized here.

The normal vector calculated from material a informa-

tion alone is found from volume gradient (in 3D) or area
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Material a

Material b

n̂

i

Fig. 1 Material points in a 2D MPM model having two dif-
ferent material types on either side of a contact surface. The
normal vector n̂ is defined as directed from material a to ma-
terial b. The black dots indicate nodes (such as node i) that
have multimaterial fields.

gradient (in 2D):

‖ni,a‖ni,a = gi,a (7)

In axisymmetric MPM, the gradient is a spatial term

that must be determined from particle area in the r-z

plane and not the particle volume [14]. Furthermore, to

deal with some edge effects, any edge that is known to
be on a symmetry plane (such as the r = 0 plane in

axisymmetric MPM), should set the component of the

normal perpendicular to that plane to be zero.

For two materials, the contacting normal can be

found from either material a or b, but in general they

will be different. When each material was treated inde-

pendently with their own normals, the end result was

non-conservation of momentum. For two materials in

contact, the solution is to find a single normal vector.

The two most useful approaches are [13]:

Maximum Volume Gradient (MVG): find the nor-

mal from material a or b, whichever has the domain

gradient with the largest magnitude.

Average Volume Gradient (AVG): find the normal

from a domain-weighted average of gradients from the

two materials — (Ωi,agi,a −Ωi,bgi,b)/(Ωa +Ωb).

A third, and the most accurate option when avail-

able, is to specify the normal (SN). This option is typ-

ically only available to simple problems (and is used

below in several friction examples).

2.4 Detecting Contact

Once the normal vector, n̂, is found, the next task is to

detect if the two materials are separated or in contact.

The initial MPM method was to assume contact occurs

whenever ∆vi · n̂ < 0, which as shown below corre-

sponds to the surface stress being in compression. This

method alone, however, often leads to premature detec-

tion of contact. The contact calculations are improved

by also looking at material positions and calculating

separation of material surfaces using

δn = (xi,a − xi,b) · n̂− 0.8h⊥ (8)

where h⊥ is an effective thickness of the contacting vol-

ume perpendicular to the contacting surface [13]. The

subtraction of 0.8h⊥ accounts for the spatial effect that

particle surfaces come into contact before the centers

(which are used to calculate xi,j). For a regular grid

with equal element dimension in all directions, h⊥ is

equal to element side ∆x. The modifications when using

rectangular elements with different dimensions along

different axes are given in Ref. [13]. The extension to a

non-regular grid would require more modifications.

A useful option in MPM problems with modest de-

formation and when all interfaces that come into con-

tact start out in contact (a situation common, for ex-

ample, in composite materials), is to change the sepa-

ration calculation to use particle displacements. In this

approach, the position extrapolation is changed to a

displacement extrapolation:

mi,j∆xi,j =
∑
p∈j

Sipmp

(
xp − x(0)

p

)
(9)

where x
(0)
p is the initial particle position. The surface

separation is then found from extrapolated displace-

ments

δn = (∆xi,a −∆xi,b) · n̂ (10)

and note that the spatial correction, h⊥, is not applied

when using displacements.

Finally, the surfaces are assumed to be in contact

when both ∆vi · n̂ < 0 and δn < 0, otherwise the sur-

faces are separated.

2.5 Finding Contact Area

Although many friction laws can be implemented in

MPM without needing to know the contact area, those

including strength terms depend on that area. The area

calculation needs to account for orientation of the con-

tact normal and the total number of nodes along an

interface — that number of nodes will be different for
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an interface near grid lines compared to an interface

in the middle of grid cells. An area calculation was de-

veloped in a previous paper [13]. The contact area at

node i for 2D MPM in terms of extrapolated quantities

defined above is:

Ac =
t
√

2Ωi min(Ωi,a, Ωi,b)

h⊥
(11)

where t is particle thickness and h⊥ accounts for tilted

contact surfaces in grid with different element dimen-

sions in the axis directions. In 3D problems t is dropped.

In axisymmetric MPM [14], the t is replaced by ri,

which is the radial position of the node to give area

per radian.

2.6 Implementing Contact Mechanics

When contact surfaces are determined to be in contact,

the final task is to modify nodal momenta and forces

to reflect the implemented contact mechanics. The first

step in this task is to calculate the momentum change

applied to material a that would be required for that

material to move in the center of mass velocity (v
(c)
i ):

∆pi,a = mi,av
(c)
i − pi,a =

mi,api,b −mi,bpi,a
mi,a +mi,b

(12)

where

v
(c)
i =

∑
j pi,j

m
(c)
i

=

∑
jmi,jvi,j

m
(c)
i

(13)

and m
(c)
i =

∑
jmi,j is the total nodal mass. In other

words, if ∆pi,a was applied to material a and −∆pi,a
applied to material b, the two materials would stick

together, or move in a single velocity field as if they

were one material. This “stick” calculation is equiva-

lent MPM treatment of self contact, but multimaterial

MPM extrapolations provide information that allows

implementation of new contact conditions.

The difference in unmodified velocities for materials

a and b can be related to this momentum change:

∆vi = vi,b − vi,a =
pi,b
mi,b

− pi,a
mi,a

=
∆pi,a
mi,red

(14)

where mi,red = mi,ami,b/(mi,a +mi,b) is reduced mass

at node i. The momentum change can be interpreted

as apparent contacting forces by rewriting ∆pi,a as

∆pi,a = (∆pi,a · n̂)n̂ + (∆pi,a · t̂)t̂ = dnn̂ + dtt̂

= (−NAc∆t)n̂ + (SstickAc∆t)t̂ (15)

where N is the contacting normal pressure and Sstick is

the sliding traction for preventing frictional sliding (or

dn and dt are the normal and tangential momentum

changes required to stick in that direction). Notice that

contact detection requires ∆vi ·n̂ = −NAc∆t/mi,red <

0, which guarantees that all contact situations have

compression on the surface with N > 0.

To implement friction, we calculate the tangential

traction that would be experienced by frictional sliding:

Sslide = f(N,Ac, ∆v′i, . . . ) (16)

where f(N,Ac, ∆v′i, . . . ) is any arbitrary friction law

which may depend on various parameters such as nor-

mal pressure, contact area, relative sliding velocity, and

maybe more parameters. Notice that realistic velocity-

dependent friction laws will depend on the final sliding

velocity ∆v′i, and not the initial unmodified velocity

difference ∆vi (the consequences of this difference are

discussed later). The full frictional algorithm becomes:

1. If Sstick < Sslide, then the driving forces for fric-

tional sliding are too small to overcome sticking

meaning the two materials stick rather than slide.

Set final momentum change to ∆p′i,a = ∆pi,a.

2. But, if Sstick > Sslide, the surface would rather slide

at the lower Sslide then stick. Set final momentum

change to

∆p′i,a = dnn̂ + (SslideAc∆t)t̂ (17)

3. Change the momenta for materials a and b to

p′i,a = pi,a +∆p′i,a and p′i,b = pi,b −∆p′i,a (18)

4. To keep forces consistent with changed momenta in

contact calculations done after updating nodal mo-

menta, the nodal forces should be changed to:

f ′i,a = f i,a +
∆p′i,a
∆t

and f ′i,b = f i,b −
∆p′i,a
∆t

(19)

Note that some papers claim improved contact by

working with forces rather then momenta and show

better simulation results compared to the momentum

approach generalized here [9, 15]. Examination of the

physics, however, shows that the effects of contact ap-

pear in both momenta and forces and can be imple-

mented through either provided all is done self-consis-

tently throughout the MPM time step. We suggest their

differences in methods were caused by improper imple-

mentation of the momentum approach rather then some

advantage of using forces.

2.7 Coulomb Friction

For simple Coulomb friction, S = µN where µ is the co-

efficient of friction, which can be written as SslideAc∆t
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= −µdn. During frictional sliding, the momentum change

becomes

∆p′i,a = dn(n̂− µt̂) (20)

This equation is identical to previous implementations

of friction in MPM [4, 13]. Notice that the law is inde-

pendent of the contact area and the sliding velocity.

2.8 Velocity-Dependent Friction

To implement velocity-dependent friction, we need to

calculate ∆v′i in the final sliding condition

∆v′i =
p′i,b
mi,b

−
p′i,a
mi,a

=
∆pi,a −∆p′i,a

mi,red

=
(dt − SslideAc∆t)

mi,red
t̂ (21)

Because ∆v′i depends on Sslide, any function for Sslide
will need to be inverted to find sliding traction. For ex-

ample, if the coefficient of friction is linearly dependent

on the sliding velocity (µ = µ0 + k|∆v′i|)) then:

Sslide =

(
µ0 +

k(dt − SslideAc∆t)
mi,red

)
N (22)

which can be solved to give

Sslide =
mi,redµ0 + kdt
mi,red + kdn

N (23)

By finding SslideAc∆t needed for momentum change

(see Eq. (17)), which only depends on dn = −NAc∆t
and dt, this velocity-dependent Coulomb’s law is inde-

pendent of the contact area.

A seemingly simple velocity-dependent effect to im-

plement is static and dynamic friction. The calculation

is to find Sslide = µsN where µs is the static coeffi-

cient of friction. If Sstick is less then this Sslide, the

surfaces stick together; otherwise Sslide is changed to

Sslide = µdN where µd is the dynamic coefficient of fric-

tion (or to some other dynamic friction law) and then

make the changes needed for frictional sliding. The Re-

sults and Discussion section finds inaccuracies for this

implementation and suggests an alternative.

Finally, the above velocity-dependent laws are a-

mong the few that yield to close-formed expressions for

Sslide. For friction laws that have non-linear or arbi-

trary dependence on velocity, the analogous expression

to Eq. (22) will usually require numerical methods to

solve for Sslide.

2.9 Contact Law with Adhesion

Sometimes friction modeling adds an adhesion term to

Coulomb friction or S = Sa + µN where Sa is a shear

adhesion strength of the interface [19]. In this law the

material will stick unless Sstick exceeds the adhesion

strength. and then will slide with an offset Coulomb law

(this component could depend on velocity if desired).

The sliding force needed to implement this law is

SslideAc∆t = SaAc∆t− µdn (24)

The main difference from previous laws is that for non-

zero Sa the final SslideAc∆t calculation depends on con-

tact area Ac.

If the interface has shear adhesion strength, it might

have tensile adhesion strength,Na, as well. Such a law is

easily implemented, but requires extra calculation when

surfaces are detected as being separated (N < 0 or

δn > 0). Under simple friction, such interfaces move

freely, but when adhesion in present, another criterion

is needed to decide if they should continue to stick or

should move freely. One option is an elliptical failure

criterion:(
Sstick
Sa

)2

+

(
N

Na

)2

> 1 (25)

If this criterion is met, the interfacial adhesion has bro-

ken and surfaces move freely; if it is not met, the sur-

faces stick and move in the center-of-mass velocity field.

When surfaces are in contact, they proceed as normal

(e.g., using Eq. (24) and Na has no effect.)

Notice that unless modified, the MPM adhesive con-

tact methods described here cannot model history-de-

pendent adhesion. In other words it cannot model con-

tact that sticks until adhesion is broken and thereafter

slides with some frictional sliding law. The problem is

that contacting nodes are calculated on each time step

and extrapolated nodal quantities contain no informa-

tion about whether the contact on the previous time

step overcame adhesion (or even if the contact on pre-

vious time step was for the same two materials). As a

consequence, adhesion contact described above is re-

versible. If the surfaces overcome adhesion they will

slide, but if the contact forces drop, they will re-adhere.

This behavior is realistic for some contact, such as inter-

faces with interaction forces, but may not be appropri-

ate for others, such as breaking of bonds at interfaces.

2.10 Frictional Heating

Whenever friction is modeled, it might be important to

model heating caused by the friction. The total work
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done by friction forces on node i in one time step is

∆Wi,F =

∫ ∆t

0

F(t) ·∆v′i(t) dt (26)

where F(t) is the frictional sliding force and ∆v′i(t) is

the final relative sliding velocity. For first order heating

calculation, we assume F(t) = SslideAct̂ and ∆v′i(t) =

(dt − SslideAc∆t)t̂/mi,red (as derived above) and both

are constant over the time step. The frictional work is

∆Wi,F = W1 =
SslideAc∆t

mi,red
(dt − SslideAc∆t) (27)

Notice that ∆Wi,F is always greater than zero because

dt is always greater than SslideAc∆t during sliding. This

expression involves only SslideAc∆t = ∆p′i,a · t̂ and dt.

Therefore, whenever the frictional law is independent

of Ac, the frictional work result is as well.

In an attempt to improve convergence of the fric-

tional heating term, we added an acceleration term to

account for changes in sliding velocity during the time

step. The frictional force becomes

F(t) = Sslide(∆v′i(t))Act̂

and the relative sliding velocity becomes

∆v′i(t) =
(
∆v′i · t̂−∆a′i(t−∆t) · t̂

)
t̂ (28)

where ∆a′i is the relative acceleration of the sliding sur-

faces, which can be found from

∆a′i =
f ′i,b
mi,b

−
f ′i,a
mi,a

=
∆f i,a −

∆p′i,a
∆t

mi,red
(29)

where

∆f i,a =
mi,af i,b −mi,bf i,a

mi,a +mi,b
(30)

If we ignore velocity dependence of Sslide (which is

correct for velocity-independent friction laws such as

Coulomb friction and would be difficult to implement

when Sslide requires a numerical solution in other laws)

and assume the sliding direction is constant (i.e., t̂ re-

mains constant), the friction work is:

∆Wi,F =

∫ ∆t

ts

SslideAc

[
(dt − SslideAc∆t)

mi,red

+
(ft − SslideAc)(t−∆t)

mi,red

]
dt (31)

where ts is the time when sliding starts in the time

step and ft = ∆f i,a · t̂. ∆Wi,F is only calculated when

surfaces are determined to be sliding at the end of the

time step, but the sliding may have started during the

time step. Extrapolating to the start of the time step,

the relative velocity in the sliding direction was

|v′i(0)| = dt − ft∆t
mi,red

= W1 −W2 (32)

where

W2 =
SslideAc∆t

mi,red
(ft − SslideAc)∆t (33)

Thus if W2 < W1, the velocity at the start of the time

step was positive, which means the full integral is used

(ts = 0); it evaluates to

∆Wi,F = W1 −
W2

2
(34)

The first term recovers “first order” frictional work (see

Eq. (31)) while the second adds acceleration for “second

order“ frictional work. If W2 > W1, however, it means

the sliding started in this time step. Solving for the time

when relative velocity is zero can be cast as

ts = ∆t

(
1− W1

W2

)
(35)

Integrating from ts to ∆t, frictional work evaluates to

∆Wi,F =
W 2

1

2W2
(36)

Notice that addition of acceleration effects involves only

the minor extra calculations to find ft followed by sub-

stitution into Eq. (34) or (36). This information is avail-

able in any MPM code implementing contact.

As shown below, this new “second order” heating

analysis improves convergence of frictional heating cal-

culations, but it does not provide second-order tem-

poral convergence of frictional work results. The inte-

grands of heating integrals come from standard MPM

calculations. Because MPM calculations have less than

quadratic temporal convergence, frictional work will be

less too. If future MPM methods add quadratic conver-

gence, the “second order” method here should extend

that convergence to frictional work as well.

2.11 Injecting Heat to MPM Calculations

Friction heating is calculated on the nodes and there-

fore will not affect MPM particles unless those nodes

communicate to temperature on those particles. An ap-

propriate way to inject heat is to run MPM calculations

with coupled conduction. Although few papers discuss

coupling heat conduction to MPM calculations, the task
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is easy and available in most MPM codes. One brief ac-

count shows that a generalized MPM conduction anal-

ysis reduces to solving the following equation on the

nodes [14]:

Mi
dTi
dt

= f
(cond)
i (37)

where Mi is nodal thermal mass and Ti is nodal temper-

ature extrapolated to the nodes weighted by the ther-

mal mass:

Mi =
∑
p

mpC
(p)
v Sip, Ti =

1

Mi

∑
p

mpC
(p)
v TpSip (38)

where C
(p)
v is particle heat capacity. In ordinary calcula-

tions, the conduction force, f
(cond)
i would include heat

conduction (due to thermal gradients), heat sources,

and boundary heat fluxes. Frictional heating is imple-

mented simply by adding ∆Wi,F /∆t to f
(cond)
i for any

node with frictional contact. The heating is added once

per contact node and not once per material velocity

field.

2.12 Other Issues

The above analysis assumes only two materials contact

at each node and MPM works best in such situations. If

more then two materials interact with the same node,

it becomes infeasible to resolve all possible contact sit-

uations needed to correctly find contacting normals at

each surface affecting that node. Because three or more

materials on a single node are inevitable in large, multi-

material simulations, it is important to have an approx-

imate algorithm to handle them. A reasonable approach

was proposed in Ref. [13]:

1. For each node with more that two materials, loop

over each material on that node.

2. For each material a, lump all other materials into a

virtual second material, b, with lumped mass, mo-

mentum, and any other quantities needed for con-

tact calculations.

3. Use the previous two-material MPM contact meth-

ods to find ∆p′i,a but use that result only to change

momentum and force for material a.

4. Add frictional heating for material a, which is dis-

cussed next.

A complication appears for frictional heating, which

is added once for a contacting pair, By noting that for

a multimaterial node, the reduced mass can be written

as:

1

mi,red
=
∑
j

1

mi,j
(39)

the total frictional work can revised to be

∆Wi,F =
∑
j

mi,red∆W
(j)
i,F

mi,j
(40)

where ∆W
(j)
i,F is friction heating calculated for mate-

rial j contacting the other lumped materials. Thus to-

tal frictional heating is converted to a sum over each

material with summand added in step 4 above. This

approach reduces to exact results for two contacting

materials because ∆W
(a)
i,F = ∆W

(b)
i,F . For more then two

materials, it gives a reasonable approximation to total

frictional heat.

The extension to contact of material a with a rigid

material b is also given in Ref. [13]. In brief, because

rigid materials effectively have infinite mass, the con-

tact calculations will reduce to v
(c)
i = vi,b and mi,red =

mi,a; the rest of the analysis, including addition of fric-

tional heating, is the same.

A related contact problem in MPM is contact be-

tween crack surfaces. In MPM, explicit cracks can be

modeled using the CRAMP algorithm [11] for CRAcks

in the MPM. In this algorithm, each node near a crack

is divided into separate velocity fields corresponding to

particles above the crack and particles below the crack.

Like multimaterial mode MPM, these nodes can im-

plement contact or imperfect interfaces on crack sur-

faces [12]. The implementation details are essentially

identical to the methods given here and therefore not

repeated. The only significant difference is finding the

contacting normal. The CRAMP algorithm includes a

discretization of the crack path (in 2D) or crack sur-

face (in 3D [7]) and this geometry can be used to find

normal vector for contacting surfaces. Because of this

difference, contact between crack surfaces can be more

accurate than contact between two materials. For ex-

ample, an alternative to modeling multimaterial con-

tacting problems is to use single-material MPM but in-

sert crack surfaces between all contact surfaces. This

approach, which is analogous to finite element method

of pre-defining master and slave surfaces, is limited to

relatively simple problems with prior knowledge of all

contact situations. Contact in multimaterial MPM does

not have this limitation.

3 Results and Discussion

For validation, we selected the non-trivial (but still sim-

ple) sliding block problem shown in Fig. 2. The nor-

mal force is ramped up to a constant normal stress of

N = Fn/(lb) from 0 to t1 (which was done to min-

imize dynamic effects). The tangential force is then

ramped from t2 to tf until tangential contact stress,



8 Nairn, Bardenhagen, and Smith

h

𝒍
Ft

Fn

b = Thickness

t1 t2 ti tf

tsSt
re

ss

S
N

RN

N

Fig. 2 The sliding block problem. The dimensions used were
l = 40 mm, h = 15 mm, and b = 1 mm. The supporting
base was 140 × 25 mm (and supported by fixed displacement
boundary conditions), the sliding block was offset 10 mm from
base’s edge, and the background grid used 5 mm cells.

S = Ft/(lb), reaches R times the normal stress. Ft and

Fn were spread out equally as point loads to the parti-

cles along the respective edges. We assumed a friction

law of:

Sslide = (µd + k v(t))N + Sa (41)

where µd = 0.2 is the dynamic coefficient of friction,

k v(t) implements a velocity dependent coefficient of

friction, and Sa is an adhesion term. A rigid-body, an-

alytical solution for both block velocity and for total

friction work is in the appendix. The MPM model,

however, used nonrigid materials with E = 2500 MPa,

ν = 0.33, ρ = 1 g/cm3, and Cv = 200 J/(kg-K). All cal-

culations used t2 = t1 = 0.25tf and R = 1. The total

normal force, Fn, was adjusted such that the maximum

velocity, vmax, at the end of an 85 mm sliding zone

would always be less than 2% of the material’s tensile

wave speed (or vmax = 31.6 m/sec) for contact modeled

by Coulomb friction only (k = Sa = 0). The same con-

ditions where then used for other contact laws as well

to enhance comparisons. Finally, this simple multimate-

rial MPM model had only one interface, which allowed

specifying the contact normal as n̂ = (0, 1). Specifying

the normal allowed us to validate friction laws without

concern about whether or not multimaterial MPM was

correctly finding the normal vector.

Figure 3 compares MPM results for average veloc-

ity of the sliding block particles compared to solution

for a sliding rigid block using three different friction

laws. The three friction laws are simple Coulomb fric-

tion (with µ = 0.2), friction when the coefficient of

friction depends linearly on velocity (with µ = 0.2 and

kvmax = 0.5), and friction with adhesion (with µ = 0.2

and Sa = 0.3N). The solid lines are MPM results and

the dotted lines are the rigid body solutions (given in

the appendix). For all friction laws, the MPM results

agree nearly exactly with the rigid body solution.

The simulations in Fig. 3 used a regular, rectilin-

ear grid with the horizontal surface along a grid line.
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µ = 0.2, Sa = 0.3Fn

µ = 0.2, kvmax = 0.5

Fig. 3 Average velocity of the particles in the sliding block as
a function of time for three different friction laws. The solid
lines are MPM results and the dotted lines are theoretical
results for sliding of a rigid block.

To test if our algorithm can handle angled surfaces, we

re-ran the Coulomb friction example for surfaces from

0◦ to 45◦ and the results were essentially identical. We

conclude that MPM can handle contact on arbitrary

surfaces. Needless to say, modeling of contact on curved

surfaces, must have a background ground that can re-

solve curvatures and normals of the contacting surfaces.

We were able to modal all straight, angled surfaces us-

ing the same 5 mm cells that worked for horizontal sur-

faces in Fig. 3.

Using simple Coulomb friction with a higher static

coefficient of friction (µd = 0.4 and µs = 0.2) did not

agree with rigid body theory because sliding started

earlier than predicted by static conditions. The sim-

ulated onset of sliding was not improved by chang-

ing resolution, time step, or sliding rate. The question

remains — why does the proposed MPM method for

friction handle coefficient of friction that increases lin-

early with velocity but cannot handle one that drops in-

stantly from static to dynamic conditions? The linearly-

increasing function is smooth (leading to continuous

sliding acceleration) and the coefficient of friction in-

creases as velocity increases. In contrast, the static/dy-

namic law has a discontinuity in coefficient of friction

(leading to discontinuous sliding acceleration) and the

coefficient of friction decreases with velocity. To test

which of these two differences causes the simple imple-

mentation to fail, we implemented a new law having a

“smooth” transition from µs to µd:

Sslide =
µsv1/2 + µd|∆v′i|
v1/2 + |∆v′i|

N (42)

By this law, the coefficient of friction smoothly tran-

sitions from µs at zero sliding velocity to µd at high

sliding velocity. It is half way from µs to µd at sliding

velocity of v1/2, which is an adjustable parameter. The
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Fig. 4 Average velocity of the particles in the sliding block
as a function of time for a smooth transition from µs = 0.4
to µd = 0.2 using the law in Eq. (42) as a function of v1/2 (in
m/sec). The solid lines are MPM results. The three dotted
lines are theoretical results for sliding of a rigid block for
µs = µd = 0.2, µs = 0.4 and µd = 0.2, and µs = µd = 0.4,
respectively (from left to right).

reason for choosing this law is because Sslide can be

found analytically after substituting into Eq. (21) for

velocity to get:

Sslide
N

=
D∗

N∗ + µd

2
−

√√√√( D∗

N∗ − µd
2

)2

− (µs − µd)k∗
N∗

(43)

where D∗ = dt + v1/2mi,red, N
∗ = NAc∆t, and k∗ =

v1/2mi,red. This law is applied only when dt > −µsdn,

otherwise the surfaces stick due to static friction.

Simulation results as a function of v1/2 for the law

in Eq. (42) are given in Fig. 4. Besides having two co-

efficients of friction, µs = 0.4 and µd = 0.2, all other

parameters are the same as for Fig. 2. The three dot-

ted lines are rigid-body solutions. The one in the mid-

dle is the expected rigid sliding result with static and

dynamic coefficients of friction. Notice the kink in the

velocity curve due to discontinuity in sliding accelera-

tion at the onset of sliding. The dotted lines on the left

and right edges are simple Coulomb friction laws for

µs = µd = 0.2 or 0.4, respectively, and given for refer-

ence. The solid lines are MPM simulation results. For

the smooth transition law in Eq. (42), the simulation

correctly matches the µs = µd = 0.4 as v1/2 becomes

large (≥ 1000 m/sec). As v1/2 is reduced, the results

transition toward the static/dynamic predictions and

matches them very well for v1/2 = 0.05 m/sec. If v1/2 is

made too small, however, the sliding starts earlier than

expected. After starting, the sliding moves with the

predicated dynamic coefficient of friction, but an offset

between simulation and prediction persists. Apparently,

MPM can handle a decreasing coefficient of friction, but
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Fig. 5 Total work of friction in the sliding block problem as
a function of time for three different friction laws. The solid
lines are MPM results and the dotted lines are theoretical
result for sliding of a rigid block.

if it changes too abruptly (e.g., v1/2 < 0.05 m/sec) the

simulation results may give different results for onset

of sliding then expected by simple stick conditions. We

speculate that one or a few nodes commence sliding

early due to dynamic fluctuations in forces. If the law

has an abrupt change in coefficient of friction, the re-

sulting discontinuity in acceleration acts as an impact

pulse that causes neighboring nodes to commence slid-

ing as well. Once most nodes are sliding, the simulation

proceeds with the dynamic coefficient of friction. The

only solution is to limit the rate of change in coeffi-

cient of friction using a sufficiently smooth function.

Although the law in Eq. (42) is one potential option, it

is likely that the choice of v1/2 = 0.05 m/sec may need

to change for other problems.

Figure 5 gives the results for the total work of fric-
tion (i.e., frictional heating) corresponding to the slid-

ing results in Fig. 3. The dotted lines are predictions

given by equations in the appendix; the solid lines are

MPM results. The MPM results and predictions agree

well. When MPM simulations were run using either first

order or second order analysis, the results were indistin-

guishable. These simple friction laws are continuously

sliding with acceleration that is monotonically increas-

ing with time. These specific conditions apparently led

to well-controlled simulation with ft ≈ SslideAc and

therefore W2 �W1. As a result, the inclusion of second

order acceleration term in heating effects was negligible.

Although second-order frictional work calculations

were negligible for the simple problem in Fig. 2, the

term becomes more important under conditions of non-

continuous sliding, acceleration that changes sign, and

high contact forces. These conditions describe the rub-

bing problem in Fig. 6. Here the block was loaded slowly

with Fn until stress reached 100 MPa and then the top

5/6 of the left and right edges were moved by rigid
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t1

N = 100 MPav(t)

v(t) = vmaxsin(ω(t-t1))

Fig. 6 The oscillating block problem. The dimensions used
were l = 40 mm, h = 15 mm, and b = 1 mm. The supporting
base was 60 × 25 mm (and supported by fixed displacement
boundary conditions), the sliding block was offset 10 mm from
base’s edge, and the background grid used 2.5 mm cells.

blocks moving with sinusoidal velocity

v(t) = vmax sinω(t− t1) for t > t1 (44)

where ω = 2vmax/xmax. With this velocity, the block

is rubbing with an amplitude of xmax reaching a max-

imum velocity of vmax. We set xmax = 0.1 mm and

vmax to 0.01% of the material’s wave speed. For the

same material properties used in Fig. 2, these resulted

in vmax = 0.158 m/sec and period of the oscillation

of 2π/ω = 1.987 msec. The contact law was simple

Coulomb friction with µ = 0.5.

This oscillating block problem starts in stick condi-

tions. Once the velocity increases enough, it starts to

slide, but when the velocity drops again, it will re-enter

stick conditions. We simulated one stick-slide-stick in-

terval. During the sliding phase, frictional heating oc-

curs and we monitored the total heat generated by

that sliding. In explicit computational mechanics, the

Courant-Friedrichs-Lewy condition (CFL condition) is

a necessary condition for convergence. It states that the

time step must satisfy:

∆t = C
∆x

v
(45)

where ∆x is minimum grid spacing (2.5 mm), v is bulk

wave speed of the material (1924 m/sec), and C is the

CFL factor which must be less than or equal to one.

Although standard MPM calculations converge with

C ≤ 1, we found that the oscillating block problem re-

quired a smaller time step for accurate frictional heating

results. Figure 7 plots total frictional work as a function

of C calculated by either first order heating, Eq. (31), or

second order heating, Eq. (34) or (36). Although we do

not have an analytical solution for expected heat gen-

eration, the two methods should converge to the same

results as C approaches zero, and indeed they do. The

second order heat analysis, however, converges faster.

A second order heating analysis gets good results for
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Fig. 7 Total work of friction in the oscillating block problem
as a function of the CFL time step factor. The two curves are
for frictional heat found by first or second order methods.

C < 0.5 while accurate results using first order heating

would require the time step to be 10 times smaller.

For an important practical problem, we looked at

high-rate loading of PBX. A concern in these materi-

als is that frictional heating during rapid loading might

cause enough heating to cause detonation [6]. A 2D sim-

ulation for the idealized geometry we used is shown in

Fig. 8. The PBX material is confined on three walls and

the fourth wall was pushed at 3.07 m/sec (which was

1% of the bulk wave speed for the HMX particles in

the PBX). The total modeled area was 240 × 240 µm

meaning the loading strain rate was 2.6×104 sec−1. The

explosive particles were HMX particles and represented

by elliptical particles shown in various shades of gray.

The remaining space in white was filled with a plas-

tic binder. Both materials were modeled with a Mie-
Grüneisen pressure response [18] and an elastic shear

response. The HMX added elastic-plastic yielding in

shear. The material properties are given in Table 1.

The background mesh had 4 × 4 µm cells each filled

with four 2×2 µm particles. As indicated by the shades

of gray for HMX particles, the particles were modeled

as different materials, albeit with identical properties.

This approach allows MPM to recognize them as differ-

ent materials and therefore implement frictional contact

between particles or between particles and binder. The

locations where three materials meet require approx-

imate methods for handling more than two materials

on a node. These different contacting surfaces could be

modeled with different friction laws, but for this exam-

ple all contact used Coulomb friction with µ = 0.3. Un-

like previous sliding simulations, it was not possible to

specify the contacting normals in the PBX simulations.

We instead found the normal using the maximum gradi-

ent approach (MVG) and used the displacement option

when calculating surface separation, δn (Eqs. (9) and
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Table 1 Material properties used for the PBX simulations of
HMX in a plastic binder. The material models used a Mie-
Grüneisen pressure response [18] and elastic shear response.
The HMX material had elastic-plastic yielding at the given
yield stress.

Property HMX Binder

C0 (m/sec) 3070 1222

S1 1.79 3.4463

S2 – -3.447

γ0 0.7 0.583

Density (g/cm3) 1.891 0.935

Shear Modulus (GPa) 4.81 1.0

Yield Stress (MPa) 260 –

Cv (J/(kg-K)) 950 2280

v(t)

Fig. 8 The rapidly loaded PBX problem. The dimensions
used were 240 × 240 µm. The gray elliptical blocks are HMX
material and the white regions binder material. The rectan-
gles on the edges are rigid materials; three walls were fixed
and the fourth wall was moved at a constant displacement
rate of v(t) = 3.07 m/sec. The background grid used 4 µm
cells.

(10)). The MPM model was constructed by reading an

image of the PBX material, which was stored in a BMP

files with 120×120 resolution and converting each pixel

in the image to a material point in the simulation based

on gray value in the image.

By running simulations with randomly generated

structures, we could look at role of that structure in

friction heating. Here we kept the structure constant

to look at the difference between first and second or-

der heating calculations — the results are in Fig. 9.

The specimen was loaded for 15.8 µs corresponding to

a final strain of 20%. The curves plot the total friction

work during the loading as a function of the CFL fac-

tor for either first order heating or second order heating.

Again, the second order heating converges faster mean-

ing that accurate simulations are possible with a larger

time step. This simulation is likely similar to the oscil-
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Fig. 9 Total work of friction for a specific PBX specimen
loaded at a constant rate for 15.8 mus. The two curves are
for frictional heat found by first or second order methods.

lating block problem. During rapid loading, the speci-

men will encounter stress waves reflecting between the

walls. The stress waves are likely to cause slip and stick

conditions. Furthermore, the large strains lead to high

contact forces. In other words, the use of second or-

der heating is most noticeable for problems involving

oscillations and high contact forces.

4 Conclusions

We have generalized previous MPM methods for con-

tact to handle any friction law. Depending on the form

of the friction law, the contact calculations may require

extra work. For example, a friction law with an adhesion
term will depend on a calculated contact area, Ac, at

each node. Implementation of velocity-dependent fric-

tion laws needs to be derived from the final sliding ve-

locity. This complication means that most friction laws

will require numerical methods to find sliding force. All

laws tested agreed very well with predictions in simple

problems.

We derived first and second order approaches to

frictional heating based on treating the sliding veloc-

ity as constant or on including effects of sliding accel-

eration and the possibility of slip and stick within a

time step. For many problems, the second order heat-

ing terms are negligible, but for at least one real-world

problem (high-rate loading of PBX), the addition of

second order heating improved temporal convergence.

Because the numerical effort needed to include second

order heating is negligible compared to savings in tem-

poral convergence, our recommendation is to use second

order heating for all MPM contact simulations with fric-

tional heating.
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Appendix

For the sliding block problem in Fig. 2 the sliding trac-

tion for t > t2 is:

S =
RN(t− t2)

ts
(46)

where ts = tf − t2 is total time for increasing tangential

force. The sliding will start when this traction reaches

the zero-velocity sliding force using the static coefficient

of friction (µsN + Sa), which occurs when

ti = t2 +
1

R

(
µs +

Sa
N

)
ts (47)

Once sliding begins, the total force in the x direction is

Ft − lb
(
(µd + k v(t))N + Sa

)
, which leads to an accel-
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eration of:

a(t) =
dv(t)

dt
= α(t− ti) + β − γv(t) (48)

where

α =
RN

ρhts
, β =

(µs − µd)N
ρh

, and γ =
kN

ρh
(49)

Solving the above differential equation for v(t), the slid-

ing velocity is

v(t) =

{
1
2αT

2 + βT for k = 0

ψT + φ
(
1− e−γT

)
for k 6= 0

(50)

where

T = t− ti, ψ =
α

γ
, and φ =

β − ψ
γ

(51)

The total friction work is

Q(T ) = lb

∫ T

0

(
(µd + k v(t))N + Sa

)
v(t) dt (52)

For k = 0, the result is

Q(T )

lb
=
(
µdN + Sa

) [1

6
αT 3 +

1

2
βT 2

]
(53)

For k 6= 0, the result is
Q(T )

lb
=
(
µdN + Sa

) [1

2
φT 2 + ψ

(
T − 1− e−γT

γ

)]
+kN

[
1

3
ψ2T 3 + φ2

(
T − 3− 4e−γT + e−2γT

2γ

)

+ψφ

(
T 2 − 2

γ2

(
1− (1 + Tγ)e−γT

))]
(54)


