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Abstract: The “multimaterial” version of the material
point method (MPM) extrapolates each material to its
own velocity field on a background grid. By reconciling
momenta on nodes interacting with two or more materi-
als, MPM is able to automatically handle contact without
any need for special contact elements. This paper extends
multimaterial MPM to automatically handle imperfect
interfaces between materials as well. The approach is
to evaluate displacement discontinuity on multimaterial
nodes and then add internal forces and interfacial energy
determined by an imperfect interface traction law. The
concept is simple, but implementation required numer-
ous corrections to make the analysis mesh independent,
to work for any stiffness interfaces, and to find the in-
terfacial normal vector. Several examples illustrated the
need and demonstrated the validity of the various correc-
tions. A composite mechanics problem found the bulk
modulus of a particulate filled composite as a function in-
terface quality. This calculation revealed a scaling effect
— interfaces in nanoparticle composites must be better
than interfaces in the corresponding microparticle com-
posites for the nanocomposite mechanical properties to
be as good as the conventional composite properties.

keyword: Material point method, MPM, Imperfect in-
terfaces, multimaterial, contact, nanocomposites

1 Introduction

Modeling interfaces, which are often finite-thickness in-
terphases, in composite materials is difficult. In numeri-
cal modeling, it would seemingly be straight-forward to
discretize interphase zones and thereby explicitly model
all effects. This approach has two problems. First, inter-
phase zones may be much smaller than the bulk materi-
als. Resolving both bulk materials and a thin interphase
would require a highly refined model, which may ex-
ceed computational capacity. Second, interphase proper-
ties may be unknown and/or may vary within a transition

zone from one material to another. Furthermore, finding
interphase properties is not just a matter of extra experi-
ments. More commonly, an interphase is not accessible
as a bulk material, which means its properties would be
unmeasurable. New methods for interphase modeling are
needed to overcome these challenges. This need is espe-
cially important in nanocomposites because the amount
of interphase per unit volume of reinforcement greatly
exceeds the amount of interphase in composites with mi-
cron or larger reinforcement phases. As a consequence,
interphases are expected to play a larger role, good or
bad, in nanocomposite properties.

One way to model interphases is to abandon attempts
for explicit modeling and instead replace 3D interphases
with 2D interfaces (Hashin [1990]). The interphase ef-
fects are reduced to modeling the response of 2D inter-
faces due to tractions normal and tangential to the interfa-
cial surface, which can be modeled by interface traction
laws. Elimination of 3D interphases removes the resolu-
tion problem. The use of interface traction laws replaces
numerous unknown and potentially unmeasurable inter-
phase properties with a much smaller number of interface
parameters. If interface traction laws can be determined,
one can potentially model interphase effects well. This
approach to interphase modeling was developed for an-
alytical modeling of interface effects in composite ma-
terials (Hashin [1991a,b], Nairn and Liu [1997], Nairn
[2004]) and for wave transmission at damage planes (An-
gel and Achenbach [1985]).

Numerical modeling of interfaces requires methods for
implementing interface traction laws. In finite element
analysis (FEA), one can use interface elements (Nairn
[2007]) or specialized cohesive elements (Needleman
[1987]). In the material point method (MPM) with ex-
plicit cracks (Nairn [2003]), it is similarly possible to im-
plement interfaces (Nairn [2007]) or cohesive law trac-
tions on crack surfaces (Nairn [2009]). In other words,
the crack is modeling an interface instead of a crack.
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Both FEA and crack-based MPM methods require ex-
plicit introduction of interface paths prior to the start of
the analysis, which complicates discretization and may
limit the range of possible simulations. Another ap-
proach available in MPM is the so-called “multimaterial”
approach where each material extrapolates to its own
field of variables on a common grid and multimaterial
algorithms adjust the response on every node containing
particle information from two or more materials. Previ-
ously, this method was used to model contact physics,
which, to date, has only considered Coulomb friction
or stick conditions (Bardenhagen and Brackbill [1998],
Bardenhagen, Guilkey, Roessig, Brackbill, Witzel, and
Foster [2001]). This paper extends multimaterial MPM
to modeling interfaces with traction laws. A crucial step
in the algorithm is finding the normal to the interface.
This paper examines the influence of normal vector cal-
culations and offers several strategies for best accuracy.
These new normal-vector methods are recommended for
both contact and interface calculations.

2 Multimaterial Contact and Interfaces

2.1 Imperfect Interface Theory

Replacing a 3D interphase with a 2D interface in com-
posite mechanics is known as “imperfect interface the-
ory” (Hashin [1990]). To model 3D interphase effects,
the 2D interface is allowed to develop displacement dis-
continuities. For an isotropic interphase, it suffices to re-
solve interfacial traction into normal and tangential trac-
tions (Tn and Tt) and assume they are functions of normal
and tangential displacement discontinuities ([un] and [ut ])
at the interface:

Tn = fn([un]) and Tt = ft([ut ]) (1)

Interfaces in composite materials may develop poten-
tial energy that is needed for effective property analysis
(Hashin [1992]). For an elastic interface, interfacial po-
tential energy is

φi =
∫

Si

(∫ uuu

0
TTT · [uuu]

)
dS (2)

where Si is the interfacial area.

Most analytical modeling and all examples below make
the simplest assumption that traction laws are linear and
elastic. The tractions become:

Tn = Dn[un] and Tt = Dt [ut ] (3)

and interfacial energy becomes

φi =
1
2

∫
Si

(
Dn[un]

2 +Dt [ut ]
2)dS (4)

Notice that all 3D interphase properties have been re-
duced to just two interface parameters, Dn and Dt . These
interface stiffnesses range from zero, for a debonded in-
terface with no tractions, to infinity, for a perfect interface
with no displacement discontinuity.

2.2 Detecting Multimaterial Interfaces and Contact

In MPM, bodies are discretized into particles on a back-
ground grid (Sulsky, Chen, and Schreyer [1994]). In
each time step, particle mass and momenta along with
other quantities needed for algorithms, are extrapolated
to nodes on the grid. In multimateral MPM, each mate-
rial extrapolates to its own field. For example, material-
specific mass and momenta would:

mi, j = ∑
p∈ j

Sipmp (5)

pppi, j = ∑
p∈ j

Sippppp (6)

where i is a node, j is a material type, and summations
are are over all particles of each type. Sip are generalized
shape functions for particle p at node i (Bardenhagen and
Kober [2004]) and mp and pppp are the mass and momen-
tum of particle p. After extrapolation, nodes containing
only a single material type proceed by standard MPM
methods, but nodes with two or more interacting materi-
als have to detect if the materials are in contact, imple-
ment contact laws (if needed), and, in this new algorithm,
implement imperfect interfaces.

Figure 1 shows an interface between two materials, a and
b, with a normal vector (that varies along the interface),
n̂, directed from a to b. Nodes indicated with a dot, such
as node i, are nodes involving both materials. Two key
tasks at such nodes are to determine if the two materials
are in contact and to determine their separation. Previ-
ous multimaterial MPM assumed materials are in con-
tact when they are approaching each other, i.e., when
∆vvvi · n̂ < 0, where ∆vvvi = vvvi,b−vvvi,a. This condition is nec-
essary, but not sufficient for accurate interface modeling;
additional calculations are needed.

First define, ∆pppi,a as the momentum change applied to
material a on node i for its velocity to change to the cen-
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Figure 1 : Material points in a 2D MPM model having
two different material types on either side of a contact
or interfacial surface. The normal vector n̂ is defined as
directed from material a to material b. The black dots
indicate nodes (such as node i) that have multimaterial
fields.

ter of mass velocity:

∆pppi,a = mi,avvv(c)i − pppi,a (7)

where vvv(c)i is the center of mass velocity:

vvv(c)i =
∑ j pppi, j

m(c)
i

=
∑ j mi, jvvvi, j

m(c)
i

(8)

and m(c)
i = ∑ j mi, j is the total nodal mass. To anticipate

handling nodes with more than two materials, we replace
material b by a virtual material b that lumps all materials
except a (i.e., mi,b = m(c)

i −mi,a and pppi,b = ppp(c)i − pppi,a).
Using Eq. (7), the velocity difference is:

∆vi = vvvi,b−vvvi,a =
ppp(c)i − pppi,a

m(c)
i −mi,a

− pppi,a

mi,a

=
m(c)

i

mi,a(m
(c)
i −mi,a)

∆pppi,a (9)

The first calculation is to determine if ∆vvvi · n̂ < 0, which
is equivalent to determining if ∆pppi,a · n̂ < 0. If this check

fails, the two materials are assumed to be separated (i.e.,
not in contact). When a multimaterial MPM simulation
is only modeling contact, the velocity field for material a
is left unchanged. When implementing imperfect inter-
faces, however, tractions may exist for both contact and
separated conditions, so this algorithm continues.

The next task is to calculate the separation between the
two materials, which is done by extrapolating particle po-
sition to the grid using standard MPM methods:

mi, jxxxi, j = ∑
p∈ j

Sipmpxxxp (10)

Again lumping all materials except a into virtual b, the
separation vector is:

δδδi = xxxi,b−xxxi,a =
m(c)

i

m(c)
i −mi,a

(
xxx(c)i −xxxi,a

)
(11)

where xxx(c)i = ∑ j mi, jxxxi, j/m(c)
i is the center of mass posi-

tion. Contact is now determined by the component of the
separation vector normal to the surface or

δn = δδδi · n̂ (12)

If δn < 0, the materials are in contact, otherwise they are
separated. But, inherent imprecision of surfaces in MPM
(or any particle method) causes a problem. Consider the
two surfaces in Fig. 1. When calculations start, their
nodal positions extrapolated to common nodes will show
a positive separation. Calculations with MPM shape
functions show that the calculated separation based on
positions of two materials precisely in contact is δn ≈
0.8∆x rather than zero (Lemiale, Hurmane, and Nairn
[2010]). Two approaches can resolve this issue:

1. Extrapolate displacements instead of position using

mi, jxxxi, j = ∑
p∈ j

Ni(xxxp)mp

(
xxxp−xxx(0)p

)
(13)

where xxx(0)p is the initial position for particle p. Now the
separation for two materials in contact when calculations
start is zero and subsequent δn < 0 will indicate contact.

2. Define a contact-position offset, such as δcon = 0.8∆x,
and correct the normal separation using:

δ
′
n = δδδi · n̂−δcon (14)

(see below for revised correct in irregular meshes).
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Both options should be available in multimaterial cal-
culations. The first (or displacements) method requires
material contact situations to exist in the initial state and
requires relative displacements between materials to be
modest. This situation is common in interface modeling.
The second (or offset) method must be used when these
requirements are not met, which is common in many con-
tact problems. All calculations in this paper involved in-
terfaces and small displacements and thus used the dis-
placements method.

If both ∆pppi,a · n̂ < 0 and δn < 0, the two materials are de-
termined to be in contact; otherwise they are separated.
Some codes implement an additional screening based
on total nodal volume at a multimaterial node (Guilkey
[2010]). If that volume is less than a chosen cutoff frac-
tion of the element volume, then both contact and inter-
face calculations are skipped. These nodes appear at in-
terfaces near free edges. Although they might actually by
in contact or have an interface, in can be better to ignore
them (see results and discussion section for examples).

2.3 Imperfect Interface and/or Contact Forces

The next task is to implement imperfect interface or con-
tact laws. In multimaterial simulations, each pair of ma-
terials can be described by contact (e.g., friction) or as an
imperfect interface, but not both. If a pair is interacting
only by contact and is separated, no changes are made at
that node; otherwise calculations proceed as follows:

1. Find the tangent vector in the direction of the sur-
face opening displacement. Given the normal sepa-
ration, δn, and normal vector, n̂, the tangent vector
is

δt t̂ = δδδi−δnn̂ (15)

where δt = δδδi · t̂ is displacement difference in the
tangential direction.

2. If two materials are interacting by contact, change
the momentum for material a. If they interact by
stick, change material a’s momentum by ∆pppi,a. If
they interact by frictional contact and ∆pppi,a · t̂ >
−µδn, where µ is the coefficient of friction, the
material pair is sliding and the momentum change
should be

∆ppp′i,a = δn(n̂−µt̂) (16)

otherwise the material pair is stuck and material a’s
momentum changes by ∆pppi,a. This step is iden-
tical to previously-derived MPM contact (Barden-
hagen, Guilkey, Roessig, Brackbill, Witzel, and
Foster [2001])

3. If the two materials are connected by an interface,
this algorithm applies an internal force to the node
rather then changing the nodal momentum. The
logic is that an interface is a material property
leading to interfacial tractions and should behave
similarly to material constitutive laws that lead to
stresses and internal forces. The internal force for
material j on node i, which is added to other MPM
internal forces, is:

f (int)
i, j = (Dnδnn̂+Dtδt t̂)Ai (17)

and the interfacial energy at node i is

U (int)
i = (Dnδ

2
n +Dtδ

2
t )Ai (18)

where Ai is interfacial contact area. These terms
assume a linear interface law; any other interfacial
traction law could be substituted at this step.

Calculation of Ai needs to account for the number of in-
teracting nodes along the interface, which is influenced
by location and orientation of the interface as illustrated
in Fig. 2 for 2D calculations. The needed correction is
found by extrapolating particle volume (or particle area
in 2D):

Ωi, j =

{
∑p∈ j SipVp 3D
∑p∈ j SipAp 2D

(19)

where Vp or Ap are volume or area of the deformed par-
ticle domain. Consider a 2D interface close to a grid line
when particles are close to their starting positions (1/4
points of cells with Sip as indicated; see Fig. 2A). The
nodal domains at nodes i and j would be Ωi,a = Ωi,b =
Acell/2, Ω j,a = 0, and Ω j,b = Acell . Here Acell = ∆x∆y,
where ∆x and ∆y are grid spacings in the x and y direc-
tions. The total nodal domains are Ωi = Ωi,a +Ωi,b =
Ω j = Acell . The contacting area is obviously Ai = t∆y,
where t is thickness, or Ai = tΩi/∆x. Furthermore, node
i is a multimaterial node, but node j is not. In con-
trast, when the interface is at element midplanes, both
nodes i and j are multimaterial nodes with nodal do-
mains of Ωi,a = Ω j,b = 7Acell/8, Ωi,b = Ω j,a = Acell/8,
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and Ωi = Ω j = Acell (see Fig. 2B). If contacting areas are
unchanged, i.e., Ai = tΩi/∆x and A j = tΩ j/∆x, the to-
tal interfacial force would be double the force in Fig. 2A
because it involves twice as many nodes. For these two
cases, however, total interfacial force should be the same.
One solution is to scale the contact area by the distance
from the interface to the node as estimated by the mis-
match in nodal domains for the two materials. A reason-
able function that gets the correct scaling for both Fig. 2A
and B, and correctly drops to zero as one material van-
ishes is:

Ai =
t
√

2Ωi min(Ωi,a,Ωi,b)

∆x
(20)

This scaling results in Ai ≈ tAcell/∆x and A j ≈ 0 for
Fig. 2A and Ai ≈ A j ≈ 2Acell/(2∆x) for Fig. 2B; the total
interfacial force becomes independent of interface loca-
tion. In 3D problems, Ωi is volume and therefore t is
dropped in Eq. (20). In axisymmetric MPM (Nairn and
Guilkey [2013]), the t is replaced by ri, which is the ra-
dial position of the node, to provide interface forces per
radian.

Figure 2C shows a tilted interface, which sometimes
needs an additional correction. Imagine an ellipsoid cen-
tered on a node and consider the plane through that node
with normal vector n̂. Assume that the volume associated
with the interfacial contact matches the cell volume such
that

Vcell = ∆x∆y∆z = h⊥Ac (21)

where Ac is the contacting area and h⊥ is an effective
thickness of the contacting volume perpendicular to the
contacting surface. Once h⊥ is known, Ai can be adjusted
by replacing ∆x with h⊥. Three h⊥ methods were tried:

1. Let h1 and h2 be distances from the origin to the
ellipsoid along the tangential vector, t̂, and along
a second tangent defined by n̂ × t̂, then h⊥ =
∆x∆y∆z/(h1h2).

2. Let h⊥ be the distance along the normal vector to
the ellipsoid.

3. Let h⊥ = ∆x∆y∆z/Ac where Ac is the cross sectional
area that the plane with normal n̂ makes with the
entire element.

i

i
j

j

h 1

∆x

∆
y

n̂ = (nx, ny)

1/16

3/16

3/16

9/16

A.

B.

C.

Figure 2 : Various orientations of an interface including
at a grid line (A), an elements mid plane (B), and titled
with respect to global x-y-z axes. The numbers on parti-
cles in A are values of shape functions when particles are
near their initial positions. C shows an ellipse around the
center node circumscribed by neighboring cells.
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Calculations (see results and discussion) showed that
method 1 best accounts for tilted planes. That method
evaluates to

h⊥ =


√

n2
x∆x2 +n2

y∆y2 2D

∆x∆y∆z
√(

a2
1 +a2

2 +a2
3

)(
b2

1 +b2
2 +b2

3

)
3D

(22)

where nx and ny are normal vector components, ai =
t̂2
i /∆x2

i , bi =(n̂× t̂)2
i /∆x2

i , and i = x, y, and z. For a regular
mesh with ∆x = ∆y = ∆z, h⊥ is always equal to ∆x; i.e.,
this extra correction is only needed for meshes with un-
equal cell lengths. The 2D result applies to axisymmetric
MPM as well. Note that h⊥ is also useful for correcting
extrapolated positions by changing to δcon = 0.8h⊥.

Finally, as Dn → ∞ and Dt → ∞, the interface becomes
perfect with zero displacement discontinuity, but in ex-
plicit integrations, large Dn or Dt will eventually be too
stiff to converge. A practical solution is to monitor in-
ternal forces. If they exceed the force required to move
the particle to the center of mass, that node is processed
differently. Integrating nodal velocity over time step k,
nodal position for the center of mass updates by midpoint
rule to:

uuu(k+1)
i,c = uuu(k)i,c +

∆t

m(k)
i,c

(
ppp(k)i,a + ppp(k)i,b +

∆t
2
( fff (k)i,a + fff (k)i,b )

)
(23)

where fff (k)i, j are MPM forces for each material besides in-
terface forces. The center of mass evolves independently
of interface tractions. Materials a and b at the interface,
however, evolve separately by:

uuu(k+1)
i,a = uuu(k)i,a +

∆t

m(k)
i,a

(
ppp(k)i,a +

∆t
2
( fff (k)i,a + fff (int,k)

i,a )

)
(24)

uuu(k+1)
i,b = uuu(k)i,b +

∆t

m(k)
i,b

(
ppp(k)i,b +

∆t
2
( fff (k)i,b − fff (int,k)

i,a )

)
(25)

where force conservation was used to find interface force
on material b as opposite of the force on material a.
The interface force that would cause materials a and b
to evolve to the center of mass position (i.e., uuu(k+1)

a =

uuu(k+1)
b = uuu(k+1)

c ) is:

fff (int,k)
i,a =

2mred

(∆t)2

(
uuu(k)b −uuu(k)a

)
+

2∆pppi,a

∆t
+∆ fff i. (26)

where

mred =
m(k)

i,a m(k)
i,b

m(k)
i,a +m(k)

i,b

and ∆ fff i =
m(k)

i,a fff (k)i,b −m(k)
i,b fff (k)i,a

m(k)
i,a +m(k)

i,b

(27)

If calculated interfacial force in the normal or tangential
direction exceeds the normal or tangential components of
the force in Eq. (26), that node direction should be con-
verted to a node with stick contact and having zero inter-
facial energy (i.e., a perfect interface); otherwise the in-
terfacial force is added to internal forces. It is convenient
in MPM codes to implement interface calculations af-
ter extrapolating material velocity fields, but before other
forces are known (i.e., along with contact calculations).
In this location, ∆ fff i will be unknown, but because it is
second order (when ∆t is small), it can be ignored.

A code refinement for efficiency is to “flag” either Dn or
Dt as being a infinite or perfect. When these flags are
set, forces are always limited and therefore that direc-
tion reverts to stick contact with zero interfacial energy.
Because the forces are always limited, the above calcula-
tions for maximum force can be skipped.

Prior work on imperfect interfaces in MPM implemented
them on explicit cracks (Nairn [2007]). That paper did
not address the need to correct contact area by relative
volumes, to account for tilt in irregular meshes, or to limit
forces for stiff interfaces. Those corrections, which are
derived above, should be used for interfaces on cracks
as well. Because the examples in Nairn [2007] always
used cracks along grid lines in regular meshes with either
sufficiently low stiffness or “flagged” perfect interfaces,
those examples did not need these new corrections.

2.4 Rigid Materials

A useful feature in MPM is to allow rigid material par-
ticles that move at a prescribed velocity. Because they
are rigid, their velocity cannot be changed by forces, but
they can apply forces to nonrigid particles through con-
tact or interfacial interactions. For interactions between
non-rigid material a and rigid material b, the above equa-
tions change to:

vvv(c)i = vvvi,b (28)

∆pppi,a = −mi,a
(
vvvi,a−vvvi,b

)
(29)

∆v =
∆pppi,a

mi,a
(30)

δδδi = xxxi,b−xxxi,a (31)
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The remaining equations are the same except momentum
changes and internal forces are applied only to material
a.

2.5 Finding the Normal Vector

Experience in contact and interface simulations supports
this assertion — MPM contact and interface calculations
are very accurate provided the normal vector is accu-
rate (Lemiale, Hurmane, and Nairn [2010]). Original
MPM contact found the normal from the mass gradi-
ent for each material (Bardenhagen, Guilkey, Roessig,
Brackbill, Witzel, and Foster [2001]). Because methods
described below compare gradients between materials,
which might have different densities, it is preferable to
use a domain gradient:

‖nnni,a‖nnni,a =−∇Ωi,a (32)

where nnni,a is an unnormalized, outward directed normal
for material a at node i. In MPM, a good way to find
domain gradients is to extrapolate using shape function
gradients:

gggi, j =

{
∑p∈ j GGGipVp 3D
∑p∈ j GGGipAp 2D

(33)

where GGGip are generalized shape function gradients (Bar-
denhagen and Kober [2004]). In axisymmetric MPM,
gggi, j would treat nodes at r = 0 as being on the edge
with a non-zero r component. But in realty, such nodes
are at the core of the object and therefore by symme-
try, the r component must be set to zero (Nairn and
Guilkey [2013]). Curiously, gggi, j = −Ωa(xxxi) leading to
||n̂i,a||n̂i,a = gggi, j (Bardenhagen [2012]).

Unfortunately, MPM calculations for material a based
solely on gggi,a frequently give poor results. The follow-
ing replacement options are proposed:

Maximum Volume Gradient (MVG): find the normal from
material a or b, whichever has the domain gradient with
the largest magnitude. The logic is that higher gradients
are likely closer to an interface and likely more accurate
than when the magnitude is smaller.

Average Volume Gradient (AVG): find the normal from a
domain-weighted average of gradients from the two ma-
terials — (Ωi,agggi,a−Ωi,bgggi,b)/(2Ωi)

Specific Normal (SN): if the normal can be predeter-
mined, used that specified result rather than domain gra-
dients.

Rigid Material Volume Gradient (RMVG): find the nor-
mal from the rigid material’s domain gradient. In prob-
lems with rigid materials, especially fixed rigid particles,
the gradient from that material is often more reliable than
the gradient from non-rigid particles.

Results below compare calculations using methods
MVG, AVG, and SN. Unfortunately, the best method de-
pends on the problem. MPM code therefore needs to
allow all these options, and potentially may need more
options for new problems.

2.6 Two or More Materials

Contact and interfaces in MPM work best when only two
materials interact at multimaterial nodes. This situation
is most likely to get accurate normals. For efficiency,
contact or interface calculations only need to be done
once. Once completed for material a, the negative mo-
mentum and force changes can be applied to material b’s
field variables without any additional calculations. This
approach conserves momentum, balances forces, and is
more efficient. When calculating interfacial energy (e.g.,
Eq. (4)), that energy should be added only once for each
pair.

When more than two materials are present, the following
algorithm allows calculations to proceed:

1. Iterate through each non-rigid material and find mo-
mentum changes and internal forces for each one us-
ing the method above that lumps all remaining ma-
terials as a virtual material b. Apply changes to each
material separately, but increment interfacial energy
only once for each multimaterial node.

2. If a simulation has different properties between dif-
ferent material pairs (e.g., different coefficients of
friction or interfacial properties), use the properties
for interaction between material a and the remaining
material with the most volume.

3. If one of the materials is a rigid material, implement
rigid contact between each non-rigid material and
the rigid material. In this case, include interfacial
energy for each interaction.

Handling nodes with more than two materials will always
be approximate. In some situations, the approximations
are due to resolution, i.e., the model is not resolving the
materials. But no resolution increase can avoid multiple
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b

c

a i

Figure 3 : Three different materials, a, b, and c, interact-
ing at a single multimaterial node i.

material nodes such as node i in Fig. 3. At such nodes,
the above algorithm adjusts momenta and applies internal
forces, but it does not conserve momentum, apply bal-
anced forces, or find accurate interfacial energy. The sep-
arate material fields simply have insufficient information
for highest accuracy calculations. In general increased
resolution should help. As resolution increases, the num-
ber of nodes along interfaces increases, but the number of
nodes similar to Fig. 3 remains constant. The goal should
be to have the number of multimaterial nodes with more
than two materials be much less than the number with
two materials.

3 Results and Discussion

Figure 4A shows two identical layers connected by an
imperfect interface. The isotropic elastic layers had
E = 2400 MPa, ν = 0.33, and were 4×4×20 mm. One
layer was loaded to constant 0.5 MPa stress on top while
the entire bottom was fixed. The interface was assumed
to be perfect in the normal direction (Dn = ∞) while Dt

was varied. The normal vector used the SN method with
n̂ = (1,0) (normal vector effects are discussed later). In
these dynamic MPM calculations, the load was ramped
up linearly over 0.02 ms and then held constant; grid
damping was used to converge to static results after about
0.4 ms.

The results for total interfacial energy per unit volume
(by Eq. (4)) are given in Fig. 5. The FEA curve is a fi-
nite element analysis result using imperfect interface ele-
ments (Nairn [2007]) with a regular grid of 0.25 mm ele-
ments. The open symbols are 2D MPM results for back-

A B C

Figure 4 : Three sample specimens. A. Two layer spec-
imens loaded on top of one layer. B. A double lap shear
(DLS) specimen with loading on two ends. C. 1/8 of a
3D model for a spherical particle embedded in a matrix
in a cubic array. The dotted circles in A and B show edge
regions that cause problems when calculating interface
normals.

ground cells of 0.5 mm (squares), 0.25 mm (triangles),
and 0.1 mm (circles). The MPM results changed much
less between 0.25 mm and 0.1 mm than between 0.5 mm
and 0.25 mm suggesting they are closed to converged for
0.25 mm. The converged results agree reasonably well
with FEA calculations. The differences were probably
caused by differences in the way FEA and MPM apply
boundary conditions on the top of the specimen. The
solid symbols are 3D calculations to verify 3D interface
methods. In 3D, a single tangential force is applied in the
direction of tangential motion. The dotted curve is a prior
MPM method for MPM imperfect interfaces by using
traction laws on an explicit crack surface along the inter-
face (Nairn [2007]). The crack calculation used 0.25 mm
grid and was essentially identical to the 0.25 mm grid
results here based on multimaterial MPM methods.

Total interfacial energy density in two layer specimens
was a small fraction of the total energy — < 2% at most
— but the interface had a large affect on axial displace-
ments. Figure 6 shows that the y direction displacements
from FEA and MPM for Dt = 5 MPa/mm agree well. The
interface is sharper by FEA due to nature of element-
based solution compared to a particle-based solution in
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Figure 5 : Interfacial energy density in the two layer ex-
ample as a function of Dt with Dn = ∞. The open sym-
bols are MPM results for three different resolutions (0.5,
0.25, and 0.1 mm cells). The solid symbols are 3D MPM
results. The dashed curve is MPM with an imperfect in-
terface on an explicit crack. The solid line is finite ele-
ment analysis.

MPM.

A second example modeled a double lap shear (DLS)
specimen (see Fig. 4B). The interface plays a larger role
in this specimen, which prompted recent work to suggest
its use for measuring Dt (Le and Nairn [2012]). By nu-
merical modeling, total energy U can be evaluated as a
sum of the strain energy and the interfacial energy. This
energy is related to specimen stiffness by k = P2/(2U),
where P is total applied load. By measuring k and com-
paring to modeling results for U where Dt is the only
unknown, one can, in principle, measure Dt . The key
specimen requirement is that k changes by measurable
amounts in the range of actual interfacial properties. This
process worked reasonably well for wood strands with an
interface of wood glue (Le and Nairn [2012]).

The calculations here modeled a DLS specimen with
wood layers, which were transversely isotropic with the
axial wood grain in the y direction. The properties were
EA = 10000 MPa, ET = 1000 MPa, GA = 500 MPa,
νA = 0.2, and νT = 0.3. Each layer was 1 mm thick, the
bond line was 25 mm long, and free ends on top and bot-
tom were 5 mm long. The two tops were loaded to 1 MPa
while the bottom was loaded to 2 MPa (to have balanced
total force). The interface was assumed to be perfect in
the normal direction (Dn = ∞) while Dt was varied. The
normal vector used the SN method with n̂ = (1,0). The
load was ramped up linearly over 0.04 ms and then held

Figure 6 : Axial displacements in two layer specimens
by MPM or FEA when Dt = 5 MPa/mm. The shading
from red to purple shows 11 contours from -0.0005 mm
to 0.005 mm.

constant; grid damping was used to converge to static re-
sults after about 0.22 ms.

Figure 7 plots DLS stiffness for wood specimens. The
open circles are MPM results using the SN normal
method. The filled squares are FEA results. MPM and
FEA results are nearly identical. The solid line is an
analytical solution based on shear-lag analysis (Nairn
[2007]). The theory agrees well with numerical re-
sults, which both validates the theory and further vali-
dates the numerical implementation of imperfect inter-
faces. The open diamonds are MPM results using ex-
plicit cracks rather than multimaterial interfaces. These
results show again that multimaterial mode MPM can ac-
curately model imperfect interfaces. Notice also that over
the range analyzed, DLS stiffness changes by over a fac-
tor of five. In other words, the interface plays a major
role in DLS specimen stiffness. The total interfacial en-
ergy increased to 91% of total energy as Dt decreased to
1 MPa/mm. If DLS stiffness can be measured accurately,
inversion of the curve in Fig. 7 provides a measure of Dt

(Le and Nairn [2012]).

Figure 8 show results for shifted interfaces in two-layer
specimens to verify the correction term in Eq. (20). The
square symbols show results for the interface along the
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Figure 7 : Calculated stiffness for the DLS specimen.
The symbols are numerical results using three different
normal methods (SN, MVG, and AVG), MPM with ex-
plicit cracks (Cracks), and finite element analysis (FEA).
The solid line is an analytical shear lag solution.

grid line (see Fig. 2A); the open squares are corrected
using Eq. (20) while solid squares use the uncorrected
contact area of tΩi/∆x. Although corrected and uncor-
rected Ai are the same for nodes close to the interface,
as the solution evolves a few particles migrate resulting
in small, non-zero shape functions on nodes one element
away from the interface (e.g., node j in ig. 2A). The cor-
rected area appropriately results in very small force on
such nodes because the minimum volume is low. In con-
trast, the uncorrected area gives force equal to nodes on
the grid line causing interfacial energy to be too high.

The circle symbols in Fig. 8 show results for an inter-
face along cell midplanes (see Fig. 2B); the open circles
are corrected using Eq. (20) while solid circles use the
uncorrected contact area of tΩi/∆x. When Eq. (20) is
not used the contact area is twice as large resulting in
interface results that effectively have Dt twice as large.
This doubling of effective Dt causes the x axis in a 1/Dt

plot to shift right by a factor of 2. Clearly a contact area
correction is needed regardless of the location of the in-
terface; furthermore the correction in Eq. (20) is accurate
because the results are independent of interface location
and always close to FEA results.

Imperfect interface modeling needs to work for any inter-
facial orientation, and not just for the shifting discussed
above. To confirm this ability, the DLS example was re-
run by rotating the specimen with respect to the x and
y axes. The solid line in Fig. 9 is for a regular mesh
(∆x = ∆y) and the results are independent of interface
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Figure 8 : Interfacial energy density in two layer speci-
mens with the interface located either at a grid line or at
element midplanes. The open symbols correct the con-
tact area using Eq. (20) while the solid symbols do not.
The FEA curve is corresponding result by finite elements
analysis for reference.

angle. For an irregular mesh, however, the results need
an additional correction to replace ∆x in Eq. (20) with h⊥
in Eq. (22). The dotted lines in Fig. 9 show DLS results
as a function of angle for a mesh with ∆y = 2∆x using
“No Correction” (i.e., h⊥ = ∆x) and the three h⊥ meth-
ods described above. The “No Correction” result is poor.
Method 1 (see Eq. (22)) worked best and is therefore the
recommended method. Even the best method, however,
is not as good as the regular mesh result, which may be
because the irregular mesh was at a lower resolution in
the y direction for this example.

Figure 10 shows the importance of the method used
to find the contact normal for two-layer specimens
(Fig. 4A) using 0.25× 0.25 mm grids. First, look at
the “grid” curves, which are when the interface is near
a grid line. For this geometry, a specified normal (SN
using n̂ = (1,0,0)) is the control and is the same result
as in Fig. 5. If the normals are found by the MVG (grid)
method instead, the results are poor. The inaccuracies are
caused by the single node on the top of the specimen (see
circled region in Fig. 4A). At this position the normals for
the two materials are at 45◦ to the interface rather than at
(1,0,0). This error can be fixed by averaging the nor-
mals because the two 45◦ normals average to the correct
(1,0,0) normal. This fix is confirmed by the AVG (grid)
results, which agree with the control.

Next, look at the “mid” results, which are for the inter-
face at element midplanes. Again the SN (mid) results
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Figure 10 : Interfacial normal energy density in two-
layer specimens with the interface at a “grid” line or at el-
ement “mid” planes. The discrete numerical results were
smoothed by a spline interpolant to make it easier to vi-
sualize differences between similar results.

gave the correct result (as already discussed for Fig. 8).
But now, neither MVG (mid) nor AVG (mid) gave ac-
ceptable results. The problem was again the contacting
nodes on the top edge, but now the errors were not fixed
by averaging. This example illustrates a potential prob-
lem in all MPM contact or interface methods — the nor-
mals are often wrong when the contact surface is at a
free edge. In many calculations, errors caused by such
nodes might be small, but in this two layer specimen
they happen to be large. A solution for this specimen
(and maybe many MPM calculations) is to ignore those
problem nodes. In other words, it can be better to ig-
nore edge nodes then to include them with potentially
erroneous normals (Guilkey [2010]). A method to ignore
edge nodes is to screen them out based on total nodal
domain, Ωi. For the edge nodes in two layer specimens
Ωi ∼ Acell/2, while for all other nodes Ωi ∼ Acell . Edge
nodes can therefore be screened out by ignoring interfa-
cial forces and energy for multimaterial nodes with Ωi <
0.75Acell . The MVG and AVG (mid, Ωmin = 0.75Acell)
results in Fig. 10 confirms this approach agrees well with
the control.

This two-layer specimen may be a pathological specimen
that exaggerates the importance of normals (an hence a
good example for developing interface methods). The re-
sults are very sensitive to the normal because total inter-
facial energy is very small. Any inaccuracies can lead to
large changes in interfacial energy. The two-layer prob-
lem was further exacerbated by its perfect interface in
the normal direction. Because a perfect interface corre-
sponds to a large Dn, any errors in n̂ get amplified by the
high interfacial stiffness. Figure 10 shows calculations
with Dn = Dt (i.e., when both directions are imperfect)
by MVG and AVG (mid) and without volume screening.
These results agree with controls, despite inclusion of in-
accurate edge nodes. Because Dn is smaller, those inac-
curacies have much less affect on the results. The rea-
son they are close to controls that had Dn = ∞ are that
the normal direction plays little role in this shear-loaded
specimen. The slightly higher peak energy, however, is
likely the net effect of an imperfect, rather then perfect,
normal interface.

Figure 7 shows calculation of DLS stiffness for SN (the
control with n̂ = (1,0)), MVG, and AVG. Now SN and
MVG agree well, while AVG has small errors. The
problems for this specimen are nodes where one layer
stops while the other one continues (see circled regions
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in Fig. 4B). At these locations, the continuous layer has
the correct normal and is the material with the maximum
volume gradient. Hence, the MVG method worked well.
In contrast, the AVG method averages a correct normal
with an inaccurate normal at 45◦ and get less accurate re-
sults The effect is much smaller in this specimen because
the interfacial energy for other nodes is large. Never-
theless, for maximum accuracy, it is important to have
accurate normals.

The results in Fig. 7 are for the interface at grid lines.
The normals effect is larger when the interface is at
cell midplanes, as shown in Fig. 11. Now both MVG
and AVG gave poor results. These results can be fixed
by the same two methods used for the two layer spec-
imen — screen out edge nodes by ignoring nodes with
Ωi < 0.85Acell (because those nodes are expected to have
Ωi ∼ 0.75Acell) or set Dn = Dt (i.e., allow the interface to
be imperfect in the normal direction rather than perfect).
Using either method along with any normal method (SN,
MVG, or AVG) all gave identical results, which agreed
with shear lag theory (see “All Corrected Methods (mid)”
symbols).

In summary, the most accurate results are always by SN.
When SN is not possible, which happens whenever in-
terfaces might reorient during a calculation, both MVG
and AVG can work, but require care. If neither Dn nor
Dt are too stiff, both MVG and AVG usually work. As
Dn and Dt get higher, however, problems frequently arise
at edge nodes. Therefore, in problems with one or more
stiff direction and with edge nodes, it is probably essen-
tial to ignore edge nodes by ignoring interfacial force and
energy at nodes with Ωi less then a carefully selected
critical value. These recommendations apply to MPM
contact calculations as well as interface calculations. In
fact, MPM contact can be characterizes as Dn = 0 in ten-
sion but Dn = ∞ during contact. In other words, contact
calculations always have one stiff direction. Those cal-
culations should use MVG or AVG along with volume
screening to ignore edge nodes.

A final example looked at a 3D composites mechanics
problem and evaluated the algorithm to limit forces when
Dn or Dt get high. The problem, shown in Fig. 4B, is 1/8
of a spherical particle embedded in a cubic array. The
particle had radius of 700 µm in a cube of side 1000 µm
to model a particulate filled composite with particle vol-
ume fraction Vp = 17.96%. The particles were glass
(E = 70,000 MPa, ν = 0.25) embedded in a polymer
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Figure 11 : The stiffness of a DLS specimen with the in-
terface at element “mid” planes. The symbols are MPM
results. The solid line is an analytical shear lag solution.

matrix (E = 2400 MPa, ν = 0.33). The interface was
imperfect in both directions with Dn = Dt . The normal
was found by the SN method; if the origin is at the center
of the particle, the normal at node i is in the direction (xi,
yi, zi). The cube had zero displacement on the symme-
try planes and was loaded to applied strain of ε0 = 0.5%
strain in all three directions on the cube’s outer surfaces.
The surfaces were loaded at a rate of about 0.1% of the
polymer wave speed and then held fixed until grid damp-
ing settled on a static result.

By composite variational mechanics, the bulk modulus is
related to total energy, U , by

U =
V
2

K
(

∆V
V0

)2

(34)

With an imperfect interface, U is a sum of strain energy
and interfacial energy (kinetic energy is zero in this static
limit). For this problem, ∆V/V0 = 3ε0 and V = l3 (where
l is the side of the cube). The bulk modulus can therefore
be found from:

K =
2(Ustrain +Uinter f ace)

9l3ε2
0

(35)

Figure 12 shows K found by energy analysis using vari-
ous element sizes and with or without the recommended
method to limit forces when Dn or Dt are high. The
horizontal line labeled “CSA” is the predicted modulus
for a particulate composite with a perfect interface us-
ing the “composites spheres assemblage” model (Hashin
[1962]). When forces are not limited, K rises above the
theoretical limit and keeps rising until the calculations
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Figure 12 : Bulk modulus in a cubic array of spherical
particles (i.e., a particulate composite) of microparticles
(rp = 700 µm) and nanoparticles (rp = 700 nm) deter-
mined by energy methods and using various cell sizes,
time steps, and with or without force limitation (as indi-
cated). The dashed horizontal line is the analytical com-
posite spheres assemblage (CSA) result for a perfect in-
terface.

become unstable. All other results limited forces and re-
mained stable for any values of Dn and Dt , but the re-
sults for a crude mesh (100 µm cells) had an erroneous
peak in the transition region around 1/Dt = 1/Dn =
10−6 mm/MPa. The reason for the peak is that 100 µm
cells do not resolve a spherical surface of radius 700 µm
well enough for accurate energy results. The calculations
were improved by either a reduction the time step (which
shifts the peak to higher Dt) or by smaller cells. Smaller
cells worked much better because the peak is nearly gone
for 50 µm cells and is entirely gone for 25 µm cells.
These converged results are composite mechanics analy-
sis for bulk modulus of a particulate composite as a func-
tion of interface properties. The results are close to the
theoretical limit for high Dt = Dn, decrease as Dt and Dn

decreases, and reach a low plateau value for a very poor
interface (i.e., debonded interface for Dt = Dn→ 0)

The particulate composite results have uniform average
stress, 〈σxx〉 = 〈σyy〉 = 〈σzz〉 = P, where P is pressure;
thus K can also be found from

K =
P

3ε0
(36)

Figure 13 shows K found from pressure for various ele-
ment sizes and two different particle sizes. For micropar-
ticles (700 µm) all element sizes worked well, although
100 µm was rather crude and had minor errors in the
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Figure 13 : Bulk modulus in a cubic array of spheri-
cal particles (i.e., a particulate composite) of microparti-
cles (rp = 700 µm) and nanoparticles (rp = 700 nm) de-
termined by average stress over applied volumetric stain
and using various cell sizes (as indicated). The solid lines
are analytical results using a composite spheres assem-
blage (CSA).

transition region around 1/Dt = 1/Dn = 10−6 mm/MPa.
The results for 50 µm or 25 µm were nearly identical and
gave smooth curves. The solid lines are analytical model-
ing for a composites spheres assemblage with an imper-
fect interface (Hashin [1991b]). The numerical modeling
agrees with the analytical modeling.

The “Nanoparticle” curve shows the modulus for a par-
ticulate composite of nanospheres (with radius 700 nm)
as a function of interface properties using 25 nm cells.
Hashin [1991b] suggests that Dn =(Ki+4Gi/3)/ti where
Ki and Gi are bulk and shear modulus of the interphase
and ti is its thickness. Physically, Ki, Gi, and t1 are deter-
mined by interactions between the phases (e.g., between
glass and polymer), but they should not be affected by ra-
dius of curvature of the surface. In other words, Dn and
Dt should be independent of particle size. When this rela-
tion holds, Fig. 13 shows that bulk modulus of a nanopar-
ticle composite is always lower than the corresponding
microparticle composite. Nanocomposites research fre-
quently notes a scaling effect that nanocomposites have
much more interface per unit volume reinforcement than
conventional composites and nanocomposites hype as-
sumes this extra interface must be beneficial. Contrary
to that hype, the straightforward composite mechanics
in Fig. 13 shows that extra interface is always detrimen-
tal for mechanical properties. A better picture emerges
by realizing the interface in composites is burdened with
transferring stress between phases. The extra interfacial
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area in nanocomposites means their interfacial properties
carry an extra burden. In other words, when making new
nanocomposites, the interface better be excellent, oth-
erwise the mechanical properties are likely to be poor.
Furthermore, interface-quality needs are much higher
for nanocomposites then when making a corresponding
composite with larger phases. For example, consider a
glass-polymer system with Dt = Dn = 106 MPa/mm in
Fig. 13. For a nanocomposite, this material would have
very poor interface with K near the plateau for a com-
pletely debonded interface. In contrast, a composite with
microparticles would have K near the theoretical limit for
a perfect interface.

All examples in this paper used a linear elastic inter-
face (e.g., Tn = Dn[un]) and calculated elastic interfacial
energy (see Eq. (4)). Obviously it is trivial to replace
these assumptions with any non-linear interfacial traction
laws and energy integral. For example, the normal di-
rection might use a bilinear law where Dn is very large
or perfect in compression (to avoid interpenetration) but
has a lower stiffness in tension. But, interpenetration
does not need to be prohibited. A 2D imperfect inter-
face represents an actual 3D interphase and it is possi-
ble to compress such an interphase, which would corre-
spond to a small negative [un] when loaded in compres-
sion. An interfacial traction law that is history depen-
dent, such as a plasticity based load with hardening or
an interface that fails at some critical discontinuity, re-
quires new methods. In multimaterial MPM used here,
interacting nodes are re-calculated on each time step and
carry no history. Such methods do not allow history de-
pendent traction laws. One solutions is to use explicit
cracks in MPM with tractions laws. By this approach,
traction laws are carried on crack particles and therefore
can track their history. Those traction laws can imple-
ment history-dependent plasticity and failure at critical
crack opening displacements. In other words, they can
be used as a particle-based approach to cohesive zone el-
ements in finite element analysis.

4 Conclusions

Extension of multimaterial MPM methods for imperfect
interfaces is simple in concept — calculate displacement
discontinuities at interfaces and add internal forces deter-
mined by interfacial tractions laws. But, implementation
details are subtle and important. If these details are ig-
nored, the results can be poor. When they are included,

however, imperfect interface modeling is a robust exten-
sion of MPM. An advantage over other numerical meth-
ods (e.g., FEA) is that imperfect interfaces are dynami-
cally evaluated on each time step, thereby avoiding the
need to use contact or interface elements in the mesh.
The key details needed for accurate MPM interface mod-
eling are:

Grid Independence: For results to be independent of in-
terface location within the MPM grid, interfacial contact
area has to be corrected by comparing nodal domains for
the two material using Eq. (20). For an irregular mesh
(i.e., ∆x 6= ∆y or 6= ∆z), an additional correction is needed
to account for angled interfaces, which is done by replac-
ing ∆x in Eq. (20) with h⊥ in Eq. (22).

Stiff Interface Issues: As Dn or Dt approach ∞, their high
stiffness would make it difficult to get converged results.
A good solution is to limit interfacial forces to the maxi-
mum allowed forces defined by Eq. (26).

Interface Normals: Calculation of interfacial normal is
crucial to accurate results and the optimum method is
problem specific. The SN method is always best and
robust, but only works for specialized problems. For
other problems, MVG and AVG provide two alterna-
tives. If neither Dn nor Dt are too high, both work
well. If either Dn or Dt become stiff, however, prob-
lems can arise. These problems are usually confined to
edge nodes, which can be screened out by ignoring in-
terface calculations at nodes with Ωi below some cutoff
value. These conclusions apply to MPM contact methods
as well, which can be regarded as always having Dn = ∞

during contact.

Interface Energy: Interfacial energy has no role in evolu-
tion of MPM results, but it is useful to track for compos-
ite mechanics calculations. The examples in this paper
assumed a linear elastic imperfect interface with energy
given by Eq. (4). If different traction laws are used, the
interfacial energy calculation has to be changed, other-
wise the a sum of strain energy, kinetic energy, and in-
terfacial energy would not correspond to the actual total
energy in the object.
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