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Abstract At the onset of fracture in materials with process zones, the fracture resis-

tance, or R curve, rises as the process zone develops. After process zone development,

crack propagation proceeds by steady state growth. By considering J integral contours

inside and outside the process zone, the available energy can be partitioned into crack

tip energy release rate and process zone energy. To model the rising R curve, however,

required assumptions about damage mechanisms in the process zone and partitioning

of its energy into released and recoverable energy. By considering process zones that

are elastic fiber-bridging zones with softening regions caused by fiber breakage or dam-

age, equations for rising R curves were derived as a function of crack tip toughness

and bridging zone mechanics. The new methods were implemented into the Material

Point Method for generalized numerical crack propagation simulations with bridging

zones. The simulation method includes pure fracture mechanics and pure cohesive zone

models as extreme special cases. The most realistic simulations for many materials will

likely fall between these two extremes. The results guided comments on interpretation

of experimental R curves.

Keywords J Integral · Process Zone · Bridging Zone · Crack Bridging · Cohesive

Zone · Traction Law · Numerical Modeling

1 Introduction

Examples of materials that develop process zones at the crack tip during crack prop-

agation are wood [Smith and Vasic, 2003], fibrous composites [Hashemi et al, 1990,

Matsumoto and Nairn, 2007], and cementitious composites [Li et al, 1987]. A process

zone results in two crack tips — the actual crack tip at the end of the zone and the

notch root at its beginning (see x0 and xroot in Fig. 1). At the onset of fracture, the
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process zone develops by crack tip propagation while the notch root remains fixed. In

this phase, the observed toughness evolves as characterized by a rising R or fracture

resistance curve. After the process zone is fully developed, crack propagation proceeds

by steady state or self-similar crack growth involving simultaneous propagation of both

the crack tip and the notch root; the process zone length remains constant (anything

else would not be self-similar). In this phase, the observed toughness is constant until

edge effects influence the process zone. If the fully developed process zone is sufficiently

small, the fracture can be analyzed by conventional fracture mechanics [Bao and Suo,

1992]. If the process zone is larger, but still smaller than the specimen, the R curve

will rise and plateau at the steady state toughness. If process zone is somewhat larger,

the fracture process may never reach steady state within the specimen and the en-

tire toughness will be a rising R curve. Fracture analysis for such materials requires

modeling of rising R curves.

The starting equation for prior analyses of process zones is to apply Rice’s [Rice,

1968] J integral to a contour outside the zone and account for crack-surface tractions

within the zone [Bao and Suo, 1992]; the result is denoted here as Jff for far-field J

integral:

Jff = Jtip +

∫ δroot

0

σ(δ) dδ (1)

where Jtip is energy release rate for crack tip propagation and the integral is the energy

associated with crack tractions in the process zone; σ(δ) is the crack surface traction

as a function of crack opening displacement, COD or δ, and δroot is the COD at the

notch root or δ(xroot). Physically, Jff is the energy release rate associated with self-

similar crack growth [Rice, 1968], which implies simultaneous propagation of the crack

tip and the notch root such that the process zone length remains constant [Bao and

Suo, 1992]. Crack propagation in the rising portion of the R curve, however, is non-

self-similar because the process zone length is changing. Thus Jff , in general, is not

the correct energy release rate for that portion of the R curve. This fact has usually

been ignored in prior work.

During crack growth, energy is released. Here the R curve is defined as the actual

amount of energy released as a function of the extent of crack propagation. When

process zones are present, a typical R curve will start at some initiation value and

then increase to a steady-state value. The increase is a consequence of the development

of the process zone. Because Eq. 1 only applies to crack propagation during steady-

state conditions, that equation is insufficient for analysis of the rising portion of the R

curve. A full R curve analysis requires additional assumptions about the process zone

mechanics and some new equations. This paper considers only elastic process zones,

such as fiber bridging zones, that undergo damage, such as by fiber breakage, resulting

in traction laws containing softening regions. By accounting for energy released by

such bridging zones, R curve equations were derived. This concept was used to develop

a Material Point Method (MPM) simulation of full R curves. A special case of the

simulations provided a new approach to elastic cohesive zone modeling by dynamically

eliminating the crack tip singularity. This paper concludes with remarks on measuring

and interpreting R curves.
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Fig. 1 All possible combinations of J Integral paths that start and stop at the same location
x when a crack has a bridging zone. The bridging zone extends from the actual crack tip at
x0 to the notch root at xroot.
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Fig. 2 Examples of commonly assumed traction laws: A. Rigid plastic law. B. Linear elastic
brittle law. C. Triangular law with initial linear elastic regime followed by a linear softening
regime. D. An arbitrary traction law, often approximated with a cubic function. E. Linear
softening law. F. Nonlinear softening law.

2 J Integral Analysis of Bridging Zones

Tractions within a bridging zone in 2D fracture problems can be resolved into trac-

tions normal and tangential to the crack surface, TZ = (σn(δ), σt(δ)). In bridging

zone modeling, these tractions depend on the crack opening displacements normal and

tangential to the crack surface, δ = (δn, δt). Figure 2 shows some generic traction laws.

The traction typically increases to a peak or cohesive stress and then decreases to zero

at a critical COD where the tractions fail. The term “law” in traction law is used here

by convention. Although it implies these laws are a universal material property, there

are no compelling experimental or theoretical justifications for that assumption.

This section considers J integral analysis of a crack having tractions from the actual

crack tip at x0 to the edge of the bridging zone at xroot (see Fig. 1). Following Rice

[1968], a J integral analysis along the path consisting of Γ1 in the counter-clockwise

direction, Γ2 in the clockwise direction, and traction-loaded crack surfaces connecting
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Γ1 and Γ2 results in

J(x1)−
∫ x2

x1

TZ ·
du`
dx

dx− J(x2)−
∫ x1

x2

(−TZ) · duu
dx

(−dx) = 0 (2)

where xi is the x coordinate where contour Γi intersects the crack (selected to be the

same on the two crack surfaces), u` and uu are displacements on the lower and upper

crack surfaces, and

J(x) =

∫
Γ (x)

(
W dy −T · du

dx
dx
)

(3)

is the usual J integral evaluated in the counter-clockwise direction along the path Γ (x)

from one crack surface to the other at the location x. Here, W is strain energy, T is

traction, and u is displacement. By definition, δ = uu − u`, resulting in

J(x1)− J(x2) +

∫ x2

x1

(TZ) · dδ
dx

dx = 0 (4)

Writing the energy required to load the crack tractions to any displacement as

WB(x) =

∫ δ(x)

0

TZ · dδ with
dWB(x)

dx
= TZ ·

dδ

dx
(5)

it follows that

J(x1)− J(x2) +WB(x2)−WB(x1) = 0 (6)

or, equivalently, that

J(x1)−WB(x1) = J(x2)−WB(x2) (7)

In principle, this analysis allows for coupled tractions [Needleman, 1987]. All results

in this paper, however, are for mode I cracking such that the traction energy integral

simplifies to

WB(x) =

∫ δ(x)

0

σ(δ) dδ (8)

where δ(x) = δn(x) and σ(δ) = σn(δ).

By Eq. 7, the term

Jtip = J(x)−WB(x) x ≤ xroot (9)

defines a path-indendent integral for all paths starting and stopping within the bridging

zone. These paths are slightly less general than usual J integrals because they must

start and stop and the same position x. Equation 1 from the literature refers to Jff

contours entirely outside the bridging zone. Thus, Eq. 9 can be viewed as extension of

prior literature results to contours within the bridging zone. The equality between Jtip

in Eq. 1 and the Jtip in Eq. 9 is derived by considering a contour at xroot, and noting

that for this special case Jff = J(xroot) and WB(xroot) is the integral term in Eq. 1.

Also note that Jtip is not equal to a J integral close to the crack tip or J(x). It starts

with that calculation, but then must subtract energy associated with the crack-surface

tractions at the location chosen to define the contour.
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Repeating this analysis for paths Γ5, Γ6, and the connecting traction-free crack

surfaces is identical to Rice [1968], and thus defines a second path-independent integral:

Jff = J(x) x > xroot (10)

Finally, considering paths Γ3, Γ4, and the partially traction-loaded crack surfaces leads

to a connection between Jtip and Jff

Jff = Jtip +WB(xroot) (11)

which is simply a derivation of Eq. 1 for the mode I tractions considered here [Bao and

Suo, 1992].

Because a crack with a bridging zone has two tips, it is essential to have two J

integrals. Physically, Jff is the energy release rate for simultaneous crack tip and notch

root propagation [Bao and Suo, 1992]. During this self-similar or steady state propa-

gation, the bridging zone length remains constant (i.e., the bridging zone propagates

along with the crack). The two terms in Jff (see Eq. 1 or 11) partition this total energy

into notch root propagation and crack tip propagation. Clearly WB(xroot) = Jff −Jtip

is the energy release rate for notch root propagation while the crack tip remains fixed;

it evaluates only the energy in the increment of bridging zone that breaks done as the

notch root advances. Finally, the remaining energy, or Jtip = Jff −WB(xroot) must be

the energy release rate for crack tip propagation while the notch root remains fixed.

The two J integrals, Jff and Jtip , are therefore sufficient for calculation of energy

release rate for any combination of crack tip or notch root propagation.

2.1 Numerical Implementation

Traction-loaded cracks and numerical evaluation of Jtip and Jff were implemented into

the Material Point Method (MPM). MPM was selected because of its advantages for

simulating crack propagation [Nairn, 2003] and the ease of including traction laws on

explicit cracks; the details are in the appendix.

The evaluation of J integral by MPM for traction-free cracks is described elsewhere

[Guo and Nairn, 2004]. Here the method was extended to account for crack tractions.

Using Eqs. 9 and 10, evaluation of the two J integrals requires two paths — one inside

and one outside the bridging zone. It is preferable to calculate both with a single path,

which is easily achieved by use of Eq. 11:

Jtip =

{
J(x)−WB(x) x ≤ xroot
J(x)−WB(xroot) x > xroot

(12)

and

Jff =

{
J(x)−WB(x) +WB(xroot) x ≤ xroot
J(x) x > xroot

(13)

Thus both Jtip and Jff can be evaluated on the same arbitrary contour. With the

exception of WB(xroot), all calculations are local to the contour. The evaluation of Jtip

when x > xroot or Jff when x ≤ xroot requires location of the notch root for evaluation

of WB(xroot). In MPM, a crack is defined by a linked list of massless particles; it is

thus a simple task to scan along the crack to locate the notch root when needed.

Figure 3 shows calculation of Jtip , Jff , and J(x) by MPM as a function of the

contour size. The calculation was for a single-edge notched specimen (SENT) of linear
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Fig. 3 MPM Calculations of Jtip , Jff , and J(x) as a function of contour size for a single-
edged notched specimen loaded in tension (200 mm × 50 mm with a 20 mm crack). A. Linear
crack-tip tractions over the entire crack surface. B. Linear tractions over 10 mm of the 20 mm
crack surface; the dotted vertical line is the end of the traction zone. C. A triangular traction
law over 7.5 mm of the 20 mm crack surface; the dotted vertical line is the end of the traction
zone. D. A crack with no crack-surface tractions.

elastic material (E = 70 GPa, ν = 0.33) and dimensions 200 mm × 50 mm; the crack

length was 20 mm and subjected to the various traction laws indicated in the figure.

The J integral contour was chosen as a square centered on the crack tip [Guo and

Nairn, 2004]; the x axis plots the distance from the crack tip to the contour or half

the length of the square’s sides. All results were normalized to the traction-free energy

release rate for an SENT specimen [Williams, 1984]. Curves A are for a crack with

a linear traction law over the entire crack surface. Jtip was independent of contour

size while J(x) increased linearly. No calculation was done for Jff because there is

no notch root within the crack. Curves B show the same traction law, but only over

half the crack surface. Both Jtip and Jff were independent of the contour size. J(x)

increased linearly while the contour was within the bridging zone and became identical

to Jff for contours outside the bridging zone. The difference between Jff and Jtip (in

absolute terms) was equal to WB(xroot) for the assumed traction law. Curves C show

similar results for a triangular traction law over 7.5 mm of the 20 mm crack. The only

difference was that J(x) increased non-linearly for contours within the bridging zone

due to the non-linear traction law. Finally curve D is the single J integral for a crack

with no tractions.

3 R Curve Analysis

TheR curve is the actual energy released as a function of crack growth or of COD. It can

be measured by experiments that directly measure energy released. Most experimental
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methods, however, use indirect methods that involve calculation of R based on models

for energy release rate. When these models are realistic, this approach gives the R

curve, but if the models are unrealistic, the results should be labeled as an effective R

curve or Reff . For example, some work has associated Jff with the R curve throughout

the crack propagation process [Bao and Suo, 1992, Lindhagen and Berglund, 2000,

Sorensen and Jacobsen, 2000]. Because Jff is only valid when both the crack tip and

the notch root are propagation, or during steady-state propagation, its use within the

rising portion of the R curve, or during non-steady-state propagation, results in an

Reff curve.

Although Reff is not the actual energy released, if it is defined consistently, it can

be used to determine the traction law [Bao and Suo, 1992, Lindhagen and Berglund,

2000, Sorensen and Jacobsen, 2000]. For example, during crack propagation of a crack

with opening displacements only, Eq. 11 leads to:

Reff = Jtip,c +

∫ δroot

0

σ(δ) dδ and σ(δ) =
dReff

dδroot
(14)

where Jtip,c is the critical energy release rate for crack tip propagation, which is as-

sumed to be a constant material property, and δroot is the notch root COD. The key

experiment is to measure Reff as a function of δroot and differentiate to find σ(δ) [Lind-

hagen and Berglund, 2000, Sorensen and Jacobsen, 2000]. Unfortunately, Reff normally

cannot be determined from specimen loads and geometry because Jff depends on the

unknown traction law [Bao and Suo, 1992]. For a few specimens, however, Jff is inde-

pendent of the traction law, thus allowing measurement of Reff [Bao and Suo, 1992].

One such specimen is a double cantilever beam (DCB) specimen with moment loads on

the ends [Lindhagen and Berglund, 2000, Sorensen and Jacobsen, 2000]. Because Reff

can only be found in certain specimens, however, it cannot be used to confirm or deny

whether traction laws are specimen-independent, material properties. One alternative

is to switch to R rather than Reff .

The R curve is a sum of the energy required to propagate the crack tip alone (Jtip,c)

and the energy released by the bridging zone itself:

R = Jtip,c +WB(xroot)−W (r)
B (xroot) = Reff −W

(r)
B (xroot) (15)

where the key new term is W
(r)
B (xroot), or the energy stored in the bridging zone that

may be recovered upon unloading. Determination of the recoverable energy requires

knowledge of the bridging zone mechanics. Figures 2C-F show commonly assumed trac-

tion laws with softening. Such laws cannot represent entirely elastic processes because

that would imply an increasing load when unloading in the softening regime. The curves

may, however, represent an elastic zone undergoing accumulation of damage such as

by fiber breakage or fiber pull out when the zone is modeling fiber bridging. An elastic

zone with damage will unload elastically to the origin; here, the unloading was assumed

to be linear. The energy released from such a bridging zone becomes the shaded area

in Fig. 4 and W
(r)
B (xroot) is the area under the unloading curve. W

(r)
B (xroot) decreases

to zero for steady-state propagation, but may be non-zero during the rising R curve

and is therefore essential to full analysis of R curves.

For crack propagation with opening displacements only and linear-elastic unload-

ing, the R curve from Eq. 15 becomes

R = Jtip,c +

∫ δroot

0

σ(δ) dδ − 1

2
σ(δroot)δroot (16)
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Fig. 4 If the traction laws correspond to elastic processes with damage, the shaded area is
the total energy released by the traction law and the area under the linear unloading line is
the recoverable energy when loaded to δroot.

Differentiation yields
dR

dδroot
=

1

2

(
σ(δ)− δσ′(δ)

)
(17)

Finally, this first-order differential equation for traction law can be solved to determine

traction law from R′(δroot) using

σ(δ) = 2δ

∫ ∞
δroot

R′(δ)

δ2
dδ (18)

This equation replaces Eq. 14 when R curve for actual energy released is measured

instead of Reff .

Two sample cohesive laws are a triangular law (see Fig. 2B):

σ(δ) =

{
σc

δ
δpk

δ < δpk

σc
δc−δ
δc−δpk

δ > δpk
(19)

where σc is the maximum stress that occurs at δ = δpk and δc is the failure COD, and

a cubic law (see Fig. 2D [Hashemi et al, 1990, Needleman, 1987])

σ(δ) =
27σc

4

δ

δc

(
1− δ

δc

)2

(20)

The cubic law has its peak at δ = δc/3 and the nice property that σ′(δc) = 0. Substi-

tution of the triangular law into Eq. 15 gives

R(δ) =

{
Jtip,c δ < δpk

Jtip,c + JB
δ−δpk

δc−δpk
δpk < δ < δc

(21)

where JB = (1/2)σcδc is the bridging zone toughness or area under the triangular

traction law. For the cubic law

R(δ) = Jtip,c + JB

(
δ

δc

)3 (
4− 3

δ

δc

)
for 0 < δ < δc (22)

where JB = (9/16)σcδc is the area under the cubic traction law.
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Fig. 5 Theoretical rising portion of the R curves for triangular or cubic traction law and
Reff curve for cubic traction law in a normalized plot of R(δ)/Jtip,c as a function of δ/δc.
The bridging zone toughness was set equal to crack tip toughness, JB = Jtip,c. The peak of
the triangular law was chosen as 0.2259δc, which provides the closest possible match between
WB(x) for the two laws.

Normalized plots of R(δ) for triangular and cubic laws assuming JB = Jtip,c are in

Fig. 5. The δpk for the triangular law was set to 0.2259δc, which is the peak value that

minimizes the least squares difference between WB(x) for the two laws over the range

0 < δ(x) < δc. The initial slow rise corresponds to predominantly elastic deformation

in the bridging zone where most of the energy in the crack tractions is recoverable. The

initial portion of the triangular law is perfectly flat because the deformation prior to

δpk is linear elastic. Once the bridging zone begins to release energy, the R curve rises

more rapidly eventually reaching the steady state toughness as δ → δc. For comparison,

the dotted curve shows an Reff curve for the cubic traction law derived from Eq. 14:

Reff (δ) = Jtip,c + JB

(
δ

δc

)2
[

6− 8
δ

δc
+ 3
(
δ

δc

)2
]

for 0 < δ < δc (23)

R(δ) curves for bridging zones with elastic unloading are more sigmoidal than the

corresponding Reff (δ) curves, which omitW
(r)
B (xroot). This issue is discussed in Sect. 5.

4 Numerical Modeling of R Curves

The concepts of the previous section were implemented into Material Point Method

(MPM) modeling [Nairn, 2007b]. MPM worked well because of its ability to model

explicit cracks with crack propagation in arbitrary directions [Guo and Nairn, 2004,

Nairn, 2003] and to incorporate history-dependent traction laws on all or part of the

crack surfaces (see the Appendix). Numerical fracture modeling with bridging zones

proceeded as follows:

1. An explicit crack was introduced into the MPM model by defining a series of

connected crack particles.

2. At the start of the calculation, the one crack particle at the crack tip was assigned

to a selected traction law with toughness JB .

3. As the calculations proceed, Jtip was calculated. When Jtip ≥ Jtip,c, where Jtip,c
is the crack tip toughness, the crack tip was allowed to propagate. For the mode I
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Fig. 6 The geometry for the moment-loaded DCB specimen used the MPM fracture simula-
tions. The moments were applied by equal and opposite forces applied to the top and bottom
surfaces of the two arms.

cracks here, crack propagation was achieved by adding a new crack particle straight

ahead of the crack tip. The length of the propagated crack segment was set equal to

half the cell size of the background MPM grid. The new crack particle was assigned

to the selected traction law with the COD initially equal to zero.

4. At the time of crack propagation, the actual energy released was calculated using

Eq. 15.

5. On each time step, the COD on each crack particle was calculated and the notch

root advanced whenever δroot ≥ δc.
6. The calculations continued until the crack length reached the end of the specimen.

This algorithm requires a numerical method that can calculate Jtip , Jff , and W
(r)
B ; this

capability was demonstrated for MPM in Sect. 2. Notice, however, that crack propa-

gation can be accomplished by use of Jtip alone. The only need for Jff and W
(r)
B (xtip)

is in the step for calculating the energy released. This output of the calculation plays

no role in the crack growth mechanics, but is essential for modeling of R curves.

This modeling was applied to pure moment loading of a double cantilever beam

(DCB) specimen (see Fig. 6). The specimen was 150 mm long, the arms were 6 mm

thick, and the initial crack was 50 mm. The beam material was linear elastic with

E = 2500 MPa and ν = 0.33. The crack tip toughness was Jtip,c = 100 J/m2. The

traction law was a cubic law with JB = 100 J/m2 and the peak stress was varied among

σc = 0.2 MPa (δc = 0.178 mm), σc = 0.5 MPa (δc = 0.356 mm), and σc = 1.0 MPa

(δc = 0.889 mm). The uniformly-spaced material points were separated by 0.25 mm.

The pure moment loading was done by equal and opposite external forces applied to

several material points on the top and bottom surfaces of each arm. To account for large

displacements, the external forces rotated with the particles based on their rotational

strains. The fully dynamic calculations increased the applied moment linearly with

time. As previously noted, the moment-loaded DCB is a special specimen where Jff

(but neither Jtip nor W
(r)
B ) can be calculated without knowledge of the traction laws:

Jff =
12M2

b2Eh3
(24)

where M is the applied moment and b and h are the width and thickness of the

arms. The loading rate was selected such that Jff reached Jtip,c in 10 ms. This rate

approached quasi-static loading. During the loading phase, the total kinetic energy was

less that 1% of the total energy in the specimen.

Figure 7 shows simulated R(δ) curves where δ is the COD at the location of the

original notch root. The curves rose in a sigmoidal shape from Jtip,c to Jtip,c + JB as

δ increased from 0 to δc. The dashed lines are the theoretical R curves (see Eq. 22);

they agreed well with the simulated R(δ), which validated the numerical model for
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Fig. 7 R(δ) curves from fracture simulations of a moment-loaded DCB specimen for three
different cubic traction laws that varied the peak stress, σc. The crack tip toughness was
Jtip,c = 100 J/m2; the bridging zone toughness was JB = 100 J/m2. The dashed lines are
theoretical predictions for the rising R curve for each assumed traction law (see Eq. 22).

crack propagation with bridging zones. The “noise” in the numerical results are a

combination of spatial resolution (the cracks propagated in 0.25 mm jumps) and kinetic

energy effects. The particle spacing was reduced until good results were obtained. A

kinetic energy effect is inevitable in any dynamic crack propagation simulation. When a

numerical model extends a crack, the system wants to release strain energy. In purely

elastic calculations, all such released strain energy gets converted to kinetic energy.

To control this non-physcial build-up of kinetic energy, the calculations used global

damping. Only a small amount of damping was used and it kept the total kinetic

energy under 10% of the total energy. Calculations with no global damping confirmed

that the damping used had no effect on the simulated R curves.

Experimental results more commonly record applied moment as a function of

loading-point displacement or toughness as a function of crack growth (the traditional

R curve). Numerical simulations for these results are in Fig. 8. For comparison, sim-

ulations with JB = 0 and Jtip,c = 100 J/m2 or Jtip,c = 200 J/m2 are plotted. These

results reproduced the expected traditional fracture mechanics results of a horizontal

and constant R curve; they show that the numerical crack propagation algorithm in-

cludes traditional fracture mechanics as a special case of bridging zone modeling by

setting JB = 0. The bridging zone simulations fell between the two fracture mechanics

curves. They were near the lower limit when the cohesive stress was small and ap-

proached the upper limit as the cohesive stress increased. The simulated R curves are

similar to the R(δ) curves; i.e., sigmoidal in shape. The relation between crack growth

(∆a) and COD (δ), however, depends on specimen geometry.

4.1 Cohesive Zone Modeling

A cohesive zone, as originally proposed by Dugdale [1960] and Barenblatt [1962], is a

crack-tip process zone where the tractions in the process zone exactly cancel the sin-

gularity at the crack tip. Cohesive zones are popular for crack propagation simulations

in finite element analysis. Since the crack tip of a cohesive zone has no singularity, it

does not advance by energy release rate, but rather by constitutive law of the material

including line-zone mechanics. In essence, there is no crack tip. The material is instead
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Fig. 8 A. Moment-deflection results from fracture simulations of a moment-loaded DCB spec-
imen. B. R(a) curves as a function of crack growth, ∆a, for the same simulations. The simu-
lations used three different cubic traction laws that varied the peak stress, σc. The crack tip
toughness was Jtip,c = 100 J/m2; the bridging zone toughness was JB = 100 J/m2. The dotted
lines are pure fracture mechanics simulations for toughness of Jc = 100 J/m2 or 200 J/m2.

modeled as a propagating process zone. The entire toughess is attributed to the pro-

cess zone mechanics and the energy in the bridging law. The R curve modeling in this

paper can provide a new type of cohesive zone by considering the special case where

Jtip,c = 0. By this approach, the singularity at the crack tip is canceled and the entire

toughness is due to the process zone. This new approach works for both elastic and

inelastic process zones, since calculation of Jtip does not depend on recoverable energy

in the process zone. All calculations here, however, are for R curves when the process

zone is an elastic bridging zone.

Figure 9 shows simulated moment-deflection and R curves for the same DCB spec-

imen simulated above but now for Jtip,c = 1 J/m2 and JB = 199 J/m2. The selection

of Jtip,c = 1 J/m2 rather than zero was to avoid numerical artifacts at the beginning

of the calculation. If it was set to zero, the crack could propagate due to round-off error

prior to any stress reaching the crack tip. Setting it to a finite value, however, held off

crack propagation until the problem had sufficiently developed while still achieving the

goal of effectively canceling the crack-tip singularity. Like the results in the previous

section, the cohesive zone curves approached the fracture mechanics result as the co-

hesive stress increased. The moment-deflection curves approached it smoothly without

the knee in the curves caused by crack tip processes. The R curves were sigmoidal from

the beginning, rather then from Jtip,c, and were spread out over more crack growth

(note the different scales for the x axes in Figs. 8B and 9B). The extra crack growth

required to reach steady state crack propagation was a consequence of larger cohesive

zone lengths compared to bridging zone lengths as shown in Fig. 10. Initially, both

cohesive zones and bridging zones had zero length. They only started to develop when

Jtip first reached Jtip,c. The cohesive zones started to develop immediately (the small

offset was due to using Jtip,c = 1 J/m2 instead of 0); the bridging zone started later.

When each reached steady state, even for the same total toughness, the cohesive zone

size was much larger. The cohesive zone lengths are a numerical solution to the Dugdale

[1960] or Barenblatt [1962] problem of finding zone length as a function of applied load

to cancel the singularity, but now for a specific finite-sized specimen and crack length.



13

Displacement (mm)

M
om

en
t (

N-
m

m
)

0 5 10 15 20 25 30 35 40 

 60 

 80 

 100 

 120 

 140 

 160 

σc = 1.0

σc = 0.5

σc = 0.2

Jc = 200 J/m2, JB=0
A

Δa (mm)

To
ug

hn
es

s 
(J

/m
2 )

0 5 10 15 20 25 30 35 40 45 50 55 60 0 

 50 

 100 

 150 

 200 

 250 

σc = 1.0
σc = 0.5

σc = 0.2

Jc = 200 J/m2, JB=0B

Fig. 9 A. Moment-deflection results from fracture simulations of a moment-loaded DCB spec-
imen with pure cohesive zones. B. R(a) curves as a function of crack growth, ∆a, for the same
simulations. The simulations used three different cubic traction laws that varied the peak
stress, σc. The crack tip toughness was Jtip,c = 1 J/m2; the bridging zone toughness was
JB = 199 J/m2. The dotted line is a pure fracture mechanics simulation for toughness of
Jc = 200 J/m2.
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Fig. 10 Bridging zone lengths as a function of applied moment for simulations with bridging
zones, labeled “B,” or with pure cohesive zones, labeled “C,” each with three different cubic
traction laws that varied the peak stress, σc. The bridging zone simulations had Jtip,c = JB =
100 J/m2. The cohesive zone simulations had Jtip,c = 1 J/m2 and JB = 199 J/m2

A problem in much cohesive zone modeling done by FEA is that the cohesive

elements are introduced prior to the analysis. This approach requires the crack path

to be known in advance. Because it eliminates the crack tip, finding the location of

the actual crack tip is ambiguous (one must resort to effective crack length methods

[Coureau et al, 2006]) and the entire fracture energy must come from the cohesive

zone. Finally, because cohesive elements are unrealistically located in regions remote

from cracks, the details of the traction law may cause numerical artifacts [de Borst

et al, 2006]. In contrast, the MPM approach to cohesive zone modeling starts with no

cohesive zone and allows it to develop naturally at the crack tip, possibly in arbitrary

directions. This approach works for any crack path and unambiguously identifies the

actual crack tip (which was needed when calculating R curves as a function of crack

growth). Several FEA models have achieved similar results by adaptively inserting

cohesive elements [de Borst et al, 2006, Pandolfi and Ortiz, 2002, Zhang et al, 2007].
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These models relied on arbitrary element traction criteria for insertion of elements,

rather than on dynamic elimination of the crack tip singularity. If the goal is a Dugdale

[1960] or Barenblatt [1962] zone with no crack-tip sigularity, the approach described

here is preferable over traction criteria. A further advantage of having an actual crack

tip and an ability to calculate Jtip is that the simulation can combine bridging zone

processes with crack tip fracture mechanics (see previous section). This ability provides

a more general approach.

5 Remarks on Experimental Methods

5.1 Measuring the R Curve

The common fracture method of measuring load and crack length and calculating

R through analysis cannot determine the R curve. Even if Jff can be found (e.g.,

moment-loaded DCB specimen), the R curve cannot be found because Eq. 15 depends

on the traction law and on having enough physical insight into the bridging zone to

be able to calculate the recoverable zone energy. If the process zone happens to have

no recoverable energy, then Reff and R will be same, but many process zones, such as

fiber bridging zones, will have recoverable energy.

A viable alternative is to directly measure actual energy release rate. For example,

the discrete area in Fig. 11A corresponds to the energy released as the crack grows.

Dividing that area by the amount of crack growth that occurred gives the energy release

rate [Hashemi et al, 1990]

R =
1

2B∆a
(F1d2 − F2d1) (25)

where F1, F2, d1, and d2 are the force and displacement before and after crack growth

from a1 to a2, B is thickness, and ∆a = a2 − a1. Unfortunately this approach is

difficult because it requires subtraction of nearly equal values. A revised area method,

illustrated in Fig. 11, has worked better in our recent experiments [Matsumoto and

Nairn, 2008]:

1. Measure force and crack length as a function of load-point displacement.

2. Find the cumulative released energy per unit thickness by integrating the force,

F (d), up to displacement d, forming the function

U(d) =
1

B

(∫ d

0

F (x) dx− d

2
F (d)

)
(26)

See shaded “Cumulative Area” in Fig. 11A.

3. By treating U(d) and a(d) as parametric functions of displacement, replot the

cumulative energy as a function of crack length, U(a). See the inset plot in Fig. 11B.

4. By energy analysis, R is the slope of U(a) or R = U ′(a). The slope calculation may

benefit from smoothing by spline fits or running-regression methods.

The sample analysis in Fig. 11 is for published data for force and crack length in

Hashemi et al [1990]. The solid line in Fig. 11C is the revised area method where the

slope was found by least-squares, cubic spline fit to the U(a) curve in Fig. 11B. The open

squares are calculation of R using the discrete area method in Eq. 25 [Hashemi et al,
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Fig. 11 The area method for calculation of toughness. A. Experimental data for force and
crack length as a function of displacement. The cumulative area is the total energy released up
to some displacement. The discrete area is the energy released by a single increment in crack
growth. B. The total energy released per unit thickness calculated from the cumulative area
and then replotted vs. crack length. C. Calculation of R curve by slope of U(a) (smooth line),
discrete area method (open squares), or corrected beam theory (filled circles). The latter two
results are from Hashemi et al [1990].

1990]. The new area method significantly reduced the scatter. This new calculation

also agreed well with the solid circles, which Hashemi et al [1990] claimed to be the

most accurate results for energy release rate. The advantage of the new area method

is likely related to elimination of the division by ∆a.

5.2 Importance of Crack Tip vs. Notch Tip

Thus interpretation of rising R curves in terms of traction laws requires experimental

determination of the actual crack tip and certainty that the notch root was not mistaken

for the crack tip. All R curves in the previous section were plotted as a function of

notch root COD or of crack length as measured from the actual crack tip. If the results

were replotted as a function of crack length measured to the notch root, all R curves

would converge to the ideal fracture mechanics result. The curves converge because

the notch root remained fixed while the bridging zones developed and only propagated

after reaching steady-state propagation and reaching a constant toughness.

The location of the crack tip is obvious in simulations, but may be uncertain in

experiments. In some fiber-bridging zones, such as in unidirectional DCB specimens,

crack tip identification can be done visually. In other specimens, such as medium density

fiber board (MDF), the crack tip may be obscured [Matsumoto and Nairn, 2007]. One

potential method for finding obscured crack tips is to use digital image correlation

methods that can resolve full-field strain fields on the specimen surface [Bruck et al,

1989]. When the actual crack tip has a singularity, the full-strain field along the crack

path will show a stress concentration at the crack tip [Matsumoto and Nairn, 2007].

If the bridged crack is a pure cohesive zone with no singularity this approach may not

work, or conversely identification of a stress concentration in a bridging zone indicates

that pure cohesive zone modeling of that fracture process will be unrealistic.
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5.3 Interpretation of R Curves

One use of R curves is to determine the traction law. Prior worked [Lindhagen and

Berglund, 2000] has used Eq. 14, but this method is only correct in experiments that

measure Reff . When experiments measure R, such as by the direct energy methods

discussed above, the traction law must be found instead from Eq. 18. This new equa-

tion, however, assumes elastic unloading of the bridging law; alternative equations

could be derived if different information is known about the recoverable energy in the

bridging zone. It is a challenge obtaining fracture data that are sufficiently accurate

for extracting the traction law. All possible R curves monotonically rise from Jtip,c to

Jtip,c + JB as δ increases from 0 to δc. A wide range of tractions laws will make only

minor differences in the R curve and thus experiments may be unable to differentiate

those traction laws. Although the details of the traction law are a challenge, the global

values are more accessible. The area under the traction law, JB , is the difference be-

tween steady-state and initiation toughness. The critical COD, δc, is given by the onset

of steady-state crack growth in the R(δ) curve. The maximum traction stress is given,

within order unity, by σc ∼ 2JB/δc.

In experiments that never reach steady state crack growth, one cannot measure

either JB or δc. But, if one can infer the shape of the bridging law, it may be possible to

measure σc. For example, Lindhagen and Berglund [2000] concluded that the bridging

law for delamination is approximates a linear softening law (see Fig. 2D). If the bridging

law is linear softening, one can measure σc from the slope of R(δ), without needing

to know JB or δc. Indeed, the delamination data in Fig. 11 is roughly linear with no

evidence of reaching steady state. By estimating the notch root COD for experimental

results to convert R(a) to R(δ), it was possible to estimate with σc ≈ 0.06 MPa

(this calculation used beam theory with linear softening traction laws in Williams

[2002]). A fiber-bridging interpretation R curve in Fig. 11 is thus fracture with Jtip,c ≈
1500 J/m2 and a linear softening zone with σc ≈ 0.06 MPa. This low cohesive stress

contrasts with other attempts to model DCB delamination using cohesive zones (e.g.,

[Blackman et al, 2003]). Cohesive zone modeling of DCB experiments requires high

cohesive stress to get close to observed force-displacement curves. A high cohesive

stress is simply allowing the cohesive zone model to approach a conventional fracture

mechanics model; a physical interpretation of that stress “is not immediately obvious”

[Blackman et al, 2003]. In contrast, a model with both crack-tip fracture and a bridging

zone can simultaneously fit experimental force-displacement results while modeling the

rising R curve using traction laws in the crack path. The experiments are explained

better with a very low stress due to fiber bridging. This low stress leads to a non-

negligible increase in toughness and has a clear physical interpretation.

5.4 R Curve Shape

All R curves in this paper are sigmoidal in shape, but fracture mechanics texts [Atkins

and Mai, 1988] and experimental results commonly show non-sigmoidal R curves that

rise most rapidly in the beginning. This discrepancy may occur for several different

reasons. First, the process zones here were assumed to correspond to elastic fracture

phenomena that can retain some recoverable energy. If the process zone corresponds to

a physical process with no recoverable energy, the R curve may rise more rapidly at the

beginning. Second, the initial low slope in sigmoidal R curves can be associated with
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elastic deformation in the traction law. If the law has no elastic regime (e.g., a purely

softening law), or the softening regime has a rapidly falling stress following by a long tail

(e.g., Fig. 2F as in [Coureau et al, 2006]), it is possible to get non-sigmoidal R curves.

Third, observation of non-sigmoidal R curves may be a consequence of experiments

measuring Reff rather than R. For example, Lindhagen and Berglund [2000] observed

non-sigmoidal R curves because they measured Reff . Using their assumption of a linear

softening law, the predicted Reff can be derived from Eq. 14 to be:

Reff (δ) = Jtip,c + JB
δ

δc

(
2− δ

δc

)
0 < δ < δc (27)

This non-sigmoidal shape agrees with the experimental results for Reff in Lindhagen

and Berglund [2000].

6 Conclusions

Most fracture models use either fracture mechanics criteria or cohesive zones in which

the entire toughness comes from either crack-tip processes or a cohesive zone law. The

methods here generalize fracture modeling to use both crack-tip fracture mechanics

and fiber-bridging mechanics. By varying the ratio of Jtip,c to JB , a family of models

can be generated. As happens so often in science, whenever there are two extreme

models, the best description of reality usually falls between the extremes. In fracture

modeling, the two extremes are fracture mechanics and a pure cohesive zone. The best

fracture modeling for many materials will likely be a combination of crack tip fracture

mechanics and a bridging zone. The interpretation of the experiments will be toughness

for crack tip processes and a toughness for the bridging zone processes.

Numerical implementation of crack propagation with a bridging zone requires a

method that can calculate Jtip , Jff , and W
(r)
B . The method must also be able to

handle both a bridging zone and an actual crack tip and to dynamically propagate

the bridging zone from the crack tip based on Jtip . All these requirements are met by

the MPM modeling used here, which makes it an effective tool for generalized fracture

simulations. In contrast, prior cohesive zone methods that insert cohesive elements prior

to the analysis are unacceptable because they do not have a crack tip. To implement

similar modeling in FEA, the only need is for a package that is capable of calculating

Jtip and of dynamically creating cohesive zone elements.

Modeling of R curves for any given traction law requires knowledge of both the

traction law and of the recoverable energy in the process zone, W
(r)
B . This latter term

requires physical interpretation of process zone mechanics in the form of assumptions

about recoverable energy. All calculations here were based on traction laws represent-

ing elastic process and therefore with recoverable energy calculated by linear-elastic

unloading. The extension to other types of process zones should be based on the actual

mechanisms in the zone.

Appendix: Bridging Zones in the Material Point Method

The material point method (MPM) was developed as a numerical method for solving problems
in dynamic solid mechanics [Sulsky and Schreyer, 1996, Sulsky et al, 1994, 1995]. In MPM, a
solid body is discretized into a collection of points much like a computer image is represented
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by pixels. As the dynamic analysis proceeds, the solution is tracked on the material points by
updating all required properties such as position, velocity, acceleration, stress state, etc.. At
each time step, the particle information is extrapolated to a background grid that provides a
platform for solving the equations of motion and updating all particle properties. The particles
interact as a solid through the grid. Although MPM is frequently compared to finite element
methods, a revised MPM derivation [Bardenhagen and Kober, 2004] presents it as a Petrov-
Galerkin method that has more similarities with other meshless methods [Atluri and Shen,
2002]. The“meshless” nature of MPM derives from the fact that the body and the solution are
described on the particles while the background grid is only used for calculations.

It is the meshless nature of MPM that recommends it for analysis of explicit cracks and
here for extension to cracks with bridging zones. Although early MPM did not allow cracks
(i.e., did not allow displacement discontinuities), it has been extended to CRAMP, which
signifies CRAcks in the Material Point method [Guo and Nairn, 2004, 2006, Nairn, 2003].
The crack plane is defined by a linked series of massless particles that translate through the
grid along with the material particles (see figures in [Nairn, 2003]). The crack particles track
the local crack opening displacement that provides information for calculation of the top and
bottom surfaces of cracks. Knowledge of the local stresses and the crack surfaces is sufficient for
calculating fracture mechanics properties of crack tips such as J integral and stress intensity
factors (Guo and Nairn 2004; 2006). Like the material points, the crack path is meshless and
thus free to follow any arbitrary path.

Here, the CRAMP algorithm was extended to include traction laws. The main change was
to search along each crack path on each time step and assign an external force to each crack
particle within the bridging zone. The required force is found from the current crack opening
displacement (COD). If the COD exceeds the critical COD, the traction zone is broken and
thereafter exerts no force. Otherwise the traction is calculated and assigned to a force on
the crack particle. Finally, the crack particle force is included in the the standard external
force calculation task within the MPM algorithm [Nairn, 2003, Sulsky et al, 1994]. Two points
require elaboration. First, normal tractions should be different in tension then in compression.
This requirement was implemented within the CRAMP crack-contact algorithm [Nairn, 2003].
In brief, the crack was set to have frictionless contact [Bardenhagen et al, 2001], as described in
[Nairn, 2003] and [Nairn, 2007a]. Whenever the crack was opened, the tractions were calculated
using the traction law. Whenever the crack was in contact, the surfaces were prevented from
cross over and the contact forces were calculated using the crack contact methods. For shear
deformation, the traction laws were used for all tangential CODs; the frictionless nature of the
crack contact eliminates all shear forces except those due to the shear traction law.

Second, since traction laws here are treated as describing elastic processes with damage,
the softening region represents development of damage. Unloading within this region should
not retrace the traction law, because that would result in an increase in traction. Here it was
assumed that unloading returns linearly to the origin. This irreversibility was implemented by
tracking the maximum COD reached on any crack particle. The resulting traction was then
calculated as follows:

– The maximum displacement on each crack particle was initialized to δmax = 0.
– On each time step, if the current δ > δc then the traction law has failed and all tractions

are removed from that crack particle; otherwise if δ > δmax then δmax = δ.
– Finally, the current δmax is used to find the traction force from

σ(δ) =
σ(δmax)

δmax
δ

During monotonic loading, the traction follows the traction law. If unloading occurs at any
crack particle, the tractions return linearly to the origin and remain on that line until δ again
reaches δmax. For shear tractions, δmax is the maximum of the absolute value of the tangential
COD and shear deformations in either direction cause the same level of damage (i.e., unloading
remains on the same line through the origin until |δ| again reaches δmax.

Simulations that include crack propagation require calculation of Jtip followed by criteria
for when and where to propagate the crack. The details are given in Section 4. Unlike FEA
analysis of cracks, where cracks must follow mesh lines, a crack in CRAMP can proceed in
arbitrary directions. Similarly, a bridging zone that follows behind the crack tip will follow
those arbitrary directions. All calculations in this paper were done using the open-source, 2D
CRAMP code [Nairn, 2007b].
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