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FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES,
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ABSTRACT

By partitioning the total stresses in a damaged composite into either mechanical and residual stresses
or into initial and perturbation stresses, it was possible to derive several exact results for the energy
release rate due to crack growth. These general results automatically include the effects of residual
stresses, traction-loaded cracks, and imperfect interfaces. By considering approximate solutions based
on admissible stress states and admissible strain states, it was possible to derive rigorous upper and
lower bounds to the energy release rate for crack growth. Two examples of using these equations are
mode I fracture in adhesive double cantilever beam specimens and analysis of microcracking in composite
laminates.
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INTRODUCTION

Composite materials, especially composites reinforced with aligned, high-modulus fibers, are often very
close to being linear elastic up to failure. For this reason, many composite fracture models for composites
have been developed using linear-elastic fracture mechanics [1, 2]. Although stress intensity methods
from linear-elastic fracture mechanics are not particularly useful for composites, it is often possible to
predict composite fracture using energy release rate. In energy based fracture mechanics, it is assumed
that cracks propagate when that energy release rate exceeds the fracture toughness of the composite.
The required energy release rate can be calculated from a global energy balance using

G = −dΠ
dA

=
d(W − U)

dA
(1)

where Π is thermoelastic potential energy, W is external work, U is thermoelastic internal energy, and
dA is an increment in total crack area. [3].

The goal of this paper is to apply Eq. (1) to general composite fracture problems when the composite
is assumed to be a linear thermoelastic material. There are important effects in heterogeneous com-
posites that make fracture mechanics of composites more difficult than the corresponding analysis for
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homogeneous materials. First, because composites are made of phases with disparate thermal expansion
coefficients, the phases will inevitably be subjected to residual stresses [4]. These residual stresses can
contribute to energy release rate and should be part of every composite fracture model [5]. Second, the
heterogeneity of composites sometimes causes cracks to divert in directions that would not be observed in
homogeneous materials. If such structure-controlled crack growth results in crack surfaces that contact
each other, there may be crack surface tractions. When traction-loaded crack surfaces slide relative to
each other during crack growth, that sliding can affect the energy release rate. Third, there will always
be interfaces between phases. If these interfaces are not perfect, they may slide relative to each other
during crack growth [6]. Like sliding, traction-loaded cracks, sliding, imperfect interfaces can affect the
energy release rate. This paper presents some recent fracture mechanics theorems for composites that
account for all effects cited above. The Examples section applies some of these theorems to analysis
of the residual stress effects in adhesive double cantilever beam specimens and to an analysis of matrix
microcracking in composite laminates.

FRACTURE MECHANICS THEOREMS

Consider an arbitrary composite subjected to a uniform temperature change of ∆T and to any mixed
traction and displacement boundary conditions as illustrated in Fig. 1. The boundary surface ST is
subjected to tractions while the boundary Su is subjected to to displacement boundary conditions. Let
the interior of the composite contain cracks and interfaces and denote the total surface area of cracks
and interfaces as Sc. Both cracks and imperfect interfaces [6] can be modeled as 2D surfaces with
continuous stresses but possibly discontinuous displacements [7]. When there are traction loads on
cracks, an additional boundary condition on Sc is

~T = ~Tc on Sc (2)

where ~Tc includes traction loads on any cracks or tractions induced at sliding interfaces. The goal of this
section is derive exact and variational theorems for the energy release rate due to an increase in total
crack area for the arbitrary composite in Fig. 1. An increase in crack area corresponds to an increase in
the internal area Sc.

Mechanical and Residual Stresses

The full thermal elasticity problem can be treated as a superposition of two problems — one for me-
chanically applied stresses and one for residual stresses [5, 7]. By partitioning the total stresses into
mechanical stresses, σm, and residual stresses, σr, substituting the partitioned stresses into Eq. (1) and
making use of virtual work and divergence theorems (the details are in Ref. [7]), it was possible to derive
the first energy release rate theorem:

G = Gmech +
V∆T

2

(
2
d 〈σm ·α〉

dA
+
d 〈σr ·α〉

dA

)
+

d

dA

(∫
Sc

~T r · ~umdS +
1
2

∫
Sc

~T r · ~u rdS
)

(3)

where Gmech is the mechanical energy release rate or the energy release rate when ∆T = 0:

Gmech =
d

dA

(
1
2

∫
ST

~T 0 · ~umdS − 1
2

∫
Su

~T m · ~u 0dS +
1
2

∫
Sc

~T m · ~umdS
)

(4)

and angle brackets indicates a volume-averaged quantity over total volume V of the composite:

〈f(x, y, z)〉 =
1
V

∫
V
f(x, y, z)dV (5)
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Fig. 1. An arbitrary multiphase material subjected to traction and displacement boundary conditions and contain-
ing cracks and interfaces.

Here ~T and u refer to surface tractions and displacements, superscripts m and r refer to mechanical
or residual stress terms, and α is the position-sensitive thermal expansion coefficient of the composite.
Equation (3) is exact. The first term is the traditional energy release rate. The subsequent terms are
required in many composite fracture problems to account for effects of residual stresses, traction-loaded
cracks, and imperfect interfaces.

For pure mode I fracture, G is proportional to K2
I (stress intensity factor). By Eq. (3), G is quadratic

in P and ∆T , but KI (proportional to a stress) must be linear in P and ∆T . Using these facts, it is
possible to simplify G for pure mode I fracture with traction-free cracks and imperfect interfaces to [5]:

GI
Gmech

=
(

1 +
V∆T

2Gmech

d 〈σm ·α〉
dA

)2

(6)

Notice that the thermoelastic GI can be calculated from the mechanical stresses alone. There is no need
to do thermoelasticity analysis. A similar result in Ref. [7] extends Eq. (6) to include traction-loaded
cracks and imperfect interfaces.

Initial and Perturbation Stresses

Alternatively, the full thermal elasticity problem can be partitioned into initial and perturbation stresses.
The initial stresses are the stress prior to crack growth and the perturbation stresses are the change in
stresses caused by new crack area of size dA. By substituting initial and perturbation stresses into Eq. (1)
and making use of virtual work and divergence theorems (the details are in Ref. [7]), it is possible to
derive a second energy release rate theorem expressed three different ways:

G =
d

dA

(∫
Sc

~T p · ~u 0dS +
1
2

∫
Sc

~T p · ~u pdS
)

=
d

dA

(∫
Sc

~T p · ~u 0dS +
1
2

∫
V
σpSσpdV

)
=

d

dA

(∫
Sc

~T p · ~u 0dS +
1
2

∫
V
εpCεpdV

)
(7)
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where superscript 0 and p refer to initial and perturbation stresses and S and C are the position-
sensitive compliance and stiffness tensors of the composite material. If the initial state corresponds to an
undamaged composite with perfect interfaces, then the first term in each form of G in Eq. (7) vanishes. In
other words, the total energy release rate including residual stresses, traction-loaded cracks, and imperfect
interfaces, can be evaluated by finding the change in perturbation stress energy due to formation of
damage. Because the perturbation stress analysis is an isothermal (∆T = 0) stress analysis, the effect
of thermal stresses on the energy release rate can be evaluated without any need for a thermoelasticity
analysis of the cracked body.

Variational Theorems

In this section, the stresses are again partitioned into initial and perturbation stresses. Assume that
the initial stresses are known exactly, but that the perturbation stresses and strains resulting from the
formation of a new finite amount a fracture area, ∆A, are only known approximately. Assume further
that there are two approximate solutions — one based on an admissible stress field, σpa, and one based
on an admissible strain field, εpa. It has recently been shown [7], that the total energy release rate for
formation of the finite fracture area can then be rigorously bounded by

−∆Πa

∆A
≤ ∆G ≤ ∆Γa

∆A
(8)

where ∆Γa and ∆Πa are the approximate changes in complementary and potential energy due to any
admissible stress or strain states calculated by:

∆Γa =
1
2

∫
V
σpaSσ

p
adV +

∫
Sc

~T p
a · ~u 0dS (9)

∆Πa =
1
2

∫
V
εpaCε

p
adV −

∫
Sc

(~Tc − ~T 0
c ) · ~u 0dS −

∫
Sc

(~Tc − ~T 0
c ) · ~u pa dS (10)

In many composite failure analyses, however, the concern is with propagation of damage where neither
the initial nor the perturbation stress are known exactly. If the stresses in the undamaged laminate
are known exactly, it is still possible to rigorously bound the energy release rate for the propagation of
damage from damage area A1 to damage area A2 by:

−∆Πa(0→ A2) + ∆Γa(0→ A1)
A2 −A1

≤ ∆G(A1 → A2) ≤ ∆Γa(0→ A2) + ∆Πa(0→ A1)
A2 −A1

(11)

Unless the rigorous bounds for damage initiation (from Eq. (8)) are very tight, the rigorous bounds for
damage propagation (from Eq. (11)) are likely to be far apart. Perhaps the rigorous propagation bounds
are too pessimistic. Because the admissible stress or strain states each provide approximate solutions, it
is possible to define approximate energy release rates derived from each approximate solution using

∆G1(A1 → A2) =
∆Γa(0→ A2)−∆Γa(0→ A1)

A2 −A1
(12)

∆G2(A1 → A2) = −∆Πa(0→ A2)−∆Πa(0→ A1)
A2 −A1

(13)

∆G1(A1 → A2) and ∆G2(A1 → A2) will, in general, be much closer to each other than the bounds
in Eq. (11). Perhaps, therefore, in practice, they will provide tighter, albeit non-rigorous, bounds to
∆G(A1 → A2). An example of using such practical bounds to analyze composite microcracking will be
given in the Examples section.
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Fig. 2. A double cantilever beam specimen used to measure the mode I toughness of adhesive bonds. The cantilever
arm length is a, the total specimen length in L. Sometimes the adhesive does not extend to the end of the arms;
here the adhesive stops a distance b from the ends.

EXAMPLES

Adhesive Double Cantilever Beam Specimen

Figure (2) shows a double cantilever beam (DCB) specimen that is often used to measure the mode
I fracture toughness of adhesives, GIc. When the thermal expansion coefficient of the adherend and
adhesive are different, such specimens will inevitably have residual stresses. Starting from Eq. (6), it has
recently been shown that the total thermoelastic energy release rate for this specimen can be written
extremely accurately as [8]:

GI =
(
Cm

(
1 + 1.15

∆
a

)
Pa+ Cr∆T

)2

(14)

where Cm and Cr are mechanical and residual stress terms that can easily be evaluated from simple
beam theory and depend only on the effective compliance and thermal curvature properties of each arm
of the specimen. The first term in Eq. (14) is the mechanical loading part of GI . It is known that simple
beam theory, by itself, it not sufficiently accurate because of crack-tip rotation effects [9]. Williams [9]
has developed a corrected beam theory that improves the mechanical analysis by replacing the actual
crack length a by an effective crack length a + ∆ where ∆ is a function only of beam properties and
dimensions [9]. By comparison to numerous finite element results, it was empirically determined that
an effective crack length of a+ 1.15∆ (using the ∆ from Ref. [9]) improves the results and is extremely
accurate for any beam dimensions used in experiments [8]. The second term in Eq. (14) is the residual
stress contribution to GI . In contrast to the mechanical term, the residual stress term can be calculated
accurately for any typical beam dimensions by using simple, uncorrected beam theory [8]. It is thus
a simple exercise to include residual stress effects in analysis of fracture experiments on adhesive DCB
specimens.

Although it is easy to account for residual stresses, most work on adhesives and most standards for
characterization of adhesives ignore residual stresses. The questions arises: what is the consequence of
ignoring residual stresses? Assume that the true toughness of an adhesive is GIc which implies that
failure occurs when GI = GIc. Using the total energy release rate in Eq. (14), failure will occur at an
applied load of

P =
√
GIc − Cr∆T

Cm(a+ 1.15∆)
(15)



J. A. Nairn 6

In work that ignores residual stresses, this P will be the experimentally determined failure load, but
the adhesive toughness will be calculated by an analysis that ignores residual stresses. Taking Eq. (14)
with ∆T = 0 as an accurate result that ignores residual stresses, such work would arrive at an apparent
toughness that differs from the true toughness, GIc, by

GappIc =
(√

GIc − Cr∆T
)2

(16)

Such an apparent toughness can be higher or lower than the true toughness depending on the sign of
Cr. For polymeric adhesives between metallic adherends, Cr is always negative which means an apparent
toughness measured by ignoring residual stresses will be too high or a non-conservative characterization
of the true adhesive properties [8].

The precise magnitude of the errors in GappIc depends on beam dimensions, adhesive and adherend proper-
ties, GIc, and ∆T . For sample calculations of errors, consider an adhesive with GIc = 200 J/m2, residual
stresses due to ∆T = −100◦C, and a thermal expansion mismatch between adherend and adhesive of
∆α = −40× 10−6 K−1. These parameters correspond to a typical high-temperature-cure epoxy adhesive
bonded to metallic adherends. Figure (3) plots the percentage error in GappIc as a function of modulus
ratio R = E1/E2 and layer thickness ratio λ = t1/t2 where subscripts 1 and 2 indicate adherend and
adhesive, respectively. The errors are extremely large for low R and low λ and decrease as either R or λ
increase. In general, the errors are never insignificant. The dashed vertical line shows a typical R value
for aluminum-epoxy specimens (R = 28). Despite the high aluminum-epoxy R value, the errors exceed
1% even with a very thin adhesive (λ = 64). The errors in aluminum-epoxy specimens increase to over
40% as λ decreases to 2, but typical adhesive specimens will have a much larger λ and thus a much
smaller error. The nearly-horizontal dashed line gives the errors caused in the mechanical energy release
rate when ignoring the crack-length correction term 1.15∆. The error due to ignoring crack tip rotation
are typically similar in magnitude to the errors due to ignoring residual stress. It is common practice to
correct adhesive DCB results for crack tip rotation effects. Considering the simplicity of also correcting
for residual stresses and the fact that the magnitude of the effects are similar, it should also be common
practice to correct adhesive DCB results for residual stress effects.

Laminate Microcracking

When cross-ply laminates ([0n/90m]s) are loaded in tension parallel to the 0◦ plies, the 90◦ plies develop
transverse cracks or matrix microcracks (see review article Ref. [2]). On continued loading, the 90◦ plies
crack into a roughly periodic array of microcracks. For analysis of a microcracked specimen, one can
analyze the unit cell of damage containing a single microcrack as illustrated in Fig. 4. Previous work
has derived approximate 2D, plane-stress solutions to the stresses in the x − z plane of a microcracked
laminate based either on an admissible stress state [10, 11, 12] or an admissible strain state [13]. These
two types of solutions, which originally were for traction-only loading, were recently modified slightly to
give solutions for constant-displacement boundary conditions that are more appropriate for analysis of
experiments run in displacement control [7]. The two modified solutions can be used to bound energy
release rate and to analyze experiments.

By using the admissible-stress-state solution to obtain an upper bound and the admissible-strain-state
solution to obtain a lower bound, the total energy released upon forming n microcracks (denoted here as
∆Gm(0→ n)) in a laminate can be rigorously bounded by:

t1
(
σ0
xx,1

)2
〈
C3
EUA (ρi)
E0

χU (ρi)

〉
≤ ∆Gm(0→ n) ≤ t1

(
σ0
xx,1

)2
〈
C3
ELA(ρi)
E0

χL(ρi)

〉
(17)

where 2t1 is the total thickness of the 90◦ plies, σ0
xx,1 is the total stress in the 90◦ plies in the absence of

microcracking, EUA (ρi) and ELA(ρi) are the upper and lower bound modulus for laminates with periodic
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Fig. 3. The error in GappIc when residual stresses are ignored as a function of modulus ratio R for various values
of thickness ratio λ. The adhesive DCB specimens were assumed to have h = 5 mm, GIc = 200 J/m2, ∆α =
−40× 10−6 K−1, and ∆T = −100◦C.

microcracks intervals of aspect ratio ρi, and χU (ρi) and χL(ρi) are excess energy functions derived
elsewhere [7]. C3 is a constant that depends only on ply properties and laminate structure. The terms
EUA (ρi) and χU (ρi) are derived from the admissible-strain-state solution [7]; the terms ELA(ρi) and χL(ρi)
are derived from the admissible-stress-state solution [7].

A sample plot of the rigorous bounds on ∆Gm(0 → n) for a [0/902]s E-glass/epoxy laminate is given
in Fig. 5. This plot is the total energy released per unit area as a function of crack density for loading
conditions giving unit stress in the 90◦ plies (σ0

xx,1 = 1 MPa). The upper and lower bounds are fairly
far apart at low crack density, but get closer at high crack density. These bounds were calculated
from Eq. (17) which was derived using displacement boundary conditions [7]; they are appropriate for
analysis of experiments in displacement control. In conventional fracture mechanics, which analyzes an
infinitesimal amount of crack growth, the energy release rate is independent of load vs. displacement
boundary conditions. When analyzing discrete amounts of fracture, sometimes termed finite fracture
mechanics [14, 15], however, it is important to use the appropriate boundary conditions because the energy
released depends on whether the analysis is done for load control or displacement control conditions [7, 15].

The more commonly required energy release rate for analyzing microcracking experiments [2] is the
energy release rate for the formation of the next microcrack: ∆Gm(n→ n+ 1). The rigorous bounds to
∆Gm(n→ n+1) can be found from Eq. (11). Alternatively, practical bounds can be found from Eqs. (12)
and (13). Using the admissible-stress-state and the admissible-strain-state solution, the practical bounds
are:

∆Gm1(n→ n+ 1) = C3t1
(
σ0
xx,1

)2
(

2
ELA(ρ/2)
E0

χL(ρ/2)− ELA(ρ)
E0

χL(ρ)

)
(18)

∆Gm2(n→ n+ 1) = C3t1
(
σ0
xx,1

)2
(

2
EUA (ρ/2)
E0

χU (ρ/2)− EUA (ρ)
E0

χU (ρ)

)
(19)

Figure 6 gives sample calculations for both rigorous and practical bounds to ∆Gm(n→ n+1) for [0/902]s
E-glass/epoxy laminate as a function of crack density for loading conditions giving σ0

xx,1 = 1 MPa. The
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This figure is an edge view or x–z plane view. The laminate width direction is in the y direction. The axial load
is applied in the x direction.

symbols give some finite element calculations of the energy release rate. The rigorous upper and lower
bounds bound the numerical FEA results but are fairly far apart. The practical bounds (∆Gm1 and
∆Gm2) always bound the numerical results, but the sense of which practical bound is an upper bound
and which is a lower bound switches at a crack density of about 0.6 mm−1.

All energy release rates for microcracking can be written in the generic form

∆Gm(D) =
(
σ0
xx,1

)2
∆Gm,unit(D) = (kmσ0 + kth∆T )2 ∆Gm,unit(D) (20)

where ∆Gm,unit(D) is the energy release rate when there is unit initial stress in the 90◦ plies and the
current microcrack density is D. The second equation expresses σ0

xx,1 for linear thermoelastic laminates
in terms of mechanical and thermal stiffnesses which can easily be calculated from laminated plate
theory [2, 16]. In finite fracture mechanics analysis of microcracking, it is assumed the next microcrack
forms when ∆Gm(D) = Gmc where Gmc is the microcracking fracture toughness for the material. Under
this assumption, Eq. (20) can be rewritten as

−km
kth

σ0 = −
√
Gmc

kth
√

∆Gm,unit(D)
+ ∆T (21)
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Fig. 5. Rigorous bounds on total energy release rate due to formation of all microcracks under displacement control.
The calculations are for a [0/902]s E-glass/epoxy laminate. The assumed laminate properties are in Ref. 13. The
calculation is for σ0

xx,1 = 1 MPa.

Fig. 6. Rigorous (upper and lower bounds) and practical bounds (∆Gm1 and ∆Gm2) for the energy release rate
∆Gm(n → n + 1) or the energy released due to the formation of the next microcrack. The calculations are
for a [0/902]s E-glass/epoxy laminate. The assumed laminate properties are in Ref. 13. The calculation is for
σ0
xx,1 = 1 MPa. The symbols are finite element analysis calculations for ∆Gm(n→ n+ 1).
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Fig. 7. Master plot analysis for 14 [0n/90m]s (open symbols) and [90m/0n]s (filled symbols) AS4/3501-6 car-
bon/epoxy laminates. Gm,unit(D) was calculated from a complementary energy analysis with constant displace-
ment boundary conditions. The straight line is a linear fit to the experimental results. The slope and intercept of
the fit give Gmc = 220 J/m2 and ∆T = −95◦C.

This equation suggests defining a reduced stress, σR, and reduced crack density, DR, by

σR = −km
kth

σ0 and DR = − 1

kth
√

∆Gm,unit(D)
(22)

which are related by
σR = DR

√
Gmc + ∆T (23)

By Eq. (23), a plot of σR as a function of DR should be linear with a slope of
√
Gmc and an intercept of

∆T . Because Gmc and ∆T should be independent of laminate geometry, the results from all laminates
should all fall on the same line which defines a master plot for that material

The construction of a master plot requires a result for ∆Gm,unit(D). As seen in Fig. 6 the practical
bounds give very accurate results for the energy released due to the formation of the microcrack. Figure
7 gives a master plot for 14 different laminates of AS4/3501-6 carbon/epoxy laminates with ∆Gm,unit(D)
calculated using the practical bound ∆Gm1(n → n + 1). The data from all laminates fall on a single
linear master plot. The slope gives the toughness as Gmc = 220 J/m2 and the residual stress term as
∆T = −95◦C. Notice that the microcracking fracture process is sensitive to residual stresses and thus
residual stresses must be included to analyze the experiments correctly. Fortunately, however, the residual
stresses do not need to be measured; they are determined automatically as the intercept of the linear
master plot. The success of the master plot analysis is experimental verification of two points. First,
it shows that the finite fracture mechanics criterion that microcracks form when ∆Gm(D) = Gmc is an
appropriate failure criterion for predicting microcracking. Attempts to use other failure criteria, such
as strength-based methods, give very poor master plots [16]. Second, it shows that the practical bound
∆Gm1(n→ n+ 1) is sufficiently accurate for analyzing microcracking experiments. Attempts to use less
accurate energy release rate analyses gave worse master plots [15, 16]. Attempts to use more accurate
energy release rate analyses are not likely to yield much improvement because Fig. 7 is probably already
as narrow as possible when considering experimental scatter in fracture experiments.
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CONCLUSIONS

The key results of this paper are to express energy release rates for composite fracture in several alternate
forms. All of these forms are mathematically identical, but specific forms will be more convenient than
others for specific composite fracture problems. Equation (3) gives G in terms of mechanical and residual
stresses. Equation (6) gives a special case of Eq. (3) for mode I crack growth. Equation (7) gives G in
terms of initial and perturbation stresses. Equations (8) and (11) give variational bounds to ∆G. Each
of these results includes residual stresses, traction-loaded cracks, and imperfect interfaces. Most of the
equations simplify further when all cracks are traction free and there is no sliding at imperfect interfaces.
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