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Abstract A new approach was developed for the eval-

uation of energy release rate by the virtual crack closure

technique in quadratic and linear elements. The gener-

alized method allows arbitrary placement of the side

nodes for quadratic elements and thus includes both

standard elements, with mid-side nodes, and singular-

ity elements, with quarter-point nodes, as special cases

of one general equation. It also accounts for traction-

loaded cracks. The new derivation revealed that the

proper nodal forces needed for crack closure calcula-

tions should be the newly-defined “nodal edge forces,”

rather than the global or element forces from standard

finite element analysis results. A method is derived for

calculating nodal edge forces from global forces. These

new forces affect energy release rate calculations for sin-

gularity elements and for problems with traction-loaded

cracks. Several sample calculations show that the new

approach gives improved accuracy.

Keywords Fracture · Finite Elements Analysis ·
Crack Closure

1 Introduction

The virtual crack closure technique (VCCT) for calcu-

lation of energy release rate from finite element analysis

(FEA) results including a crack tip was introduced by

Rybicki and Kanninen [1977]. Their analysis was for

four-node, linear elements. The approach was later ex-

tended to higher order elements [Krishnamurthy et al,
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1985, Ramamurthy et al, 1986, Raju, 1987, Sethura-

man and Maiti, 1988, Narayana et al, 1990], includ-

ing singularity elements [Barsoum, 1976], and to both

2D and 3D elements (see review by Krueger [2004]).

This paper describes a new, generalized crack closure

analysis for quadratic and linear elements and for both

planar and axisymmetric calculations. The main new

feature is that the side-node for quadratic elements can

be arbitrarily placed, which allows a single equation to

include both mid-side-node and quarter-point elements

(i.e., singularity elements) as special cases. Another fea-

ture is that crack surfaces are allowed to have traction

forces. Although including these tractions is easy, it is

rarely done. One often-cited analysis by Raju [1987] in-

cludes tractions, but was found to have an error. This

new analysis explains why and provides a correction.

The results for mid-side-node elements are identical

to prior equations [Krueger, 2004], except for the correc-

tion for crack-surface tractions. The approach adopted

here, however, demonstrates that the crack-closure cal-

culations can be done without any assumptions about

the crack-plane stresses. In other words, prior analy-

ses that used specific fitting functions for stresses [Kr-

ishnamurthy et al, 1985, Raju, 1987, Sethuraman and

Maiti, 1988] were introducing unnecessary assumptions.

When the side node is not in the middle (e.g., quarter-

point elements), this new analysis is different then prior

literature results. The main difference is that the new

approach reveals a modified nodal force that should be

used for the crack-closure calculation. The proper forces

are neither the element forces nor the global forces that

are found in standard FEA output. Rather, the forces

must be resolved to “nodal edge force” that are de-

fined by work-equivalence with the crack-plane stress

state. A method is described for calculating nodal edge

forces from global FEA forces and crack surface trac-
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tions. The same general approach can be applied to

linear elements. The results are trivial and identical to

prior equations [Rybicki and Kanninen, 1977], except

for the new correction for crack-surface tractions.

Several example calculations are given to test the

convergence of mid-side-node elements, quarter-point

elements, and linear elements. Converged results were

found by extrapolating to zero element size. The mid-

side-node elements converged the fastest. The quarter-

point elements converged to the same answer when us-

ing this new analysis based on nodal edge forces but

converged to a different answer when using old meth-

ods based on improper forces. The linear elements con-

verged the slowest and 3-node triangular elements con-

verge to different answers.

2 Generalized Crack Closure Analysis

2.1 Crack Closure Integrals

Figure 1 shows the element edges near a crack tip (at

node 1 or 3′) in a finite element mesh. For this analysis,

the three edges ((1′′2′′3′′), (1′2′3′), and (12±3±)) are as-

sumed to be collinear along the local x axis and the two

edges touching the crack tip ((1′2′3′), and (12±3±)) are

assumed to have the same length (∆a). The side nodes

2′ and 2± are allowed to be arbitrarily placed along

their edges with their positions defined by R = (x2± −
x1)/∆a and R′ = (x2′ − x1′)/∆a. The node placement

was limited, however, to symmetric mid-side nodes such

that R′ = 1 − R. The remote edge (1′′2′′3′′) was as-

sumed to have a mid-side node. The analysis presented

here could be extended to more general geometries (e.g.,

non-collinear edges, crack tip edges of different lengths

[Krueger, 2004], or non-symmetric nodes), but the re-

sults are more complex. Since any crack tip mesh could

be created to meet these restrictions, the analysis can

be considered sufficiently general. The variable R lets a

single analysis apply to conventional quadratic elements

with mid-side nodes (R = 1/2) and to quarter-point el-

ements (R = 1/4).

The standard crack closure integral for total energy

release rate in planar analysis with thickness t is:

G =
1

2
lim
∆a→0

∫∆a
0

[(
σyy(x′)− σ(c)

0

)
∆v(x)

]
t dx∫∆a

0
t dx

+
1

2
lim
∆a→0

∫∆a
0

[(
τxy(x′)− τ (c)0

)
∆u(x)

]
t dx∫∆a

0
t dx

(1)

where the integration is over the crack surface element,

but the stresses are taken from the position x′ = x−∆a
behind the crack tip [Rybicki and Kanninen, 1977].

The first term involving tensile stresses and y-direction
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Fig. 1 The nodes and elements around a crack tip at node 1 (or

3′) for a finite element mesh constructed with quadratic elements.

The element corner nodes (1 and 1′) will belong to more than one
element. The dashed lines indicate one set of boundaries showing

three elements above the plane, but those nodes may belong to

fewer or more elements without altering the analysis.

crack-opening displacement (COD or ∆v(x)) is mode I

or GI , while the second term with shear stresses and

x-direction COD (∆u(x)) is mode II or GII . The sub-

traction of σ
(c)
0 and τ

(c)
0 allows for constant traction

stress on the crack surfaces (note that crack closure

can only account for constant crack surface stresses be-

cause if those stresses change as the crack propagates,

the crack closure integral ceases to be local to the crack

tip elements [Nairn, 2000]). Let ξ be a dimensionless

variable along the (12±3±) edges such that ξ = −1, 0,

and +1 at nodes 1, 2± and 3±, respectively. The posi-

tion and CODs become:

x = N1(ξ)x1 +N2(ξ)x2± +N3(ξ)x2± (2)

∆u(ξ) = N2(ξ)∆u2 +N3(ξ)∆u3 (3)

∆v(ξ) = N2(ξ)∆v2 +N3(ξ)∆v3 (4)

where N1(ξ) = − 1
2ξ(1−ξ), N2(ξ) = 1−ξ2, and N3(ξ) =

1
2ξ(1 + ξ) are quadratic shape functions, and ∆ui and

∆vi are CODs at node i±. Transformation of Eq. (1)

to the ξ coordinate leads to G = GI +GII where

GI =
1

2

[
∆v2(In0 − In2) +

∆v3
2

(In1 + In2)

]
− σ

(c)
0

3

[
∆v2 +

3− 4R

4
∆v3

]
(5)

where

Ink =

∫ 1

−1
ξkσyy(ξ′)

(
1

2
+ (1− 2R)ξ

)
dξ (6)

and ξ′ is dimensionless variable that is ξ′ = −1, 0, and

+1 at nodes 1′, 2′ and 3′, respectively. The result for

GII is the same except normal stresses and y CODs are

replaced by shear stresses and x CODs. Also the limit

as ∆a → 0 was dropped, but is implicit in all crack

closure integrals.

2.2 Nodal Edge Forces

Energy release rate is calculated from FEA results us-

ing calculated nodal forces, but the method used to find
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those forces is crucial. First, imagine splitting along the

crack plane and evaluating the resulting nodal forces as-

sociated with the crack plane and crack surface stresses.

These forces are denoted as the “nodal edge forces.” As

explained below they differ from both element forces

and global nodal forces, which are the standard forces

from FEA output. The only imposed requirement is

that the work associated with the edge forces is equal

to the work associated with crack-plane stresses, which

is the usual condition used when imposing stress-based

boundary conditions in FEA. Along the (1′2′3′) edge,

the edge forces are:

Fy,i′ = t

∫ x3′

x1′

Ni(x
′)σyy(x′)dx′

= t∆a

∫ 1

−1
Ni(ξ

′)σyy(ξ′)

(
1

2
− (1− 2R)ξ′

)
dξ′ (7)

where t is thickness. These forces can be recast as:

t∆a

 I ′n0
I ′n1
I ′n2

 =

 1 1 1

−1 0 1

1 0 1

Fy,1′

Fy,2′

Fy,3′

 = KF (8)

where K and F are the matrix and vector and

I ′nk =

∫ 1

−1
(ξ′)kσyy(ξ′)

(
1

2
− (1− 2R)ξ′

)
dξ′ (9)

Because crack-tip side nodes are symmetrically placed

(R′ = 1−R), it is easy to derive

ξ
(
1 + (1− 2R)ξ

)
− ξ′

(
1− (1− 2R)ξ′

)
= 2(1− 2R)(10)(

1

2
+ (1− 2R)ξ

)
dξ =

(
1

2
− (1− 2R)ξ′

)
dξ′(11)

which implies In0 = I ′n0. Multiplying the first relation

by σyy(ξ′) and integrating gives a relation between I ′nk
and Ink, which can be rearranged using Eq. (8) to get:

In1 =
1

t∆a

[
−2RFy,1′ + 2(1− 2R)Fy,2′

+ 2(1−R)Fy,3′ − (1− 2R)t∆aIn2

]
(12)

Substituting this result along with In0 (from I ′n0 in

Eq. (8)) into Eq. (5) provides energy release rate that

depends only on nodal edge forces and In2:

GI =
1

2t∆a

[
∆v2

[
Fy,1′ + Fy,2′ + Fy,3′ − t∆aIn2

]
+ ∆v3

[
Rt∆aIn2 −RFy,1′ + (1− 2R)Fy,2′

+ (1−R)Fy,3′

]]
− σ

(c)
0

3

[
∆v2 +

3− 4R

4
∆v3

]
(13)

To eliminate In2 as well, a general analysis needs

to assume some form for the crack plane stresses (see

below on why certain elements do not need any assump-

tions about stresses). To be consistent with the three

independent edge forces, the stress is assumed to have

three degrees of freedom or:

σyy(ξ′) = B0f0(ξ′) +B1f1(ξ′) +B2f2(ξ′) (14)

where Bi are three unknown constants (which could

be determined from FEA results) and fi(ξ
′) are three

appropriately chosen functions of ξ′ (to be filled in later

as needed). The stress integrals become(
I ′n0, I

′
n1, I

′
n2

)
= M

(
B0, B1, B2

)
(15)

where the elements of M are defined by:

Mij =

∫ 1

−1
(ξ′)ifj(ξ

′)

(
1

2
− (1− 2R)ξ′

)
dξ′ (16)

The goal is to find In2 which can be recast as:

t∆aIn2 = t∆a
(
B0, B1, B2

)
·N (17)

where

Nj =

∫ 1

−1
ξ2fj(ξ

′)

(
1

2
+ (1− 2R)ξ

)
dξ (18)

Using Eqs. (8) and (15) gives:

In2 = NM−1KF (19)

The energy release rate in terms of nodal edge forces

becomes:

GI =
1

2t∆a

{
∆v2

[
(1, 1, 1)−NM−1K

]
· F

+ ∆v3
[
(−R, 1− 2R, 1−R) +RNM−1K

]
· F
}

− σ
(c)
0

3

[
∆v2 +

3− 4R

4
∆v3

]
(20)

The result for mode II is identical except that Fx,i′

replaces Fy,i′ , τ
(c)
0 replaces σ

(c)
0 , and ∆ui replaces ∆vi.

2.3 Nodal Edge Forces from Global Forces

Forces at the nodes can be defined three different ways

as illustrated in Fig. 2. The basic force calculation in

FEA is to find an element force, F
(ej)
y,i , which is found

from nodal displacements and element stiffness matrix.

When a node is shared by several elements, it has sev-

eral element forces. For example, the crack plane mesh

in Fig. 2 shows three elements at each node above the

crack plane (with element boundaries indicated by dash-

ed lines, although those nodes may belong to any num-

ber of elements without altering this analysis). Thus

nodes 1′ and 3′ each have multiple element forces, while

node 2′ has only a single element force. The second type

of force is a global force, F
(g)
y,i , which is a sum of all el-

ement forces on one side of the crack plane; they are
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Fy,1′
(g) Fy,2′

(g)

Fy,3′
(g)

Fy,1′Fy,3″

=Fy,2′

Fy,1Fy,3′

Fy,1′
(e1) Fy,1′

(e2)

Fy,1′
(e3) Fy,3′

(e3)
Fy,3′
(e4)

Fy,3′
(e5)

Fy,2′
(e3)

Fig. 2 Forces at the nodes near the crack tip can be resolved

into element forces (with superscript (ei)), global forces from the
top half plane (with superscript (g)), or nodal edge forces that

are consistent with the crack plane stresses (with no superscript).

denoted here as F
(g)
y,i . The analysis in the previous sec-

tion reveals that neither of these forces are appropriate

for crack closure calculation. The proper forces, which

are defined as “proper” because they are consistently

defined by work-equivalence with the crack plane stress

(see Eq. (7)), are the nodal edge forces, Fy,i. Nodes 1′

and 3′ will each have exactly two nodal edges forces and

these forces will differ from element forces even when

those nodes are only in two elements. The strategy for

general crack closure analysis becomes:

1. Using standard FEA methods, calculate all element

forces at each node.

2. Sum the forces for all elements on one side of the

crack plane to find global nodal forces.

3. Use the methods in this section to partition global

forces into nodal edge forces.

4. Substitute edge forces into Eq. (20) to find energy

release rate.

The element, global, and edge forces are related by

force balance as follows:
∑
i F

(ei)
y,1′

F
(e)
y,2′∑
i F

(ei)
y,3′

 =

F
(g)
y,1′

F
(g)
y,2′

F
(g)
y,3′

 =

Fy,1′ + Fy,3′′

Fy,2′

Fy,3′ + Fy,1

 (21)

Along the (12±3±), the one force that is needed can be

evaluated explicitly:

Fy,1 = σ
(c)
0 t∆a

∫ 1

−1
N1(ξ)

(
1

2
+ (1− 2R)ξ

)
dξ

= σ
(c)
0 t∆a

(
4R− 1

6

)
(22)

Along the (1′′2′′3′′), the one force that is needed is

Fy,3′′ =
t∆l

2

∫ 1

−1
N3(ξ′′)σyy(ξ′′)dξ′′ (23)

where ξ′′ is a dimensionless variable along the (1′′2′′3′′)

edge. To keep the VCCT analysis local to the crack-tip

elements, Fy,3′′ can be found by extrapolating the crack

plane stress from edge (1′2′3′):

Fy,3′′ = t∆a(L0B0 + L1B1 + L2B2) (24)

where the Li are stress integrals over the (1′′2′′3′′) edge:

Li =
∆l

2∆a

∫ 1

−1
N3(ξ′′)fi(ξ

′′)dξ′′ (25)

and fi(ξ
′′) are the functions in Eq. (14) extended into

the second element’s coordinate system. Combining Eqs.

(8), (15), (22), and (24), the nodal edge forces can be

found from standard FEA forces and a known, constant

traction stress:

F =
[
I + LM−1K

]−1


F
(g)
y,1′

F
(g)
y,2′

F
(g)
y,3′ −

(4R−1)t∆aσ(c)
0

6

 (26)

where I is the identity matrix and the L matrix has

(L0, L1, L2) on the first row and zeros elsewhere. The

matrix
[
I + LM−1K

]−1
simplifies to the identity ma-

trix with first row replaced by (D0, D1, D2), which de-

pend on Li and are readily evaluated for any element

type. The nodal edge forces thus reduce to:

F =


D0F

(g)
y,1′ +D1F

(g)
y,2′ +D2

(
F

(g)
y,3′ −

(4R−1)t∆aσ(c)
0

6

)
F

(g)
y,2′

F
(g)
y,3′ −

(4R−1)t∆aσ(c)
0

6


(27)

The forces for mode II replace y forces with x forces and

replace σ
(c)
0 with τ

(c)
0 . Substituting this F into Eq. (20)

provides the final, general crack closure result in terms

of global nodal forces and nodal CODs.

This important result gives a procedure for finding

nodal edge forces from typical FEA output for global

forces and a known traction stress. The largest effect is

in finding Fy,1′ . Thus any prior crack closure method

that depends on Fy,1′ should be revised to use the edge

forces calculated here. A second effect arises for traction

loaded cracks. The general equation (see Eq. (20)) has

a traction term that was derived by integrating forces

along (12±3±) edge. This term is identical to the trac-

tion effect added by Raju [1987]. When the forces along

the (1′2′3′) are treated consistently with the traction

forces, however, a second traction term appears (see

first and third row in Eq. (27)). When both effects are

combined, the final effect of tractions is different then

prior results [Raju, 1987].
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Fig. 3 Crack plane nodes and edges for a crack in an axisym-

metric analysis. The x used in the analysis remains along the
crack path, the crack may be tilted with respect to the global r

and z axes. ∆r = 〈r〉 − 〈r′〉 is the difference between the radial-

coordinate midpoints of the two edges at the crack tip.

2.4 Axisymmetric Analyses

The crack plane edges for an axisymmetric analysis are

shown in Fig. 3. As in the planar analysis, the x axis is

defined as along the crack path. The crack orientation,

however, may be tilted from the global r and z axes,

and, unlike planar analyses, the axisymmetric results

depend on this crack orientation. The crack orientation

is defined by the radial coordinates at the midpoint of

the (1′2′3′) and the (12±3±)), which are denoted by 〈r′〉
and 〈r〉, respectively. The radial distance between these

points is ∆r = 〈r〉 − 〈r′〉. For axial cracks (i.e., cracks

propagating in the z direction) ∆r will be zero, but for

all other cracks, it will be nonzero with a maximum of

∆r = ∆a for radial cracks.

The crack closure analysis for axisymmetric prob-

lems is nearly identical to the planar analysis. The pro-

cedure is to replace incremental area t dx in Eq. (1) by

the polar integration area or 2πr(x′) dx. Note that r(x′)

is most appropriately referenced to the (1′2′3′) edge be-

cause this area times the stress is providing the force to

the energy calculation. The subsequent analysis up to

the general result in Eq. (20) is nearly identical, with

three exceptions. First, t is replaced by 〈r′〉. Second,

the F, M, and N definitions include radial position in

the integrand:

Fy,i′ = ∆a

∫ 1

−1
r(ξ′)Ni(ξ

′)σyy(ξ′)

(
1

2
− (1− 2R)ξ′

)
dξ′

(28)

Mij =
1

〈r′〉

∫ 1

−1
(ξ′)ir(ξ′)fj(ξ

′)

(
1

2
− (1− 2R)ξ′

)
dξ′

(29)

Nj =
1

〈r′〉

∫ 1

−1
ξ2r(ξ′)fj(ξ

′)

(
1

2
+ (1− 2R)ξ

)
dξ (30)

(Note: the forces in axisymmetric analyses are taken

as force per radian.) Third, the explicit integration for

crack tractions (last term in Eq. (5)) changes to:

− σ
(c)
0

3

[(
1− (1− 2R)

5

∆r

〈r′〉

)
∆v2

+

(
3− 4R

4
+

(5 + 8R(1− 2R))

40

∆r

〈r′〉

)
∆v3

]
(31)

This new constant stress term reduces to the planar

analysis result for axial cracks (∆r = 0), but for other

crack orientations the constant stress effect depends on

orientation.

The analysis for finding nodal edge forces from global

forces is also nearly identical, with two exceptions. First

the extrapolation terms add radial position to the inte-

grand:

Li =
∆l

2 〈r′〉∆a

∫ 1

−1
N3(ξ′′)r(ξ′′)fi(ξ

′′)dξ′′ (32)

Second, the explicit integral to account for constant

crack surface tractions changes the Fy,1 term subtracted

from F
(g)
y,3′ in Eq. (27):

Fy,1 = σ
(c)
0 ∆a 〈r′〉

[
4R− 1

6
+

16R(1 +R)− 7

60

∆r

〈r′〉

]
(33)

3 Specific Elements

3.1 Mid-Side Nodes

Applying the general result to mid-side elements with

R = 1/2, results in N being equal to the last row of

M (Nj = M2j). Thus, NM−1 = (0, 0, 1) (i.e., last row

of the identity matrix) and NM−1K = (1, 0, 1). The

energy release rate simplifies to

GI =
1

2t∆a

[
∆v2F

(g)
y,2′ +∆v3F

(g)
y,3′

]
− σ

(c)
0

3

[
∆v2 +

∆v3
2

]
(34)

The first term is the usual result quoted for mid-side

elements [Krueger, 2004]; the second terms corrects GI
for constant, crack-surface traction. Raju [1987] also in-

cluded tractions but had the last term as ∆v3/4 instead

of ∆v3/2. As explained above, the error in Raju [1987]

was caused by inconsistent treatment of forces. This

new result is verified below as being more accurate in

calculations for a pressure loaded crack.
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The axisymmetric analysis is similar, except the con-

stant traction term changes for non-axial cracks:

GI =
1

2 〈r′〉∆a

[
∆v2F

(g)
y,2′ +∆v3F

(g)
y,3′

]
− σ

(c)
0

3

[
∆v2 +

∆v3
2

(
1 +

∆r

2 〈r′〉

)]
(35)

Notably, these mid-side node results do not depend

on Di, which implies that the final energy release rate

is independent of the assumptions used for stress in the

crack plane. Prior analyses of this element included as-

sumptions about the variation in crack plane stress [Kr-

ishnamurthy et al, 1985, Raju, 1987, Sethuraman and

Maiti, 1988]. This analysis shows those assumptions are

irrelevant and explains why those using different as-

sumptions got the same result. The only assumption

actually needed is a work equivalence between nodal

edge forces and integrated stress (i.e., Eq. (7)).

3.2 Quarter-Point Elements

In planar, quarter-point elements (R = 1/4), the dis-

tance from the crack tip along the (1′2′3′) edge, r, is

r =
∆a

4
(1− ξ′)2 (36)

The intention of quarter-point elements is to represent

a singular stress state. Thus a logical assumption for

the crack-plane stress is to use the first three terms of

a Williams [1957] series expansion of crack-tip stresses:

σyy(rc) =
B0

√
∆a

2
√
r

+B1 +
2B2
√
r√

∆a
(37)

where Bi are determined from FEA results. In the di-

mensionless coordinates the expansion is:

σyy(ξ′) =
B0

1− ξ′
+B1 +B2(1− ξ′) (38)

The expansion functions in the generalized crack clo-

sure analysis become:

f0(ξ′) =
1

1− ξ′
, f1(ξ′) = 1, and f2(ξ′) = 1− ξ′ (39)

Substituting fi(ξ
′) into Mij and Nj leads to difficult

integrals, but they can be evaluated explicitly (using

Mathematica [Wolfram Research, 2009]):

Mij =
Γ (1 + i)Γ (1 + j)

2Γ (2 + i+ j)
+

(−1)i2F1(1 + i,−j, 2 + i,−1)

2 (1 + i)

(40)

Nj =
4

j
2

1 + j
+

8
(

4
j
2

)
3 + 4j + j2

−
4

j
2
√
π Γ ( 1+j

2 )

Γ (2 + j
2 )

(41)

where Γ (x) is the Gamma function and 2F1(a, b, c, x) is

the Hypergeometric Function (see Arfken [1970], pg. 638).

The exact evaluations are:

M =

 1 1 4
3

0 − 1
3 −

2
3

1
3

1
3

8
15

 and N =

(
11

3
− π, 1

3
,

52

15
− π

)
(42)

The crack closure results in terms of nodal edge forces

become

GI =
1

2t∆a

{
∆v2

(
21π

2
− 32, 17− 21π

4
,

33π

2
− 52

)
· F

+∆v3

(
8− 21π

8
,

21π

16
− 7

2
, 14− 33π

8

)
· F
}

− σ
(c)
0

3

(
∆v2 +

∆v3
2

)
(43)

These coefficient vectors are identical to the coefficients

found in some previous analyses of quarter-point ele-

ments [Ramamurthy et al, 1986, Raju, 1987, Narayana

et al, 1990], but those analyses did not notice the need

for nodal edge forces. Ramamurthy et al [1986] gives

no specifics on forces, which implies they used global

forces. Raju [1987] explicitly says to sum forces for

all elements to get global forces. Narayana et al [1990]

claims global forces should be used for Fy,2′ and Fy,3′ ,

but specified use of element force for Fy,1′ . The new

result here is to use nodal edge forces.

Both Sethuraman and Maiti [1988] and Raju [1987]

obtain results (albeit different results) that do not de-

pend on Fy,1′ by assuming a stress state that depends

only on two unknowns rather than three:

σyy(ξ′) =
B0

1− ξ′
+B1 (44)

Because this stress function has only two parameters,

the final answer can be expressed in terms of only two

forces — Fy,2′ and Fy,3′ . In essence, this simplification

is solving for Fy,1′ in terms of Fy,2′ and Fy,3′ , which

might eliminate the need to resolve nodal edge forces

at node 1′. Because the fitting function for stress has

fewer unknowns (two instead of three), however, this

approximation with extra constraints should always be

less accurate that a three-parameter model based on

three correctly-calculated nodal edges forces. In a seem-

ing contradiction, Sethuraman and Maiti [1988] claimed

the simplified equation is more accurate than the full-

force method in Ramamurthy et al [1986], Narayana

et al [1990] and Raju [1987]. This contradiction is re-

solved by noting that they used the wrong force at node

1′. In other words, a simplified equation that calculates

Fy,1′ from Fy,2′ and Fy,3′ could be more accurate then a

three-force analysis that uses the wrong force for Fy,1′ ,

but a three-force analysis that uses consistent forces

should be best of all.
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This new analysis is not complete until edge forces

are found and those forces depend on Lj . Along the

(1′′2′′3′′) edge (which has a mid-side node or R′′ = 1/2),

the distance from the crack tip is

r = ∆a

(
1 + (1− ξ′′) ∆l

2∆a

)
(45)

Extrapolating the crack-plane stresses from the (1′2′3′)

edge, the required fitting functions along the (1′′2′′3′′)

edge are:

f0(ξ′′) =
1

2
√

1 + (1−ξ′′)∆l
2∆a

, f1(ξ′′) = 1, and

f2(ξ′′) = 2

√
1 +

(1− ξ′′)∆l
2∆a

(46)

The Lj integrals can be evaluated analytically (using

Mathematica [Wolfram Research, 2009]):

L0 = −16 + 30χ+ 15χ2

15χ2
+

16 + 22χ+ 6χ2

15χ2

√
1 + χ(47)

L1 =
1

6
χ (48)

L2 = −64 + 168χ+ 140χ2

105χ2

+
64 + 136χ+ 80χ2 + 8χ3

105χ2

√
1 + χ (49)

where χ = ∆l/∆a. Furthermore, explicit evaluation of[
I + LM−1K

]−1
leads to

D0 =
1

D
, D1 =

1

2
− 2 + χ

4D
, and

D2 = −1 +
1− 6L0 + χ

D
(50)

where D = 1 + 3L0 − 12L1 + (15L2/2) or

D = −272 + 630χ+ 420χ2 + 70χ3

35χ2

+
272 + 494χ+ 242χ2 + 20χ3

35χ2

√
1 + χ (51)

Substituting these results into Eq. (27) gives the nodal

forces, which when substituted into Eq, (20) gives the

energy release rate. This result is new and tedious, but

numerically trivial and essential when doing crack clo-

sure calculations with quarter-point elements.

For axisymmetric calculations, the radial position

along the (1′2′3′) edge is

r(ξ′)

〈r′〉
= 1 +

∆r

2 〈r′〉

(
1− 1

2
(1− ξ′)2

)
(52)

Using the same fi(ξ
′) as for planar elements, the ax-

isymmetric versions of Mij and Nj can be explicitly

evaluated

M =

 1 + ∆r
6〈r′〉 1 4

3 −
2∆r
15〈r′〉

∆r
6〈r′〉 − 1

3 + 2∆r
15〈r′〉 − 2

3 + ∆r
5〈r′〉

1
3 + ∆r

30〈r′〉
1
3 −

∆r
15〈r′〉

8
15 −

16∆r
105〈r′〉

 (53)

N =

(
11

3
− π +

∆r

〈r′〉

(
29

30
− π

4

)
,

1

3
+

∆r

15 〈r′〉
,

52

15
− π +

2∆r

105 〈r′〉

)
(54)

For crack planes in the z direction in the r-z axisymmet-

ric coordinate system, ∆r = 0 and the axisymmetric re-

sults reduce to the planar results (except t is replaced

by 〈r′〉). For cracks in any other direction ∆r 6= 0 and

the equations get exceedingly complex. The complete

results can be found by application of the generalized

results, but are not given here and are not available in

the literature. A potential simplification to avoid fur-

ther analysis is to ignore the ∆r terms. In calculations

with a highly refined mesh, the results for a full ∆r 6= 0

analysis should converge to the same results as a∆r = 0

analysis because ∆r → 0 as ∆a → 0. This approach

should be used with caution because the rate of con-

vergence might be affected. A better option for ∆r 6= 0

cracks might be to avoid quarter-point elements and

use mid-side-node elements instead.

3.3 Linear Elements

A similar generalized analysis can be done for linear

elements (e.g., elements with nodes on the corners but

no side nodes). Because most of the complication in

quadratic edges was due to placement of the side nodes,

the linear analysis is much simpler. Furthermore, like

the mid-side-node elements, a final result can be found

without any assumptions about crack-plane stresses.

The results are identical to prior literature result [Ry-

bicki and Kanninen, 1977, Krueger, 2004], except for a

change in the crack-surface traction term. The result

for planar, linear elements is:

GI =
F

(g)
y,3′∆v3

2t∆a
− σ

(c)
0 ∆v3

2
(55)

The result for axisymmetric, linear elements is

GI =
F

(g)
y,3′∆v3

2 〈r′〉∆a
− σ

(c)
0 ∆v3

2

(
1 +

∆r

2 〈r′〉

)
(56)

As for the mid-side-node elements, the traction terms

here differ from Raju [1987], where the traction term

was σ
(c)
0 ∆v3/4 rather than σ

(c)
0 ∆v3/2. The error in Raju

[1987] was inconsistent treatment of the force at the

crack tip node.
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C
r

z

a

σ
Fig. 4 A. The arrangement of triangular elements at the crack

tip. B. Geometry for double cantilever beam calculations. C. Axi-
symmetric analysis of a pressure-loaded, penny-shaped crack in

a cylinder.

4 Results and Discussion

The crack closure equations were verified by several ex-

amples. The FEA calculations were done with 3 node

linear triangles, 4 node linear quadrilaterals, 6 node

quadratic triangles, 8 node quadratic quadrilaterals, and

9 node quadrilateral Lagrangian elements. The latter 3

were done with either mid-side nodes or quarter-point

nodes. To compare to prior quarter-point methods, cal-

culations with those elements were repeated by using

global or element forces [Krishnamurthy et al, 1985,

Ramamurthy et al, 1986, Raju, 1987] or by using sim-

plified equations that avoid Fy,1′ [Raju, 1987, Sethura-

man and Maiti, 1988]. For 3 and 6-node triangular ele-

ments, the squares were divided into two triangles. At

the crack tip, the triangular elements were arranged as

shown in Fig. 4A. For quarter-point elements, the side

node along each edge emanating from the crack tip was

moved to the quarter-point position. All calculations

were done with open-source FEA software [Nairn, 2011]

and post-processed with custom software to implement

the different equations.

Although common FEA practice would use smaller

elements near the crack tip, here all analyses were done

with a regular mesh of constant-sized, square elements.

The triangular elements divided the squares into two

right, isosceles triangles. This approach tended to give

more consistent convergence results, especially when

comparing different element types. For each example

and each element type a series of about 10 calculations

with decreasing element size were run. A converged re-

sult for infinite elements was estimated by extrapolating

those results to zero element size. Common practice in

crack closure studies is to compare results to analytical

solutions. For finite-sized specimens, however, such ana-

lytical solutions are themselves approximate and there-

fore may not provide the best test. Here, the results

were compared to analytical results, but the main cri-

terion for verification was that all elements converged

to the same answer.

4.1 DCB Mode I, Mode II, and Mixed Mode

Figure 4B shows a double cantilever beam specimen.

Mode I conditions used P1 = −P2, mode II used P1 =

P2, and mixed mode used P2 = 0. The results for mixed

mode were a superposition of mode I and II results,

and therefore only pure mode I and II results are dis-

cussed. The specimen had length L = 40 mm with

arms of h = 2 mm. The crack tip was in the mid-

dle (a = 20 mm). The meshes varied from 2 elements

through the thickness of the arms up to 20 elements

for mode I and 24 elements for mode II. The small-

est square-element sizes were 0.1 mm for mode I and

0.083 mm for mode II.

The mode I results are given in Figs. 5 and 6 and

were normalized to the simple beam theory result:

Gbeam =
12P 2a2

B2Eh3
(57)

where P is load, B is thickness, and E is modulus of

the isotropic material. The quadratic elements (6, 8,

and 9 node) with mid-side nodes worked best. They

converged rapidly and all converged to the same answer.

This result was judged to be the correct result. Further

verification is found by comparing to a corrected beam

theory that accounts for shear deformation and crack

root rotation during delamination with isotropic arms

[Williams, 1989]:

GI
Gbeam

=

(
1 + 0.67

h

a

)2

= 1.1385 (58)

This analytical result is within 0.06% of the FEA result

for 8 and 9 node elements, both of which gave 1.1392

when extrapolated to zero element size.

The results for other elements were judged by how

they compared to the above result. The 4 node linear

element converged to the same answer, but required

smaller elements to get good results. The 3 node lin-

ear element converged to a different answer. To check

if the 3 node convergence might turn toward the cor-

rect answer, the mesh size was reduced further down to

0.04 mm elements, but the results showed no indication

of changing direction.
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Element Size (mm)

G
I/G

be
am

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.90 

 0.95 

 1.00 
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 1.10 

 1.15 

 1.20 

3 Node

4 Node

6, 8, 9 Node (midside)

Mode I

Fig. 5 Mode I energy release rates normalized to simple beam

theory as a function of element size. The solid lines are for

quadratic elements with mid-side nodes. The dash-dot lines are
for linear elements.

Element Size (mm)

G
I/G

be
am

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.90 

 0.95 

 1.00 

 1.05 

 1.10 

 1.15 

 1.20 
midside6, 8, 9 Node (QP global)

6, 8, 9 Node (QP edge)

Mode I

8 Node (QP Raju)

8 Node (QP SM)

Fig. 6 Mode I energy release rates normalized to simple beam

theory as a function of element size. The dashed lines are for
quarter-point elements based on nodal edge forces (“QP edge”).

The dotted lines are for quarter-point elements using global nodal

forces (“QP global”). The dash-dot lines are for two simplified
quarter-point element equations (“QP Raju” and “QP SM”). The

solid line is reference result for quadratic elements with mid-side
nodes.

Figure 6 shows results for quarter-point elememts.

When those elements used nodal edge forces as ad-

vocated here (“QP edge”), they all converged to the

correct result. When those elements used global forces

instead of edge forces, however, they converged to a

different result (“QP global”). Calculations were also

done using element force at node 1′; they differed the

most from other results (not shown in the figure). The

simplified quarter-point results by Raju [1987] or by

Sethuraman and Maiti [1988] are labeled “QP Raju”

and “QP SM” respectively. The Raju [1987] method

converged to a different answer. The Sethuraman and

Maiti [1988] method converged to the same result as

other elements, but converged very slowly.

In summary, all elements using the current equa-

tions, except the 3 node linear elements, converged to

the same answer within 0.44%. Calculations for quarter-

point elements based on global force or using one sim-

plified analysis [Raju, 1987] differed by 2.2% to 2.8%.

A second simplified, quarter-point analysis [Sethura-

man and Maiti, 1988] was accurate but only in the ex-

trapolated limit for zero element size. It was the least

accurate method for any mesh with non-zero element

size, where it differed by more than 3.0% for elements

0.1 mm or larger.

The mode II results are given in Fig. 7 and were

normalized to the simple beam theory result:

Gbeam =
9P 2a2

B2Eh3
(59)

The convergence performance is similar to mode I, but

not as clear cut. Again, the quadratic elements (6, 8,

and 9 node) with mid-side nodes converged rapidly and

all converged to the same answer. A corrected, mode II

beam theory [Wang and Williams, 1992] predicts:

GI
Gbeam

=

(
1 +

√
11

63
∗ 0.67

h

a

)2

= 1.0568 (60)

The converged FEA result for 8 and 9 node elements

was 1.0423, which differs from analytical solution by

1.4%. The well-converged, FEA result was judged to be

the correct result (i.e., more accurate than corrected

beam theory) and therefore was used to verify other

elements. The 4 node linear element converged slowly

to the same answer. The 3 node triangles got closer

than for mode I, but was still slightly different. The

results for quarter-point elements were more varied.

When done using the nodal edge forces as advocated

here (“QP edge”), they varied from other elements,

but were near the expected answer. When using global

forces (“QP global”), they were systematically higher

than other elements. The simplified quarter-point ele-

ment methods were not tested in mode II.

4.2 Penny Shaped Crack

Figure 4C shows a centered, penny-shaped crack having

internal pressure, σ, on the crack surfaces. This prob-

lem is an axisymmetric analysis with crack orientation

off the z axis (i.e., ∆r 6= 0) and has crack surface trac-

tions (the pressure); it was chosen to test those terms

in the analysis. Because the equations for quarter-point

elements when ∆r 6= 0 were not derived, these calcula-

tions included only mid-side-node elements and linear

elements. The number of elements across the cylinder

was varied from 4 to 40, which resulted it smallest ele-

ment size of 0.05 mm.

Figures 8 and 9 give the results for two different

boundary conditions on the vertical surface of the cylin-

der — zero displacement or zero stress. The cylinder
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X Axis

G
II/G

be
am

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.80 

 0.85 

 0.90 

 0.95 
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 1.05 

 1.10 
6, 8, 9 Node (QP global) 6, 8, 9 Node

3 Node

4 Node

6, 8, 9 Node
(QP edge)

(midside)

Mode II

Fig. 7 Mode II energy release rates normalized to simple beam
theory as a function of element size. The solid lines are for

quadratic elements with mid-side nodes. The dashed lines are for

quarter-point elements based on nodal edge forces defined here
(“QP edge”). The dotted lines are for quarter-point elements us-

ing global nodal forces (“QP global”). The dash-dot lines are for

linear elements.

was 10 mm long with a 2 mm radius. The crack radius

was a = 1 mm. All results were normalized to energy

release rate for a pressure loaded crack in an infinite

sheet [Sneddon and Lowengrub, 1969]:

GI,∞ =
4(1− ν2)aσ2

πE
(61)

where ν is Poisson’s ratio. The 4, 6, 8, and 9 node ele-

ments all converged to the same answer. The quadratic

elements (6, 8, and 9 nodes) converged faster than the

linear element (4 node). The 3 node triangles converged

to a different answer. Note that most elements con-

verged slower for the penny-shaped cracks then for the

bending problems. The slower convergence is likely due

to the displacement field. In particular, quadratic ele-

ments can accurately describe bending displacements

with relatively large elements, but need smaller ele-

ments for similar accuracy in the pressure-loaded crack

displacements.

Sneddon and Tait [1963] and Sneddon and Lowen-

grub [1969] derived finite-radius correction factors in a

semi-analytical model:

GI
GI,∞

=
(

1 +
η1
100

)2
and

GI
GI,∞

=
(

1 +
η2
100

)2
(62)

where η1 and η2 are for zero displacement or zero stress

on the vertical surface of the cylinder. The dotted lines

in Figure 8 show the numerically evaluated results for

a/R = 0.5 of η1 = 4.8 and η2 = 7.2. These values agree

well with extrapolated limit for 4, 6, 8, and 9 node

elements.

To verify the new crack-surface traction result vs.

the previous analysis by Raju [1987], calculations were

run with both equations. The line labeled “8 Node Raju”

for zero-displacement boundary conditions (in Fig. 8)

Element Size (mm)

G
I/G

I,∞

0.0 0.1 0.2 0.3 0.4 0.5 0.90 

 0.95 

 1.00 

 1.05 

 1.10 

 1.15 
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3 Node

6 Node

8 Node9 Node

Zero Disp. Surface

8 Node Raju

Fig. 8 Mode I energy release rate for extension of a penny
shaped crack with zero displacement on the cylinder’s outer, ver-

tical surface. The isotropic material properties were E = 2.3 GPa

and ν = 0.25. The horizontal dashed line is a semi-analytical so-
lution.
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Stress Free Surface

Fig. 9 Mode I energy release rate for extension of a penny

shaped crack with zero stress on the cylinder’s outer, vertical

surface. The isotropic material properties were E = 2.3 GPa and
ν = 0.25. The horizontal dashed line is a semi-analytical solution.

shows that the prior traction method converges to a dif-

ferent answer and differs from the analytical solution.

The zero-size intercept was found by extrapolating a

cubic fit to finite-element-size results. The “8 Node”

line uses the same element but the new traction terms.

It converges faster and agrees better with the analytical

solution.

5 Conclusions

A subtle, but important, aspect of crack closure cal-

culations is to treat nodal forces consistently with the

rest of the analysis. The actual or implied assumption

of all crack closure methods is that nodal forces along

the (1′2′3′) edge ahead of the crack tip (see Fig. 1)

are related to crack plane stresses by the work-equiv-

alence in Eq. (7). As a consequence, the proper forces

for calculations are the forces termed here as the “nodal
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edge forces” and not the global or element forces used in

prior crack closure analyses. In other words, prior crack

closure calculations are technically wrong, but can be

fixed by calculating nodal edge forces. The switch to

nodal edge forces, does not affect all methods. Fortu-

nately, prior equations for linear elements or quadratic

elements [Krueger, 2004] are correct, provided they did

not attempt to account for crack surface tractions. They

are correct because the global forces and nodal edge

forces needed for those calculations are the same. In

contrast, any prior analysis that either depends on the

force one element away from the crack tip (i.e., on Fy,1′)

or has crack surface tractions should be corrected. The

corrections are only a few percent (which may explain

why the errors were not noticed before), but are recom-

mended for increased accuracy and improved conver-

gence.

A dependence on Fy,1′ only appears when the node

is moved from the midpoint, such as for quarter-point

elements. The results here show that some prior meth-

ods for quarter-point elements have the right equation

[Krishnamurthy et al, 1985, Ramamurthy et al, 1986,

Raju, 1987], but they give inaccurate results when im-

plemented using global forces. By correcting that anal-

ysis to use nodal edge forces as defined in Eq. (27),

the quarter-point elements give improved results. Two

prior methods derived simplified quarter-point element

results that eliminated Fy,1′ . The extra approximations

needed for these methods makes them less accurate

than the full equation with proper nodal edge forces.

Despite the fact that quarter-point elements were de-

veloped to more accurately represent crack tip stresses

[Barsoum, 1976], their overall convergence performance

is inferior to the corresponding element with mid-side

nodes. The reasons for inferior convergence with quar-

ter point elements are uncertain. It could be that the

shape functions that are providing a singular strain

state for those elements might be causing numerical is-

sues when needed for calculations involving spatial co-

ordinates (because isoparametric elements use the same

shape functions for both displacements and spatial co-

ordinates).

The distinction between nodal edge forces and global

forces also changes the net effect of crack surface trac-

tions. One prior analysis added crack-surface traction

effects by accounting for their work on the crack sur-

face [Raju, 1987]. But when resolving global forces into

nodal edge forces, those tractions have an additional ef-

fect on the crack tip force (see Fy,3′ in Eq. (27)). When

both these effects are included, the net effect of crack-

surface tractions changes. The example calculation for

a penny-shaped crack loaded by pressure shows the new

result is more accurate.
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