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Abstract Cross laminated timber (CLT) is usually comprised of multiple timber layers having alternating grain di-
rections. Because individual boards are glued on their faces between layers, but usually not glued on their edges
within layers, those edges define “precracks” in the composite. When exposed to differential thermal and moisture
expansion after installation, CLT, like all cross-laminated composites, is prone to formation of “additional cracks.”
Confidant CLT design must be able to account for changes in CLT properties during life of a structure caused by such
additional cracks. By extending variational mechanics methods for aerospace composites, this paper provides analyt-
ical solutions for all in-plane mechanical, thermal expansion, and moisture expansion properties of a three-layer CLT
panel. By using the three-layer solution to evaluate effective layer properties as a function of the number of cracks, the
analysis can be extended to in-plane mechanical, out-of-plane bending, and expansion properties for CLT panels with
any number or arrangement of layers. Some sample calculations are provided along with comments on limitations of
the approximations and needs for future work.

1 Introduction

Cross laminated timber (CLT) is usually made by laminating three or more timber layers such that grain directions
in alternate layers are at right angles to each other. Glue is applied between the layers on timber faces, but, most
commonly, no glue is applied on timber edges within layers. In other words, CLT is a precracked composite where
timber edges represent periodic “precracks.” Furthermore, CLT will develop “additional cracks” over time due to
environmental exposure and differential layer shrinkages. This fact is known from observed cracks within installed
CLT (Nairn, 2016b) and is expected from experiments on cracking of layers in other cross-laminated structures (Nairn
and Hu, 1994; Nairn, 2000). Prior work also shows that added cracks form more easily as layer thickness increases
(Parvizi et al, 1978; Nairn, 1989). In other words, the use of thick timber in CLT unfortunately promotes cracking
compared to cross-laminated panels with more, but thinner layers. Attempts to ameliorate effects of precracks by
applying glue to edges would be thwarted by natural formation of added cracks over time. The inescapable conclusions
are that CLT structures must be designed with tools that recognize cracks and durability analysis of CLT must account
for the rate of formation of added cracks and their role in changing structural properties.

Fortunately, most of the methods needed for CLT analysis with cracks are already available from prior research
on synthetic-material, cross-ply laminates (Hashin, 1985, 1986, 1987, 1988; Nairn, 1989). Applications of synthetic
cross-ply laminates include aerospace structures, bicycle tubes, ski poles, filament wound pressure vessels, and fiber-
glass pipes (the last two are not exactly cross laminated, but are close). Unlike CLT, synthetic cross-ply laminates are
not manufactured with precracks, but like CLT, such laminates are prone to added cracks (referred to in the literature
as “microcracks” or “transverse cracks”) caused by mechanical loads or by residual stresses (see reviews in (Nairn
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Fig. 1 A three-layer CLT panel showing force (N) and moment (M) resultants for laminated plate theory and showing the 1-2-3 laminate
axis system.

and Hu, 1994; Nairn, 2000)). The consequences of microcracks are a reduction in laminate properties, a promotion of
more serious damage such as delamination, or the possibility of leakage in pressure vessels or pipes (Frost, 1994).

This paper extends prior composite models to find all mechanical and expansion (thermal or moisture) properties
of CLT panels with cracked layers. Although most prior microcracking models are 2D models for cracking in a single
layer, Hashin (Hashin, 1987) analyzed a three-layer, orthogonally-cracked, cross-laminated composite, which is an
exact analog of a three-layer CLT panel. He found in-plane tensile modulus in one direction and Poisson’s ratio. This
work extends his analysis to orthotropic wood layers, finds tensile moduli in both directions, corrects an error in his
Poisson’s ratio calculation, finds thermal and moisture expansion coefficients, and adapts a different method to find
shear modulus. All properties are found as a function of crack density. To extend the calculations to any number
of layers, the three-layer solution was used to deduce effective properties for an isolated layer containing cracks.
These effective properties can then be used in conventional laminate analysis to find in-plane, bending, and expansion
properties of any CLT panel. Sample calculations are presented along with discussion of the consequence of cracks,
limitations of the methods, and needs for future modeling and experiments.

2 Alternative-Layer CLT Property Analysis

2.1 Baseline Properties

Step one is to find properties in a panel with no cracks, which must be recognized as upper bound properties that
are never realized in real panels. A three-layer CLT panel together with in-plane and moment loads is shown in
Fig. 1. A general CLT panel has n alternating 0◦ and 90◦ layers with 0◦ layers on both surfaces (thus (n+ 1)/2 0◦

layers, (n− 1)/2 90◦ layers, where n is odd). The panel 1 direction is grain direction in the 0◦ layers while the 2
direction is grain direction in the 90◦ layers. All layers are assumed to have the same thickness and the same grade of
timber. Such a structure’s properties are easily found from laminated plate theory (LPT). LPT details are in many text
books (Christenson, 1979; Jones, 1975); Appendix 1 has minimal, yet complete, methods specialized for symmetric,
cross-laminated plates.

All baseline, in-plane properties for an n-layer CLT are found from LPT (see Appendix 1) using:

ν0
12 =

2nRνLt
(n−1)+R(n+1) ν0

21 =
2nRνLt

(n+1)+R(n−1)

E0
11 =

ELRνLt
ν0

21(1−Rν2
Lt )
(1−ν0

12ν0
21) G0

12 = GLt E0
22 =

ELRνLt
ν0

12(1−Rν2
Lt )
(1−ν0

12ν0
21)

(1)

Here EL and GLt are tensile and shear moduli of the timber layers parallel to the grain, νLt is the axial Poisson’s ratio,
and R = Et/EL is ratio of tensile moduli in transverse and grain directions of the timber. Note that the lowercase “t” in
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Et , GLt , and νLt means “transverse” direction in the board and not the “tangential” direction in wood. The actual value
for Et depends on the timber’s end-grain pattern. For flat-sawn boards, t ≈ T and r ≈ R (where r means thickness
direction of the board). but, for radially sawn boards, t ≈ R and r ≈ T . For off-axis end-grain patterns, Et and Er may
assume other values including potentially lower than both ER and ET (Nairn, 2007). Here Et is assumed the same for
all layers (but it could easily be varied in calculations to assess end-grain pattern effects).

2.2 Variational Mechanics for In-Plane Normal Stresses

Step two is to find effective properties relative to reference properties as a function of the number of cracks in the
layers. Analysis of cracked, cross laminated composites has a long history with the most accurate, analytical methods
being derived using variational mechanics (Hashin, 1985). Although most prior work was 2D, Hashin derived a 3D
variational mechanics approach to analyze a cross laminated composite with orthogonal cracks in all layers (Hashin,
1987), which is equivalent to the CLT structure in Fig. 1. Hashin considered only tensile loading in the 1 direction and
treated the layers as transversely isotopic materials. For use in CLT, his approach must be extended to handle loading
in both directions and to allow full orthotropic properties for wood. Fortunately, these extensions are mostly straight-
forward. This section outlines the revised analysis emphasizing differences from Hashin’s analysis and corrects one
error in his analysis for Poisson’s ratio.

Figures 2A and B show analysis coordinates for a single unit cell between cracks (indicated as shaded areas) in
the layers for loading in both the 1 (from Hashin) and 2 (added here) directions. To maximize overlap with Hashin’s
analysis, the direction 2 analysis rotates the materials 90◦ about the z axis. Each problem considers one half by
symmetry defined by 0 ≤ z ≤ h with −a ≤ x ≤ a and −b ≤ y ≤ b for direction 1, but −b ≤ x ≤ b and −a ≤ y ≤ a
for direction 2. Note that the z axis for direction 2 is shifted by h/2. With this shift, the layers labeled (1) and (2)
have the same orthotropic wood properties — x-y-z directions in t-L-r directions for layer (1) and L-t-r direction for
layer (2) – and have cracks on the same surfaces. A difference between directions 1 and 2 is that z = 0 and z = h are
midplane of symmetry and free surface, respectively, for direction 1 while they are the opposite for direction 2. When
the cracks are timber edges, crack spacings (2a and 2b) are timber widths in those layers. Most CLT has layers of
the same thickness (2t1 = t2) and same size timber (2a = 2b), but they are left as independent variables to keep the
analysis more general.

Hashin (1987) wrote total stress in layer (k) as:

σ
(k,tot)
i j = σ

(k,0)
i j +σ

(k)
i j (2)

where σ
(k,0)
i j is stress in a panel with no cracks and σ

(k)
i j is a perturbation stress or change in stress due to cracks. He

derived a 3D admissible, perturbation stress state for each layer, which was extended here to account for both loading
directions (i = 1 or 2), as
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(5)

where φi(x) and ψi(y) are four unknown functions (two for each loading direction), λ1 = t2/t1, and λ2 = t1/t2. The
stiffnesses, kxi and kyi, give the stress in layer 1 of the uncracked laminate due to uniaxial load in direction i and are
easily calculated from LPT. The only non-zero initial stresses are:

σ
(1,0)
xx = kxiσ0 and σ

(1,0)
yy = kyiσ0 (6)

where
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Fig. 2 Unit cells for analysis three-layer CLT panels for loading in the 1 or 2 directions. The unit cell boundaries are defined by crack
surfaces indicated as shaded areas. The x-y-z coordinates are the same in the two unit cells, but the laminated axes are rotated 90◦ for the
direction 2 analysis.

The simplifying assumption of these stress states is that normal stresses are independent of thickness within the
layers although they do depend on distance from the cracks. Otherwise, the stress states are valid admissible stress
states. They satisfies all 3D equilibrium conditions, have zero shear on free surfaces and on midplanes of symmetry
(σ (1)

xz (z = 0) = 0, σ
(2)
xz (z = h) = 0, σ

(1)
yz (z = 0) = 0, and σ

(2)
yz (z = h) = 0), have zero normal stress on free surfaces

(σ (2)
zz (z = h) = 0 for 1 direction and σ

(1)
zz (z = 0) = 0 for 2 direction), and satisfies continuity of σzz, σxz, and σyz at the

layer interface. Finally, the stresses satisfy all traction boundary conditions provided the unknown functions satisfy:

φ1(±a) = ψ1(±b) = 1, φ
′
1(±a) = ψ

′
1(±b) = 0, φ2(±b) = ψ2(±a) = 1, and φ

′
2(±b) = ψ

′
2(±a) = 0 (8)

These values result in zero normal and shear stress on all crack surfaces.
By variational mechanics, the lower-bound modulus in the presence of crack spacings a and b in one loading

direction (i = 1 or 2) is:
1

Eii(a,b)
≤ 1

E0
ii
+

2Uci

V σ2
0

(9)

where V is total volume, σ0 is uniaxial stress in direction i, and Uci is complementary energy calculated from pertur-
bation stresses alone:

Uci =
1
2

∫
σ ·Sσ dV (10)

Here S is the position-dependent compliance tensor (note: the simplification to consider only perturbation stresses in
the energy analysis follows from Hashin’s proof that complementary energy of any cracked body is sum of Uci from
perturbation stress and U0

ci from stresses in the uncracked body (Hashin, 1987)). The remaining task is to find Uci by
using variational calculus to find the unknown φi(x) and ψi(y) functions that minimize complementary energy.

Differing from Hashin, CLT layers are orthotropic instead of transversely isotropic. The local stress energy density
in layers (1) and (2) become:
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Recall that L is longitudinal direction, but t and r refer to transverse and thickness directions of the boards, which will
refer to different wood directions depending on end-grain orientation (as discussed above). GRS is the rolling shear
modulus for wood in the transverse plane. It is likely less dependent on grain pattern and given here as a fixed value.
GRS, however, may be very low due to the cellular structure of wood (Gibson and Ashby, 1997).

The complementary energy of the unit cell for loading direction i is:

Uci = t2
i

∫
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−ρi

∫
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(∫ t1

0
W (1) dz+

∫ h
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)
dη dξ (13)

where ξ = x/ti and η = y/ti are dimensionless coordinates and ρ1 = a/t1, ρ2 = b/t2, χ1 = b/t1, and χ2 = a/t2 are
dimensionless crack spacings for x and y axes. Inserting stresses and integrating over z, the complementary energy is
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0 t3
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where φ = φi(ξ ) and ψ = ψi(η). This result is identical to analysis in (Hashin, 1987) but has new constants to
represent wood properties and two sets of constants are needed to solve the separate problems for loading in the 1 or
the 2 direction. The constants relevant for loading CLT in the i = 1 direction are:
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B0 =− νLt (1+λi)
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+ 1
λiEt
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For loading in the i = 2 direction, the last three constants are replaced by:
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3EL
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B′2 =

(2λ2+3)νtr
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The next steps use calculus of variations to solve two coupled differential equations for φi(x) and ψi(y), substitute
those solutions into Eq. 14 to find Uci, and finally use Eq. 9 to find modulus. Because Eq. (14) is identical to the
(Hashin, 1987) analysis, except for revised constants in Eqs. (15) and (16), the solution process is also identical and
need not be repeated. Applying Hashin’s solution to CLT loading in each direction, lower bounds on the two tensile
moduli are:

1
E11(a,b)

≤ 1
E0

11
+

1
1+λ1

(Kx1 〈φ1〉+Ky1 〈ψ1〉) (17)

1
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1
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)
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(
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)
(19)

and 〈φi〉 and 〈ψi〉 are average values of the solved functions for loading direction i. Explicit solutions for these average
values are given in Hashin (1987) and in Appendix 2. These moduli assume all unit cells in a CLT panel have the
same wood properties. The equations are easily adapted to account for expected variations in timber properties by
averaging a collection of unit cells having a given probability distribution of wood properties.

Although Poisson ratios cannot be bounded, they can be calculated from the stress state found in the process of
energy minimization. For direction 1 loading

ν12(a,b)
E11(a,b)

=−〈ε22〉
σ0

(20)
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where 〈ε22〉 is average apparent strain in the 2 direction. Hashin mistakenly equated this strain to〈
ε
(0)
22

〉
=

1
h

(
t1ε

(1)
yy + t2ε

(2)
yy

)
(21)

where ε
(i)
yy is strain averaged over that phase volume. But this calculation does not account for extra strain resulting

from crack opening displacements. For layer 2, the average crack opening displacement can be found from difference
of strains in the two layers:

〈δ 〉= 2b
(

ε
(1)
yy − ε

(2)
yy

)
(22)

Combining this displacement with zero crack opening displacement in layer 1, converting to strain, and expressing as
average over the full composite, the average strain due to crack opening displacements is〈

ε
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〉
=
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)
(23)

The total apparent strain needed to find Poisson’s ratio simplifies to

〈ε22〉=
〈

ε
(0)
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〉
+
〈

ε
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22

〉
= ε

(1)
yy (24)

Finding ε
(1)
yy from total stress (Eqs. (3) to (5)), making use of φ ′′i = ψ ′′i = 0, and repeating for both loading directions,

leads to:

ν12(a,b)
E11(a,b)

=
ν0

12

E0
11

+
1

EL
(ky1 〈ψ1〉−νLtkx1 〈φ1〉) and
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=
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21

E0
22

+
1
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(ky2 〈ψ2〉−νLtkx2 〈φ2〉) (25)

2.3 In-Plane Shear Loading

Hashin (1987) mentions that “the problem of shearing of a cross-ply will be considered elsewhere.” Unfortunately,
the methods used for in-plane axial loading are not easily extended to shear loading. As a result, the 3D shearing
problem has not been solved (Hashin, 2010). We can however, build an approximate 3D solution by using an existing
2D solution for in-plane shear modulus of a cracked cross-ply laminate with only one cracked layer (Hashin, 1986).

Figure 3A shows edge view of a CLT panel with cracks only in the middle layer. Hashin derived the in-plane
shear modulus for such a laminate, which is a 2D problem (Hashin, 1986). Using wood properties in that analysis, the
lower bound shear modulus is:

G12(a,∞)≥ GLt

1+ tanh(µ1a/t1)
λ1µ1a/t1

where µ1 =
3(1+λ2)

GLt

(
1

GLr
+ λ1

GRS

) (26)

Here G12(a,∞) indicates shear modulus for a panel with cracks only in the middle layer. Figure 3B shows edge view
of a CLT panel with cracks only in the surfaces layers. A straight-forward extension of Hashin’s approach (or simple
inspection by those confident to use that method) leads to:

G12(∞,b)≥ GLt

1+ tanh(µ2b/t2)
λ2µ2b/t2

where µ2 =
3(1+λ1)

GLt

(
1

GLr
+ λ2

GRS

) (27)

For an approximate 3D analysis, we write the above 2D solution for a cracked laminate as:

G12(a,∞) =
t1G∗Lt(a,∞)+ t2GLt

t1 + t2
and G12(∞,b) =

t1GLt + t2G∗Lt(∞,b)
t1 + t2

(28)

The right-hand sides are LPT analyses for shear modulus while G∗Lt(a,∞) and G∗Lt(∞,b) are effective shear moduli
for cracked middle or surface layers, respectively. Solving for effective properties and then using LPT when all layers
are cracked, the shear modulus can be approximated as:

G12(a,b)≥
t1G∗Lt(a,∞)+ t2G∗Lt(∞,b)

t1 + t2
= G12(a,∞)+G12(∞,b)−GLt (29)

or

G12(a,b)≥ G0
12−GLt

(
tanh(µ1a/t1)

tanh(µ1a/t1)+λ1µ1a/t1
+

tanh(µ2b/t2)
tanh(µ2b/t2)+λ2µ2b/t2

)
(30)
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Fig. 3 Unit cells for 2D analysis of in-plane shear modulus for three-layer CLT panel with cracks only in the middle layer (A) or only in
the surface layers (B). The longitudinal wood direction in the uncracked layers is in the x direction, but in the cracked layers, it is in the y
direction.

2.4 Thermal and Moisture Expansion Coefficients

The usual approach to finding thermal expansion coefficients is to start over with a stress analysis that includes residual
stresses, but that work is not needed. Instead, thermal expansion coefficients of a CLT structure can be found from the
Levin equation (Levin, 1967):

σ
(m) ·αe f f = ∑

k
Vkσ

(m)
k ·αk (31)

where σ (m) is any applied mechanical stress, αe f f is the CLT expansion tensor, Vk, σ
(m)
k , and αk are volume fraction,

average mechanical stress, and expansion coefficients of layer k. Applying this result using the above stress solution
for each loading direction i, straightforward calculations lead to

α1(a,b) = αL +
αt −αL

1+λ1

(
kx1(1−〈φ1〉)− ky1(1−〈ψ1〉)

)
(32)

α2(a,b) = αL +
αt −αL

1+λ2

(
kx2(1−〈φ2〉)− ky2(1−〈ψ2〉)

)
(33)

where αL and αt are longitudinal and transverse thermal expansion coefficients of the timber. Note that CLT expansion
coefficients with no cracks (α0

1 and α0
2 ) are found from Eqs. (32) and (33) by setting 〈φi〉 = 〈ψi〉 = 0. This result is,

as expected, identical to classical lamination theory approach to thermal expansion coefficients (Christenson, 1979;
Jones, 1975). Moisture expansion coefficients, which may be more important for wood products, are found simply by
replacing all thermal expansion coefficients (α) with the corresponding moisture expansion coefficients (β ) for both
the CLT panel and the wood.
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Table 1 The mechanical and moisture expansions properties used for the timber in all calculations. The calculations were for flat-sawn
timber, which results in transverse (t) and thickness (r) directions of the timber boards being in the tangential (T ) and radial (R) directions
of the wood.

Property Value Property Value Property Value Property Value Property Value
EL (GPa) 8.0 Et (GPa) 0.62 Er (GPa) 0.96 GLt (GPa) 0.8 GRS (GPa) 0.08

νLt 0.532 νLr 0.427 νtr 0.35 βL (wt−1) 0.0 βt (wt−1) 0.26

Dimensionless Crack Density
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Fig. 4 The axial moduli (E1 and E2) and in-plane shear modulus (G12) for a three-layer CLT panel as a function of crack density in the
layers. The smooth lines are predictions from variational mechanics. The symbols are 3D MPM results. The filled symbols are 3D MPM
results when the crack surfaces contact by friction. The dashed line is a semi-analytical model for G12 from Bogensperger et al (2010). All
values are normalized to the modulus with no cracks.

3 Results and Discussion

3.1 In-Plane Mechanical Properties

This section gives sample calculations for CLT properties as a function of crack spacings for three-layer CLT made
from flat-sawn timber. The initial timber cross section is 40× 160 mm (1.57× 6.30 in) and identical in all layers
leading to 2t1 = t2 = 40 mm and a = b = 80 mm. All results are plotted as a function of dimensionless crack density
equal to 1/ρ1 = t1/a where ρ1 is the aspect ratio of the timber’s cross-section. This as-made CLT has 1/ρ1 = 0.25
while zero crack density corresponds to CLT with no cracks and 1/ρ1 > 0.25 corresponds to changes in properties
caused by added cracks. The assumed wood properties are in Table 1; for flat sawn timber t and r in the timber
correspond to T and R directions of wood.

The solid curves in Fig. 4 plot in-plane tensile and shear moduli calculated by Eqs. (17), (18), and (30). All
results were normalized to moduli for CLT with no cracks. The vertical dashed line marks the crack density for as-
made CLT. The tensile moduli decrease as crack density increases. Both E1 and E2 approach “ply discount” limits
(horizontal dashed lines) that correspond to a calculation that assumes the transverse plies contribute zero stiffness to
the panel. Tensile moduli decreases are modest because the EL/ET ratio is high for wood. The 90 degree layers never
contribute much stiffness and therefore when cracks form, the degradation is rather small. The degradation would
be slightly larger for radial-sawn timber (because ER > ET ). The drop in shear modulus is much larger. In fact, CLT
shear modulus tends to zero as crack density increases.

The complementary energy analysis for moduli finds lower bounds to those moduli. To check the accuracy of
these lower bounds, the symbols show 3D numerical calculations (using the material point method (MPM) (Sulsky
et al, 1994; Nairn, 2013, 2016a)). The numerical model for tensile moduli used the unit cell in Fig. 2. The analytical
and numerical results agree well demonstrating that the lower bounds are close to actual moduli. Attempts to find
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Fig. 5 The Poisson’s ratios (ν12 and nu21) and the coefficients of moisture expansion (β1 and β2) for a three-layer CLT panel as a function
of crack density.

shear modulus by considering a single unit cell with shear force applied only to non-cracked surfaces only were
unrealistic. An alternate approach was to increase the size of the modeled CLT to include N×N unit cells and apply
uniform shear on edges of the full structure. For large N, this approach is modeling a complete CLT panel. Analysis of
multiple unit cells requires numerical methods that can handle sliding at interior non-glued edges but stick conditions
on glued faces. Fortunately, MPM can handle this issue (Nairn, 2013). The open symbols in Fig. 4 show shear modulus
calculated from an N×N model with N = 5; N was chosen by separate calculations as a function of N that showed
converged results for N ≥ 4. The numerical result decays significantly, but slower than the analytical model. In other
words, the variational analysis used for G12(a,b) is a pessimistic lower bound.

An alternate analysis for CLT shear modulus is given in Bogensperger et al (2010). This analysis used many
simplifying assumption (e.g., zero stiffness transverse to the plies), is limited to CLT with constant board widths (2a=
2b) and constant thickness (2t1 = t2), and required calibration by 3D finite element modeling. The semi-analytical
equation for three-layer CLT in current nomenclature is

G∗12(a,a) =
GLt

1+3.207ρ1.2053
1

(34)

The dashed curve in Fig. 4 plots this result, which agrees better with MPM calculations. It could be made to fit better
by a re-calibration to MPM results, but a drawback of the approach is that it needs numerical calibration for each new
CLT structure.

An interesting application of 3D MPM modeling of N×N unit cells is to investigate the role of friction on crack
surfaces. The analytical modeling does not account for friction, but MPM can model friction through contact methods
(Nairn, 2013). The filled symbols in Fig. 4 show numerical results for shear modulus when the coefficient of friction
between wood surfaces is µ = 0.3. In the presence of friction, the shear stiffness only slightly increased. One should
not expect that frictional loading would significantly ameliorate the effects of cracks on CLT shear properties.

Figure 5 compares in-plane Poisson’s ratios for a CLT panel by modeling (Eq. (25) as solid lines) to 3D MPM
calculations (symbols). The agreements are not as good as for moduli, but the results show that both Poisson’s ratios
approach zero as additional cracks are formed. Also note that Poisson’s ratios for as-made CLT (at vertical dashed
line) are significantly different than ratios calculated from a LPT theory that ignores cracks in the wood layers.

Figure 5 also plots moisture expansion coefficients for a CLT panel as a function of crack density (analytical
modeling only using Eqs. (32) and (33), dashed curves). Both moisture expansion coefficients approach zero as
additional cracks are formed. Like Poisson’s ratio, moisture expansion coefficients for as-made CLT (at vertical dashed
line) are significantly different than coefficients calculated from LPT theory that ignores cracks. Modeling predictions
for thermal expansion coefficients would be similar.
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3.2 Damage Mechanics Method and Extension to More Layers and to Bending

The above modeling was all for three-layer CLT and only for in-plane properties. Extensions of variational methods
to any number of layers (McCartney, 1993, 1997) and to bending (Kim and Nairn, 2000a,b) are possible, but get
complicated. For example, each additional layer adds an additional differential equation requiring solution for a
system of coupled differential equations. A potential alternative is to use damage mechanics where a layer with
cracks is replaced by an effective layer that is homogeneous but has reduced properties. Implementation of damage
mechanics proceeds as follows:

1. By limiting the damage mechanics to the special case of three identical layers (i.e., same number of cracks in each
layer, a = b, and equal thickness layers, λ1 = 1/λ2 = 2), the analytical modeling for three-layer CLT properties
reduces to E11(a), E22(a), ν12(a), and G12(a), which depend only on a.

2. Equating these properties to the uncracked properties in Eq. (45) and solving for ply properties determines effec-
tive cracked layer properties. A laminate comprised of homogeneous layers with these effective properties has the
same in-plane properties as the cracked three-layer CLT. The effective property solutions are:

EL(a) = E11(a)
2−5R′+(R′)2(2+ν2

12(a))
(1−2R′)(1−R′ν2

12(a))
Et(a) = EL(a) 2−R′

2R′−1

νLt(a) = ν12(a) R′
2R′−1 GLt(a) = G12(a)

(35)

where R′ = E22(a)/E11(a).
3. Substitute EL(a), Et(a), νLt(a), and GLt(a) back into Eq. (45) for any n to get approximate properties for a CLT

panel with any number of alternating 0◦ and 90◦ layers.
4. To get approximate bending properties, substitute EL(a), Et(a), νLt(a), and GLt(a) into LPT equations for flexural

properties of a cross-laminated panel with n alternating 0◦ and 90◦ layers (see Appendix 1):

ν
f 0

12 = 2n3RνLt
(n3−3n2+2)+R(n3+3n2−2)

ν
f 0

21 = 2n3RνLt
(n3+3n2−2)+R(n3−3n2+2)

E f 0
11 = ELRνLt

ν
f 0

21 (1−Rν2
Lt )
(1−ν

f 0
12 ν

f 0
21 ) G f 0

12 = GLt E f 0
22 = ELRνLt

ν
f 0

12 (1−Rν2
Lt )
(1−ν

f 0
12 ν

f 0
21 )

(36)

5. To find thermal expansion coefficients, substitute EL(a), Et(a), νLt(a) into Eq. (7) to find effective kxi(a) and
kyi(a), and use them to invert Eqs. (32) and Eqs. (33) with 〈φi〉= 〈ψi〉= 0 to get:

αL(a) =
2α1(a)

(
kx2(a)− ky2(a)

)
−α2(a)

(
kx1(a)− ky1(a)

)
2
(
kx2(a)− ky2(a)

)
−
(
kx1(a)− ky1(a)

) (37)

αt(a) = αL(a)+
3
(
α2(a)−α1(a)

)
2
(
kx2(a)− ky2(a)

)
−
(
kx1(a)− ky1(a)

) (38)

6. To find moisture expansion coefficients, replace all thermal expansion coefficients (α) in the previous equations
with moisture expansion coefficients (β ).

Obviously, once all effective properties are known, LPT can easily find any property of any CLT structure as a
function of crack spacing. A useful calculation is to find bending properties including bending properties of CLT with
other arrangements of the 0◦ and 90◦ layers (e.g., with more 0◦ layers on the surface to enhance bending stiffness in
one direction). One sample calculation for bending modulus of alternating-layer CLT is shown in Fig. 6. The bending
modulus with 0◦ plies on the surface, E f

11, is much higher, as expected, then when 90◦ plies on on the surface (E f
22).

The bending modulus for these two directions get closer as the number of layers in the CLT increased from n = 3 to
n = 7. Cracks in the layers have very little effect on E f

11 but a larger effect on E f
22.

Examination of implied effective properties of the homogenized layers provides interesting results. Such calcula-
tions show which layer properties are most affected by cracks and are plotted in Fig. (7). The longitudinal modulus
of the timber layers (EL(a)) is essentially independent of the cracks. In contrast, all other in-plane properties (Et(a),
νtL(a), and GLt(a)) are significantly and rapidly reduced by cracks. Even in the as-made CLT structure (at vertical
dashed line), the properties are already significantly affected. The transverse moisture expansion coefficient (βt(a))
increases while the longitudinal coefficient (βL(a)) remains close to zero (and is not plotted).
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3.3 Limitations

The above analysis gives results for all mechanical and expansion properties of CLT by analytical methods, but,
as inevitable in 3D composite analyses, those methods needed approximations. First, variational mechanics methods
minimized complementary energy, which leads to lower bound moduli. Lower bound moduli give conservative results
that could be useful in design. But, if the lower bounds are too pessimistic, those conservative numbers would result
in over-designed structures. The comparisons to numerical modeling shows that tensile moduli are accurate or that
the lower bound is a “tight” bound on actual CLT properties. In contrast, the lower bound shear modulus is farther
from numerical results. Because shear stiffness of CLT panels is an important property, the derivation of improved
shear modulus predictions is desirable.
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Second, the boundary conditions used to solve the variational mechanics equations model all crack surfaces as
stress free (see Eq. (8)). These conditions are most appropriate for tensile loading. If compression loading, however,
causes sufficient deformation to close gaps and cracks in the layers, those crack surfaces may transmit normal stress
and, through friction, may transmit shear stress. In other words, the problem is non-linear. The results here give
linear results for tensile loading, while the compression results may be higher. Still, the tensile results can provide
conservative design guides for all loading conditions. Numerical results on the effect of friction on shear modulus (see
Fig. 4), show that crack contact does not significantly enhance shear properties. When CLT designs are dominated by
compression loading with little shear or tension, one could hope that stress transfer at crack surfaces would contribute
to integrity and durability of that structure. But doing so risks comparison to a “house of cards” (i.e., a structure held
up by contact and friction alone).

Extension to more than three layers and too bending relied on effective property methods. Although such methods
are common in laminate analysis, they are an approximation. Replacing a cracked ply with a homogeneous ply with
reduced properties may work in an averaged sense, but cannot capture effects of local stress concentrations at crack
tips. The effective properties were deduced from the n = 3 solutions. To use those properties in other laminates, the
damage mechanics had to assume that effective properties are independent of the number of layers in the panel and
of location the layer in the panel. To calculate bending properties, the damage mechanics had to assume that effective
properties are the same for layers in tension and compression. As discussed above, this approach may be good for
layers in tension, but may underestimate properties of layers in compression due to crack contact. Despite these
limitations, the damage mechanics approach still provides a rational approach for investigating the role of cracks on
all CLT properties.

Finding bending properties using LPT is an application of simple plate theory that ignores role of transverse shear
on displacements. This approach works well for thin panels, but CLT panels are typically much thicker than other
wood panels. The modeling of shear effects on bending could follow by analysis of G23(a,b) and G13(a,b), but these
two shear properties were not covered in this paper and I am unaware of any results in the composites literature. If
found, bending analysis of anisotropic laminates shows that the magnitude of the shear effect for the two bending
directions would scale with E11(a,b)/G13(a,b) and E22(a,b)/G23(a,b). Because these ratios are typically high and
because G23(a,b) and G13(a,b) are reduced by the low rolling shear modulus of the transverse layers, the shear effects
on bending should be a concern.

This modeling did not address quality of adhesion along the glued timbers faces between layers. This bonding
was assumed to be perfect such that displacements between layers are equal at layer interfaces. If glue is inadequately
spread on the faces, if glue is more compliant than the wood, or if thickness variations among the boards inhibits
adequate contact during pressing, the adhesive bonds may be less than perfect. To the extent that bond lines can slip
(due to delamination or compliant glue), analyses that assume perfect bonding overestimate stiffness properties. This
issue can be addressed by either laminate damage mechanics that accounts for interfacial slip (e.g., Allen (1994)) or
by modeling bond lines as imperfect interfaces (Hashin, 1990, 1992).

Finally, this work analyzed the consequence of cracks, but does not address the speed at which additional cracks
form. This information is crucial to durability analysis of CLT panels. Experience from microcracking of cross-
laminated composites shows that crack formation is best studied by a combination of experiments and fracture me-
chanics modeling (Nairn and Hu, 1994; Nairn, 2000; Nairn et al, 1993). The experiments observe crack formation due
to mechanical loads or to changes in temperature and moisture content. Observations of crack density as a function
of loading are then interpreted assuming the next crack forms when the energy released by that crack exceeds the
in situ toughness of the timber. The calculation of released energy can be reduced to finding changes in mechanical
and expansion properties. The results in this paper, therefore, providing a starting point for recommended work on
cracking of CLT panels.

4 Conclusions

This paper describes variational mechanics analysis of a three layer CLT panel. The analytical solutions give all in-
plane mechanical and expansion properties. The moduli are lower bound moduli; the tensile moduli appear to be
very tight bounds, but the shear modulus is more pessimistic. By using the three-layer theory to deduce effective
layer properties as a function of the number of cracks, the analysis can be extended to bending properties and to
CLT panels with any number or arrangement of layers. Future modeling may improve on these results by deriving
improved shear analysis and by accounting for crack contact during compression loading. The more important issue,
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however, is understanding the rate at which CLT panels form additional cracks. This understanding could lead either to
re-design of CLT panels to minimize cracking or to improved design of CLT structures that accounts for appearance
of those cracks. This paper’s results provided input for the recommended fracture mechanics experiments on CLT
layer cracking.
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Appendix 1

This appendix gives minimal, yet complete, laminated plate theory (LPT) equations for symmetric cross-laminated
materials. Consider a n-layer laminate where each layer has the same thickness t(k). The z axis is in the thickness
direction with z = 0 in the middle of the laminate and total thickness is h. The force (Ni j) and moment (Mi j) resultants
are given by: N11

N22
N12

=

A11 A12 A16
A12 A22 A26
A16 A26 A66

 ε0
11

ε0
22

γ0
12

 and

M11
M22
M12

=

D11 D12 D16
D12 D22 D26
D16 D26 D66

κ11
κ22
κ12

 (39)

where ε0
i j and κi j are in-plane strains and curvatures applied to the laminate, and

Ai j =
n

∑
k=1

Q(k)
i j t(k) and Di j =

n

∑
k=1

Q(k)
i j t(k)

(
z(k)mid

2
+

t(k)
2

12

)
(40)

where Q(k)
i j are elements of the plane-stress stiffness matrix for layer k and z(k)mid is the layer’s midpoint. A cross

laminated material is divided into 0◦ layers (wood grain in the 1 direction) and 90◦ layers (wood grain in the 2
direction). In 0◦ layers, the non-zero stiffnesses are Q(0)

11 = EL/(1−Rν2
Lt), Q(0)

22 = RQ(0)
11 , Q(0)

12 = RνLtQ
(0)
11 , and Q(0)

66 =
GLt , where EL and GLt are longitudinal and shear stiffness of the layers, νLt is axial Poisson’s ratio, and R = Et/EL

is ratio of transverse to longitudinal stiffness. The stiffnesses for 90◦ layers are the same except Q(90)
11 = Q(0)

11 and
Q(90)

22 = Q(0)
22 are switched. The resulting non-zero LPT terms are

A11 = hQ(0)
11 (V0 +RV90) A22 = hQ(0)

11 (V90 +RV0) A12 = hRνLtQ
(0)
11 A66 = hGLt

D11 =
h3Q(0)

11
12 (V0I0 +RV90I90) D22 =

h3Q(0)
11

12 (V90I90 +RV0I0) D12 =
h3RνLt Q

(0)
11

12 D66 =
h3GLt

12

(41)

where V0 and V90 are volume fractions of 0◦ and 90◦ plies,

I0 =
( t

h

)2
(

1+
12

htV0
∑

0◦ plies
z(k)mid

2
)
, and I90 =

1−V0I0

V90
(42)

These results assume all layers have the same thickness t and identical properties. Generalization to varying thick-
nesses or properties is easy. To find mechanical properties, the [A] and [D] matrices are inverted and compared to an
effective compliance matrix. Explicit results for all non-zero in plane and flexural properties are:

ν0
12 =

A12
A22

= RνLt
V90+RV0

ν0
21 =

A12
A11

= RνLt
V0+RV90

G0
12 =

A66
h = GLt

E0
11 =

A11
h (1−ν0

12ν0
21) =

Q(0)
11 RνLt

ν0
21

(1−ν0
12ν0

21) E0
22 =

ν0
21E0

11
ν0

12

ν
f 0

12 = D12
D22

= RνLt
V90I90+RV0I0

ν
f 0

21 = D12
D11

= RνLt
V0I0+RV90I90

G f 0
12 = 12D66

h3 = GLt

E f 0
11 = 12D11

h3 (1−ν
f 0

12 ν
f 0

21 ) =
Q(0)

11 RνLt

ν
f 0

21
(1−ν

f 0
12 ν

f 0
21 ) E f 0

22 =
ν

f 0
21 E f 0

11
ν

f 0
12

(43)

The above results are general for any symmetric, cross-ply laminate. If the laminate additionally has n (an odd
number) alternating layers (which is appropriate for most CLT as well as for plywood), we can reduce the above
using:

V0 =
1
2
+

1
2n

, V90 =
1
2
− 1

2n
, V0I0 = (n3 +3n2−2)/(2n3), and V90I90 = 1−V0I0 (44)
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to get in-plane properties of

ν0
12 =

2nRνLt
(n−1)+R(n+1) ν0

21 =
2nRνLt

(n+1)+R(n−1)

E0
11 =

ELRνLt
ν0

21(1−Rν2
Lt )
(1−ν0

12ν0
21) G0

12 = GLt E0
22 =

ELRνLt
ν0

12(1−Rν2
Lt )
(1−ν0

12ν0
21)

(45)

and bending properties of

ν
f 0

12 = 2n3RνLt
(n3−3n2+2)+R(n3+3n2−2)

ν
f 0

21 = 2n3RνLt
(n3+3n2−2)+R(n3−3n2+2)

E f 0
11 = ELRνLt

ν
f 0

21 (1−Rν2
Lt )
(1−ν

f 0
12 ν

f 0
21 ) G f 0

12 = GLt E f 0
22 = ELRνLt

ν
f 0

12 (1−Rν2
Lt )
(1−ν

f 0
12 ν

f 0
21 )

(46)

These results are used in text of the paper for baseline CLT properties and in effective property equations for cracked
CLT panels.

Appendix 2

Analysis of cross-laminated timber (CLT) properties in the two loading directions can be reduced to a complementary
energy identical to Hashin (1987) except using different constants (see Eq. (10) in text of paper). The constants
relevant for loading CLT in the i = 1 direction are:

A0 =
1
Et
+ 1

λiEL
B0 =− νLt (1+λi)

λiEL
C0 =

1
EL

+ 1
λiEt

A1 =
1

3GRS
+ λi

3GLr
B1 =

1
3GLr

+ λi
3GRS

A2 =
(3λ1+2)νtr

3Et
− λ1νLr

3EL

B2 =
(3λ1+2)νLr

3EL
− λ1νtr

3Et
C2 =

(λ1+1)(3λ 2
1 +12λ1+8)

60Er

(47)

For loading in the 2 direction, use i = 2 in first five constants and replace the last three constants with:

A′2 =
(2λ2+3)νLr

3EL
− νtr

3Et
B′2 =

(2λ2+3)νtr
3Et

− νLr
3EL

C′2 =
(λ2+1)(8λ 2

2 +12λ2+3)
60Er

(48)

Also note that because λ2 = 1/λ1, the direction 2 constants (primed) can be expressed in terms of direction 1 constants
using:

A′0 = λ1C0, B′0 = λ1B0, C′0 = λ1A0, A′1 =
B1

λ1
,B′1 =

A1

λ1
, A′2 =

B2

λ1
, B′2 =

A2

λ1
. C′2 =

C2

λ 3
1

(49)

Using the calculus of variations to minimize complementary energy in Eq. (10) of the paper text, the φi(ξ ) and
ψi(ξ ) functions can be determined by solving two coupled, fourth-order differential equations (Hashin, 1987):

d4φi(ξ )

dξ 4 + p1
d2φi(ξ )

dξ 2 +q1φ(ξ )+
kyi

kxi

B0

C2
〈ψi〉 = 0 (50)

d4ψi(η)

dη4 + p2
d2ψi(η)

dη2 +q2ψ(η)+
kxi

kyi

B0

C2
〈φi〉 = 0 (51)

where

p1 =
A2−A1

C2
, q1 =

A0

C2
, p2 =

B2−B1

C2
and q2 =

C0

C2
(52)

but A2, B2, and C2 are replaced by A′2, B′2, and C′2 for i = 2. The averaged values are given by

〈φi〉=
1

2ρi

∫
ρi

−ρi

φi(ξ ) dξ and 〈ψi〉=
1

2χi

∫
χi

−χi

ψi(η) dη (53)

Note some nomenclature differences from Hashin (1987): ρ1 and ρ2 in Hashin (1987) are replaced here by ρi and
χi. The terms ρ2 and χ2 here are new terms for solving loading direction i = 2, which was not considered in Hashin
(1987).
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All combinations of CLT properties have p1 < 0 and q1 > 0. When 4q1 > p2
1, the solution for φi(ξ ), which satisfies

its differential equation and boundary conditions, is:

φi(ξ ) =
(
1+mi,1 〈ψi〉

)(
D1 cosh(αξ )cos(βξ )+D2 sinh(αξ )sin(βξ )

)
−mi,1 〈ψi〉 (54)

where α,β = 1
2

√
2
√

q1∓ p1 and

D1 =
2
(
α cosh(αρi)sin(βρi)+β sinh(αρi)cos(βρi)

)
β sinh(2αρi)+α sin(2βρi)

(55)

D2 =
2
(
β cosh(αρi)sin(βρi)−α sinh(αρi)cos(βρi)

)
β sinh(2αρi)+α sin(2βρi)

(56)

mi,1 =
kyi

kxi

B0

A0
(57)

The average value of φi(ξ ) is

〈φi〉=
(
1+mi,1 〈ψi〉

)
ω1−mi,1 〈ψi〉 (58)

where

ω1 =
2αβ

(
cosh(2αρi)− cos(2βρi)

)
ρi(α2 +β 2)

(
β sinh(2αρi)+α sin(2βρi)

) (59)

When 4q1 < p2
1, the solution for φi(ξ ) is:

φi(ξ ) =
(
1+mi,1 〈ψ1〉

)(
D1 cosh(αξ )+D2 cosh(βξ )

)
−mi,1 〈ψi〉 (60)

where α,β =

√
−(p1/2)±

√
(p2

1/4)−q1 and

D1 = − β sinh(βρi)

α sinh(αρi)cosh(βρi)−β cosh(αρ1)sinh(βρi)
(61)

D2 =
α sinh(αρi)

α sinh(αρi)cosh(βρi)−β cosh(αρ1)sinh(βρi)
(62)

The average value of φi(ξ ) is identical to Eq. (58), except now

ω1 =
(α2−β 2)sinh(αρi)sinh(βρi)

ρiαβ
(
α sinh(αρi)cosh(βρi)−β cosh(αρi)sinh(βρi)

) (63)

To find ψi(η), use the above equations but replace φi(ξ ), p1, q1, ρi, mi,1, 〈ψi〉, ω1, and ξ with ψi(η), p2, q2, χi,
mi,2 = kxiB0/(kyiC0), 〈φi〉, ω2, and η , respectively, and note that α and β will be different.

All effective properties depend on the average values 〈φi〉 and 〈ψi〉. To find these terms, solve Eq. (58) and the
corresponding equation for 〈ψi〉 to get:

〈φi〉=
ω1−mi,1ω2(1−ω1)

1−mi,1mi,2(1−ω1)(1−ω2)
and 〈ψi〉=

ω2−mi,2ω1(1−ω2)

1−mi,1mi,2(1−ω1)(1−ω2)
(64)

where ω1 and ω2 are determined from the appropriate form for φi(ξ ) and ψi(η) in the previous equations. Repeating
this calculation for both loading directions determines all CLT mechanical properties.
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Appendix 3

The results for both directions are expressible from equations in Appendix 2, but can be clarified in terms of a single
dimensionless function and a single set of constants. The new function is Ω(ρ, p,q) with the single case in previous
section defining the function by:

Ω(ρ = ρi, p = p1,q = q1) = ω1(ρi, p1,q1) (65)

Then for loading in the i = 1 direction:

〈φ1〉=
ω1−m1,1ω2(1−ω1)

1−m1,1m1,2(1−ω1)(1−ω2)
and 〈ψ1〉=

ω2−m1,2ω1(1−ω2)

1−m1,1m1,2(1−ω1)(1−ω2)
(66)

where

ω1 = Ω

(
ρa,

A2−A1

C2
,

A0

C2

)
and ω2 = Ω

(
ρb,

B2−B1

C2
,
C0

C2

)
(67)

with ρa = a/t1 and ρb = b/t1. For loading in the i = 2 direction:

〈φ2〉=
ω ′1−m2,1ω ′2(1−ω ′1)

1−m2,1m2,2(1−ω ′1)(1−ω ′2)
and 〈ψ2〉=

ω ′2−m2,2ω ′1(1−ω ′2)

1−m2,1m2,2(1−ω ′1)(1−ω ′2)
(68)

where

ω
′
1 = Ω

(
ρb

λ
,λ 2 B2−B1

C2
,λ 4 C0

C2

)
and ω

′
2 = Ω

(
ρa

λ
,λ 2 A2−A1

C2
,λ 4 A0

C2

)
(69)

with λ = λ1.
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