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Abstract Cross Laminated Timber (CLT) is made by laminating three or more timber layers with grain directions in
alternate layers at right angles to each other. This structure, with its numerous wood bonds glued in cross-grained di-
rections, develops residual stresses whenever panels are exposed to variations in temperature or moisture content. This
paper analyzes how these residual stresses combined with mechanical stresses can cause CLT cracks by deriving an
expression for energy released when a new crack forms within one layer. By using finite fracture mechanics concepts,
where a crack forms when energy released by that crack exceeds the transverse toughness of wood, this equation can
predict layer cracking under many conditions. Two specific examples given are cracking due to residual shrinkage
alone and cracking due to uniaxial tension. Finite fracture mechanics and energy release calculations provide useful
tools for designing durable CLT products and structures. Various options for improving CLT are considered along
with needs for more analysis and experiments. Two simple changes to CLT that could greatly enhance durability are
to use thinner layers and to sufficiently dry the timber before panel fabrication.
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1 Introduction

Woodworkers have known for centuries that one must never glue wood in cross-grained directions because such joints
are likely to crack. If a crossed-grain connection is needed, it is screwed instead of glued and the screws require slots
to accommodate wood movement. Solid wood tops must be attached to a base with table fasteners that accommodate
shrinkage or expansion of the top. Frame and panel doors are used to avoid cross-grained gluing. Solid wood panels
float (without glue) within a frame of straight-grained stiles. Nevertheless, several engineered wood products go
against this acquired wisdom. One recent example is cross laminated timber (CLT) that is made by laminating three
or more timber layers with grain directions in alternate layers at right angles to each other. The timber faces between
layers are glued resulting in cross-grained bonds. Can such a structure avoid cracks? The short answer is that modest
levels of mechanical and residual stresses will cause CLT to crack. Mechanical stresses arise from loads on structures
and are unavoidable. Residual stresses are caused by exposure to variations in temperature and humidity that result in
differential shrinkage or expansion between layers. Any net shrinkage that occurs causes transverse tensile residual
stresses that promote layer cracking.

The causes of CLT cracking can be modeled by assuming a crack spanning one layer forms when energy released
by formation of that crack reaches the toughness of the wood layer. This concept is known as finite fracture mechanics
(Hashin, 1996; Nairn, 1999). It extends conventional fracture mechanics, which predicts propagation of a single,
dominant crack, to failure predictions in materials that progressively fail by fracture events. CLT layer cracking is
one example of fracture events. Other examples include microcracking of cross-ply, aerospace composites (Parvizi
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et al, 1978; Nairn and Hu, 1994; Nairn, 2000), cracking of paints (Kim and Nairn, 2000a,b; Nairn and Kim, 1992)
and coatings (Leterrier et al, 2009, 2003, 1997b,a), mud cracks in deserts (Groisman and Kaplan, 1994), cavitation
of rubber (Gent and Wang, 1991; Gent, 1990; Gent and Lindley, 1959), and internal ring checking in wood (Pang
et al, 1999; Nairn, 2010). The ability of finite fracture mechanics to predict layer cracking has been confirmed by
experiments (Nairn et al, 1993; Nairn and Hu, 1994; Nairn, 2000) and theoretical arguments (McCartney, 2008).

Why should CLT be singled out as sensitive to residual stresses and cracking while solid wood and other mass-
timber products, such as glulam, are not? The reason is that solid wood and glulam both have wood grain in a single
direction. As a result, they experience lower residual stresses. Cracks that form are usually of limited depth and aligned
in one direction. In contrast, CLT’s cross-grained structure causes higher residual stress. Cracks develop more easily,
develop throughout the panel, and occur in two directions. Why should CLT be singled out when compared to other
engineered wood products with cross-grained bonds such as plywood or oriented strand board? The reason is that
failure has scaling effects. In layer cracking, the scaling is with layer thickness (Nairn, 2000) implying that durability
decreases as layers get thicker. For example, a CLT panel with 38.1 mm (1.5 in.) dimensioned timber compared to
plywood with 1.58 mm (1/16 in.) veneers would have 38.1/1.58 = 24 times the energy available to cause cracking.
CLT is sometimes referred to as “plywood on steroids.” If this analogy is similar to “athletes on steroids,” who get a
short-term boost at the cost of life-threatening consequences later, then it may be an appropriate moniker for CLT.

This paper finds an exact expression for energy released by formation of layer cracks in a CLT panel under
in-plane mechanical loads along with residual stresses caused by changes in temperature or moisture content. The
derived general expression is exact, but is expressed in terms of effective panel mechanical properties. By using
variational mechanics models for mechanical properties of cracked CLT (Hashin, 1987; Nairn, 2017), explicit results
were derived for analyzing many CLT cracking situations. They were used to predict cracks caused by moisture
shrinkage alone or by uniaxial tensile loading. The new finite fracture mechanics equations provide useful tools for
understanding CLT, predicting its durability, and designing improved CLT products. The discussion section considers
strategies for suppressing cracks, durability analysis methods, and delamination failure. This paper concludes with
recommendations for more analysis and key experiments.

2 Finite Fracture Mechanics of a CLT Panel with Residual Stresses

This section finds energy release rate due to formation of a layer crack caused by in-plane mechanical and residual
stresses. Figure 1 shows a unit cell for a three-layer CLT panel with transverse cracks in all layers (Hashin, 1987).
The core layer (labeled 1) has thickness 2t1, cracks at x = ±a, and wood grain at 90◦ to the 1 direction. The surface
layers (labeled 2) have thickness t2, cracks at y =±b, and wood grain at 0◦ to the 1 direction. This unit cell describes
a panel with crack densities Da = 1/(2a) and Db = 1/(2b) in the two layers. In typical “as-made” CLT, t2 = 2t1 is
thickness and 2a = 2b is width of the panel’s timber. Because timber edges are usually not glued, those edges act as
precracks. When additional cracks form, a and b decrease. Various other terms used here are collected in Table 1.

If the crack spacings on the panel’s 1-3 surface are all equal to 2a and on the 2-3 surface are all equal to 2b, the unit
cell would be a repeating unit and all unit cells would have the same stress state. This condition is approximately true
in “as-made” CLT with constant-width timbers. But, importantly, this analysis does not require a repeating unit cell.
As explained by Hashin (1987), a rigorous, complementary energy analysis permits variable size unit cells with the
full laminate being a statistical average of crack spacings. In other words a and b will be random variables describing
distributions of crack spacing on the panel’s 1-3 and 2-3 surfaces. The analysis does assume, however, that cracks
on each surface extend through the layer to the opposite side of the laminate (see Fig. 1 in Hashin (1987)). Such
an analysis can predict formation of complete layers cracks but does model propagation phase of cracks prior to
becoming complete cracks. Experimental observations of layer cracking consistently show that once a crack initiates
it rapidly (often unstably) forms a complete crack in the layer (Nairn and Hu, 1994; Nairn, 2000; McCartney, 2008).

The energy release rate due to any increment in fracture area, dA, within a composite with residual thermal stresses
is derived in Nairn (1997):

G = Gmech +
V
2

(
2

d 〈σm ·α∆T 〉
dA

+
d 〈σ r ·α∆T 〉

dA

)
(1)

where V is total volume, total stress is partitioned as σ = σm +σ r, and angle brackets indicates a volume-averaged
quantity. This section uses Eq. (1) to derive an exact result for G due to formation of layer cracks in CLT caused by
normal stresses σ10 and σ20 in the 1 and 2 directions and residual stresses. For simplicity, the derivation considers
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Table 1 Nomenclature for various terms used throughout this paper. The functional dependence (a,b) refers to a CLT panel property when
crack spacings are a and b in core and surface layers respectively. CTE and CME refer to coefficients of thermal and moisture expansion.

Term Definition Term Definition
G Energy release rate Gmech Mechanical energy release rate
σ , σm, σ r total, mechanical and residual stress σ

(k)
i j , σ

(km)
i j , σ

(kr)
i j Stress in layer k with i = x,y,z

α , α(k), α
(k)
ii Layer k CTE i = x,y,z ∆T Temperature change inducing residual stresses

β
(k)
ii Layer k CME i = x,y,z ∆c Moisture change inducing residual stresses

σ10, σ20 Applied panel stress in direction 1 or 2 Eii(a,b) Panel modulus in direction i = 1,2
νi j(a,b) Panel Poison’s ratio in direction i, j = 1,2 αii(a,b) Panel CTE in direction i = 1,2
E(k)

ii , G(k)
i j Layer k tensile and shear moduli i, j = x,y ν

(k)
i j Layer k Poisson’s ratio i = x,y,z

0 t1 h=t1+t2
z,3

x,1

-a

+b

0

y,2

0

(2)

+a

(1)

-b

Fig. 1 Unit cell for a CLT panel with orthogonal cracking in all layers. The gray planes mark the crack surfaces (one on each end of each
layer) with normals perpendicular to wood grain direction in each layer. Layer 1 is core layer with thickness 2t1 and cracks separated by 2a.
Layers 2 are surface layers with thickness t2 and cracks separated by 2b. Axes (1,2,3) are used to refer to panel properties while (x,y,z)
refer to layer properties.

only residual thermal stresses, but the final form accounts for a combination of thermal and moisture induced residual
stress. For brevity, this derivation omits some details. More details are available in this paper’s Online Resource.

The mechanical energy release rate for a composite under traction loads T0 applied on surface ST is (Nairn, 1997):

Gmech =
1
2

d
dA

∫
ST

T0 ·umdS (2)

where um is surface displacement due to mechanical stresses. Gmech can be evaluated by treating ST as the uncracked
surfaces with loads±hσ10/t2 and displacements±aεm

10 on top and bottom of layer 2 and loads±hσ20/t1 and displace-
ments ±bεm

20 on sides of layer 1. Evaluating the surface integrals and expressing global strains in terms of effective
panel properties (e.g., εm

10 = σ10/E11(a,b)−ν12σ20/E11(a,b)), Gmech evaluates to

Gmech =
V
2

d
dA

(
σ2

10
E11(a,b)

− 2ν12(a,b)σ10σ20

E11(a,b)
+

σ2
20

E22(a,b)

)
(3)

The next steps express the remaining terms in Eq. (1) using effective mechanical properties. The derivations start
with the Levin (1967) equation that takes this form for CLT:

σ
m ·α(a,b) =

2

∑
k=1

Vkσ (km) ·α(k) (4)
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where σm is any applied mechanical stress, Vk is volume fraction of layer k, and an over bar indicates a quantity
averaged over a phase’s volume. For in-plane x-y mechanical loads, the Levin equation gives:

〈σm ·α∆T 〉=
2

∑
k=1

Vk

(
σ
(km)
xx α

(k)
xx +σ

(km)
yy α

(k)
yy

)
∆T = σ10α11(a,b)∆T +σ20α22(a,b)∆T (5)

A second use of the Levin equation can eliminate the effective CTEs. First consider mechanical loading in direction
1 only. The Levin equation becomes:

σ10α11(a,b)∆T =
2

∑
k=1

Vk

(
σ
(km)
xx α

(k)
xx +σ

(km)
yy α

(k)
yy

)
∆T (6)

where phase average stress now refer to uniaxial loading. They can be evaluated from these six global relations:

σ10 =V1σ
(1)
xx +V2σ

(2)
xx 0 =V1σ

(1)
yy +V2σ

(2)
yy

σ
(1)
xx = Q(1)

xx (ε
(1)
xx −α

(1)
xx ∆T )+Q(1)

xy (ε
(1)
yy −α

(1)
yy ∆T ) σ

(1)
yy = Q(1)

xy (ε
(1)
xx −α

(1)
xx ∆T )+Q(1)

yy (ε
(1)
yy −α

(1)
yy ∆T )

σ
(2)
xx = Q(2)

xx (ε
(2)
xx −α

(2)
xx ∆T )+Q(2)

xy (ε
(2)
yy −α

(2)
yy ∆T ) σ

(2)
yy = Q(2)

xy (ε
(2)
xx −α

(2)
xx ∆T )+Q(1)

yy (ε
(2)
yy −α

(2)
yy ∆T )

(7)

The first two equations are force balance in the two panel directions. The next four relate phase average stresses to
phase average strains where Q(k)

i j are elements of the laminated plate theory stiffness tensor for layer k:σ
(k)
xx

σ
(k)
yy

σ
(k)
xy

=

Q(k)
xx Q(k)

xy 0
Q(k)

xy Q(k)
yy 0

0 0 G(k)
xy


 εxx−α

(k)
xx ∆T

εyy−α
(k)
yy ∆T

γxy

 , Q(k)
ii =

E(k)
ii

1−ν
(k)
xy ν

(k)
yx

, and Q(k)
xy =

E(k)
xx ν

(k)
yx

1−ν
(k)
xy ν

(k)
yx

(8)

These six equations have eight unknowns, but for an orthogonally-cracked CLT unit cell under mechanical loads

only (∆T = 0), two average strains in the uncracked layers are equal to panel mechanical strains — ε
(2m)
xx = εm

10 =

σ10/E11(a,b) and ε
(1m)
yy = εm

20 =−ν12σ10/E11(a,b). Solving for the remaining six unknowns and substituting stresses
into Eq. (6) leads to:

α11(a,b)∆T = ∆0−
V2∆2

E11(a,b)
+

V1∆1ν12(a,b)
E11(a,b)

(9)

where

∆0 =

(
α
(2)
xx +

Q(1)
xx (α

(1)
xx −α

(2)
xx )+Q(1)

xy (α
(1)
yy −α

(2)
yy )

Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy

Q(2)
yy

)
∆T (10)

∆1 = −
(
Q(2)

xy (α
(1)
xx −α

(2)
xx )+Q(2)

yy (α
(1)
yy −α

(2)
yy )
)
∆T

Q(1)
xx Q(1)

yy −Q(1)
xy

2

Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy

(11)

∆2 =
(
Q(1)

xx (α
(1)
xx −α

(2)
xx )+Q(1)

xy (α
(1)
yy −α

(2)
yy )
)
∆T

Q(2)
xx Q(2)

yy −Q(2)
xy

2

Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy

(12)

Repeating this analysis for mechanical loading in direction 2 only leads to

α22(a,b)∆T = ∆
′
0−

V1∆1

E22(a,b)
+

V2∆2ν12(a,b)
E11(a,b)

(13)

where

∆
′
0 =

(
α
(1)
yy +

Q(2)
xy (α

(1)
xx −α

(2)
xx )+Q(2)

yy (α
(1)
yy −α

(2)
yy )

Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy

Q(1)
xx

)
∆T (14)

The Levin equation is not used for the 〈σ r ·α∆T 〉 term because residual stresses occur when σm = 0. We can,
however, still express that term using:

〈σ r ·α∆T 〉=
2

∑
k=1

Vk

(
σ
(kr)
xx α

(k)
xx +σ

(kr)
yy α

(k)
yy

)
∆T (15)
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The phase average residual stresses are found by solving Eq. (7) with σ10 = 0, ∆T 6= 0, and two average strains in the

uncracked layers now equal to panel residual strains — ε
(2r)
xx = α11(a,b)∆T and ε

(1r)
yy = α22(a,b)∆T . Solving for the

remaining six unknowns and substituting stresses into Eq. (15) results in

〈σ r ·α∆T 〉=V1∆1
(
α
(1)
yy −α22(a,b)

)
∆T +V2∆2

(
α
(2)
xx −α11(a,b)

)
∆T (16)

Substituting Eqs. (3), (5) and (16) into Eq. (1) and eliminating effective panel CTEs using Eqs. (9) and (13) gives
an exact expression for energy release rate for cracking in a CLT panel under combined in-plane mechanical loads
and residual thermal stresses:

G =
V
2

d
dA

[
σ
∗
1

2 1
E11(a,b)

−2σ
∗
1 σ
∗
2

ν12(a,b)
E11(a,b)

+σ
∗
2

2 1
E22(a,b)

]
(17)

where σ∗1 = σ10−V2∆2 and σ∗2 = σ20−V1∆1 are two effective stresses. One more simplification is possible. For
cracking only in layer 1 where a changes but b remains constant, total G must scale with a sum of mechanical and
residual stresses (Nairn, 1997). As a consequence, one can derive an exact relation between derivatives of effective
panel properties as (McCartney, 1993):

(
d

dA
ν12(a,b)
E11(a,b)

)
b(

d
dA

1
E11(a,b)

)
b

=

(
d

dA
1

E22(a,b)

)
b(

d
dA

ν12(a,b)
E11(a,b)

)
b

(18)

An analogous expression holds when a is held constant. Substitution into Eq. (17) leads to

G =
V σ∗0

2

2
d

dA

[
ξ√

E11(a,b)
+

1−ξ√
E22(a,b)

]2

(19)

where σ∗0 = σ∗1 + σ∗2 and ξ = σ∗1 /σ∗0 . Although these derivations considered only residual thermal stresses, the
results are trivially extended to combine thermal and moisture residual stresses by replacing all instances of α

(k)
ii ∆T

with α
(k)
ii ∆T +β

(k)
ii ∆c. Some further remarks are:

1. The energy release rate in Eq. (19) is exact, but is expressed using effective panel properties E11(a,b) and E22(a,b).
No exact model for these properties is available, but substituting any approximate (or numerical) results gives an
approximate result for G.

2. Eq. (19) specifically refers to crack formation in a unit cell with crack spacings 2a and 2b. When interpreting
experiments, this equation should use the crack spacings surrounding the next layer crack’s location. A simple
correction factor ( f ) is introduced below to account for panels with variable crack spacing (Nairn et al, 1993).

3. The above analysis derived G for three-layer CLT. Repeating the analysis for any number of layers, reveals it
applies to CLT with any number of layers under the restriction that the unit cell can be extended in the thickness
direction with all 0◦ layers cracked at ±b and all 90◦ layers cracked at ±a.

4. For uniaxial loading (e.g., σ10 6= 0, σ20 = 0) with no residual stresses (∆i = 0), this expression reduces to a
standard fracture mechanics result:

G =
V σ10

2

2
d

dA

[
1

E11(a,b)

]
=

P2

2
dC11(a,b)

dA
(20)

where C11(a,b) is panel compliance in the 1 direction. Eq. (19) is significant because it extends standard fracture
mechanics to include biaxial loading and, more importantly, to include residual stresses.
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2.1 Explicit Calculations

Explicit energy release rate calculations need some theory or numerical results for E11(a,b) and E22(a,b). The cal-
culations here used the 3D, variational mechanics results from Hashin (1987) and Nairn (2017) for lower-bound
mechanical properties. The two tensile moduli were verified as accurate (i.e., tight bounds) by comparison to 3D,
numerical results. The in-plane panel moduli are:

1
E11(ρa,ρb)

≤ 1
E0

11
+

V1χ1(ρa,ρb)

ρaρb
and

1
E22(ρa,ρb)

≤ 1
E0

22
+

V2χ2(ρa,ρb)

ρaρb
(21)

where ρa = a/t1 and ρb = b/t1 are dimensionless crack spacings. E0
ii are tensile moduli for a panel with no cracks

(ρa = ρb = ∞). These are easily found (see Online Resource) using laminated plate theory (Christenson, 1979). For a
symmetric composite of only 0◦ and 90◦ plies, they reduce to:

E0
11 = 〈Qxx〉(1−ν

0
21ν

0
12), E0

22 = 〈Qyy〉(1−ν
0
21ν

0
12), ν

0
12 =

〈Qxy〉
〈Qyy〉

, and ν
0
21 =

〈Qxy〉
〈Qxx〉

(22)

where 〈Qi j〉=V1Q(1)
i j +V2Q(2)

i j . These equations are for a single unit cell. They are used to model panel stiffness for
any crack distribution by averaging (Hashin, 1987). They are used to model energy release rate by using ρa and ρb
for the specific unit cell that cracks.

Because Nairn (2017) only consider panels with identical layers, those results need generalization to allow mod-
eling panels with differing layers (such as when using different species, timber grades, or end-grain patterns (Nairn,
2007) for surface and core layers). Generalized results (see Online Resource) begin with new constants:

A0 =
1

E(1)
xx

+ 1
λE(2)

xx
B0 =−

(
ν
(1)
yx

E(1)
yy

+
ν
(2)
yx

λE(2)
yy

)
C0 =

1
E(1)

yy
+ 1

λE(2)
yy

A1 =
1

3G(1)
xz

+ λ

3G(2)
xz

B1 =
1

3G(1)
yz

+ λ

3G(2)
yz

A2 =
(3λ+2)ν(1)

xz

3E(1)
xx

− λν
(2)
xz

3E(2)
xx

B2 =
(3λ+2)ν(1)

yz

3E(1)
yy

− λν
(2)
yz

3E(2)
yy

C2 =
1

60

(
8+20λ+15λ 2

E(1)
zz

+ 3λ 3

E(2)
zz

) (23)

where λ = t2/t1. The key functions for all calculations in this paper then become (Hashin, 1987; Nairn, 2017):

χ1(ρa,ρb)

ρaρb
=

(1+m1,1)
(
ω1−m1,1ω2(1−ω1)

)
k(1)x1

2
A0 +(1+m1,2)

(
ω2−m1,2ω1(1−ω2)

)
k(1)y1

2
C0

1−m1,1m1,2(1−ω1)(1−ω2)
(24)

χ2(ρa,ρb)

λρaρb
=

(1+m2,1)
(
ω ′1−m2,1ω ′2(1−ω ′1)

)
k(2)y2

2
C0 +(1+m1,2)

(
ω ′2−m2,2ω ′1(1−ω ′2)

)
k(2)x2

2
A0

1−m2,1m2,2(1−ω ′1)(1−ω ′2)
(25)

where k(k)xi and k(k)yi are influence coefficients (see Eq. (43)) and:

m1,1 =
k(1)y1

k(1)x1

B0

A0
, m1,2 =

k(1)x1

k(1)y1

B0

C0
, m2,1 =

k(2)x2

k(2)y2

B0

C0
, and m2,2 =

k(2)y2

k(2)x2

B0

A0
(26)

ω1 = Ω

(
ρa,

A2−A1

C2
,

A0

C2

)
and ω2 = Ω

(
ρb,

B2−B1

C2
,
C0

C2

)
(27)

ω
′
1 = Ω

(
ρb

λ
,λ 2 B2−B1

C2
,λ 4 C0

C2

)
and ω

′
2 = Ω

(
ρa

λ
,λ 2 A2−A1

C2
,λ 4 A0

C2

)
(28)

The function Ω(ρ, p,q) has two cases. When 4q > p2:

Ω(ρ, p,q) =
2αβ

(
cosh(2αρ)− cos(2βρ)

)
ρ(α2 +β 2)

(
β sinh(2αρ)+α sin(2βρ)

) (29)
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where α,β = 1
2

√
2
√

q∓ p. When 4q < p2:

Ω(ρ, p,q) =
(α2−β 2)sinh(αρ)sinh(βρ)

ραβ
(
α sinh(αρ)cosh(βρ)−β cosh(αρ)sinh(βρ)

) (30)

where α,β =
√
−(p/2)±

√
(p2/4)−q. Note that compared to Nairn (2017), k(1)x1 = kx1 and k(1)y1 = ky1 but because

Nairn (2017) rotated x and y for loading in direction 2, k(2)x2 = ky2 and k(2)y2 = kx2.
G calculations must differentiate properties with respect to crack area. In finite fracture mechanics analysis of

cracking events, the required derivative must be a discrete derivative or be the change in the bracketed term in Eq. (19)
divided by the change in area, ∆A, due to formation of a complete crack in one layer. A discrete derivative corresponds
to formation of a new crack between two existing cracks. Mistaken use of a continuous derivative corresponds to a
non-physical process where a set of periodically-spaced cracks all close and then reopen as new periodic cracks at a
higher density. Experimental results demonstrate that discrete differentiation models for layer cracking work better
than continuous derivative models (Nairn et al, 1993).

Because G depends on Eq. (18), it only applies to cracking in one layer. It can be used to analyze cracking in both
layers by considering cracking events alternating between layers using energy release rate equations specific for each
layer. Energy released by a crack in core layer 1 finds a discrete derivative with ∆A = 4t1b to derive:

Ga =
σ∗0

2t1Y 2
a ( f ρa,ρb,ξ )

E0
11

(31)

where f is explained below and

Y 2
a (ρa,ρb,ξ ) =

E0
11

V1
ρa


 ξ√

E11
(

ρa
2 ,ρb

) + 1−ξ√
E22
(

ρa
2 ,ρb

)
2

−

(
ξ√

E11(ρa,ρb)
+

1−ξ√
E22(ρa,ρb)

)2
 (32)

Energy released by crack formation in both surface layers (to maintain symmetry) with ∆A = 4t2a is:

Gb =
σ∗0

2t1Y 2
b (ρa, f ρb,ξ )

E0
11

(33)

where

Y 2
b (ρa,ρb,ξ ) =

E0
11

V2
ρb


 ξ√

E11
(
ρa,

ρb
2

) + 1−ξ√
E22
(
ρa,

ρb
2

)
2

−

(
ξ√

E11(ρa,ρb)
+

1−ξ√
E22(ρa,ρb)

)2
 (34)

Equations (31) and (33) were written for analogy with conventional fracture mechanics analysis of energy release
rate, GFM , and stress intensity factor, KFM , for crack propagation:

GFM =
σ2aY 2(a/W )

E
and KFM =

√
GFME = σY (a/W )

√
a (35)

where σ is applied stress, a is crack length, E is material modulus, and Y (a/W ) is a dimensionless fracture mechanics
calibration function that accounts for specimen geometry (W is specimen width) (Williams, 1984). The crack length
a in GFM is the source of scaling effects in fracture. Imagine two cracked specimens with identical geometries but
one scaled down to smaller size. Stress analysis shows these two specimens have identical magnitudes of internal
stresses, but experiments and fracture mechanics modeling agree that the larger specimen fails at lower stress. The
appearance of t1 in Eqs. (31) and (33) means that between two otherwise-identical CLT panels, the panel with thicker
layers will crack first. The uncracked panel modulus (E0

11) was included to convert Ya(ρa,ρb,ξ ) and Yb(ρa,ρb,ξ ) into
dimensionless calibration functions analogous to Y (a/W ) in conventional fracture mechanics.

In Eq. (31) and Eq. (33), ρa and ρb are average crack spacings in the panel layers, but the energy analysis needs
to use the crack spacing for the unit cell size that actually cracks. Because larger crack intervals release more energy
than smaller ones, the next crack tends to form in unit cells that are larger than average. This tendency which is a
consequence of current crack spacing distribution, can accurately be modeled by scaling the average density by the
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Table 2 The mechanical and expansion properties used for timber in all calculations and derived from Douglas fir properties. The calcula-
tions were for flat-sawn timber with L, R, and T indicating longitudinal, radial, or tangential directions, respectively. CME units are strain
per weight fraction water.

Property Value Property Value Property Value Property Value
EL 8.0 GPa ET 0.62 GPa ER 0.96 GPa GLR 0.8 GPa

GT R 0.08 GPa νLT 0.532 νLR 0.427 νT R 0.35
αL 0.0 αT 40×10−6 K−1 βL 0.0 βT 0.26 wt−1

above f factor and using f > 1 (Nairn et al, 1993; Nairn and Hu, 1994). Imagine N exactly periodic cracks spanning
a length L. The ith cracking event among the next N events (i = 1 to N) will form in one of the remaining uncracked
intervals of length L/N while average crack density when it forms is L/(N+ i−1) or fi = (N+ i−1)/N. The average
value of f for these events is:

〈 f 〉= 1
N

N

∑
i=1

N + i−1
N

= 1.5− 1
2N

(36)

By this simple analysis of sequential cracking, f is expected to range from 1 to 1.5 and asymptotically approach
1.5 for large N. Experimental results for f find typical values of f = 1.2 to 1.3 (Nairn et al, 1993). Recently, some
authors failed to recognize the need to use f to account for distributions of crack spacings and erroneously suggested
the discrete derivative approach is not accurate (Lim and Li, 2005). Experiments have confirmed, however, that both
a discrete derivative and an accounting of distribution of crack spacings (e.g., using the f factor) are essential for
analysis of layer cracking (Nairn et al, 1993).

3 Cracking Prediction Results

This section uses finite fracture mechanics to predict CLT cracking under various loading situations. The analysis is
general, but these calculations assumed a three-layer CLT panel made with identical core and surface layer properties.
The timber was assumed to be flat-sawn such that x-y-z directions in layer 1 are approximately the tangential (T ),
longitudinal (L), and radial (R) directions in wood; table 2 lists the assumed properties. Finally, for identical layers,
the residual stress terms simplify to:

∆0 = ∆
′
0 =

(αT +νLT αL)∆T +(βT +νLT βL)∆c
1+νLT

and ∆1 = ∆2 =

(
(αT −αL)∆T +(βT −βL)∆c

)
EL

1+νLT
(37)

3.1 Cracking Calibration Functions

Figure 2 plots Ya(ρa,ρb,ξ ) and Yb(ρa,ρb,ξ ) for various conditions as a function of dimensionless crack density
(1/ρ). Each group of three curves (indicated with arrows) corresponds to crack spacing in the other layer being
ρ = ∞ (no cracks) or ρ = 4. For as-made CLT with non-glued edges, ρ is aspect ratio of the timber cross section
(width/thickness). Setting ρ = 4 corresponds approximately to CLT made from 2′′×6′′ timber (with nominal dimen-
sions 38×139 mm). The three curves in each group are for ξ = 1 (solid lines), 2/3 (dotted lines), and 0 (dashed lines).
ξ = 1 and 0 correspond to pure mechanical load in the 1 or 2 directions. ξ = 2/3 corresponds to three-layer CLT with
identical layers subjected only to residual stresses or ξ = σ∗1 /σ∗0 =V2 = 2/3.

All calibration functions have the same shape as analogous functions for 2D layer cracking (Nairn, 1989, 1995).
At low crack density, the functions are constant. This region corresponds to the conditions to initiate cracking. The
horizontal plateaus at low crack density implies that once cracking starts, the next cracks form in rapid succession
(because G remains critical). At higher crack density, all functions monotonically decrease, which predicts cracking
rate slows at higher crack density. Both these predictions correspond to experimental observations (Nairn and Hu,
1994; Nairn, 2000). Varying ξ from 0 to 1 within each group maintains a rather high calibration function for forming
cracks in either direction, including for cracks with their plane parallel to the loading direction. Both Ya and Yb increase
as ρ in the other layer changes from ∞ to 4. In other words, cracks in either layer promote cracking in the other layer.
Cracks in the other layer also change relative energy release rate as a function of ξ and reduce its influence. Finally,



CLT Cracking 9

Crack Density (Dimensionless)

Y
(ρ

a,
ρ b

,ξ
)

0.0 0.2 0.4 0.6 0.8 1.0
 0.0 

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 
Ya(ρa,4,ξ)

Ya(ρa,∞,ξ)

Yb(∞,ρb,ξ)
Yb(4,ρa,ξ)

Ya(1.25ρa,∞,1)

ξ = 1
ξ = 2/3
ξ = 0

Fig. 2 Plots of Ya(ρa,ρb,ξ ) as a function of 1/ρa and Yb(ρa,ρb,ξ ) as a function of 1/ρb. The two groups of Ya plots are for ρb → ∞ and
ρb = 4 and for Yb are for ρa→ ∞ and ρa = 4. Within each group, solid, dotted, and dashed lines are for ξ = 1, 2/3, and 0, respectively. The
Ya(1.25ρa,∞,1) curve shows the effect of f = 1.25 on one calibration function.

the Ya(1.25ρa,∞,1) curve illustrates the effect of f factor used to account for non-periodic crack spacings. The plateau
level is unaffected, but the monotonic decrease is slowed. As a result, real-world cracking initiates at loads that are
independent of f but develops more cracks at high crack density.

3.2 Biaxial Cracking due to Residual Stresses Alone

Finite fracture mechanics analysis asserts that the next layer crack forms when total energy released by that crack
equals the toughness of wood for a layer cracking event. For a panel experiencing only residual stresses (σ10 = σ20 =
0), cracks form in core or surface layer, respectively, when

−V2∆2−V1∆1 =
1

Ya( f ρa,ρb,ξres)

√
G(1)

Lc E0
11

t1
or −V2∆2−V1∆1 =

1
Yb(ρa, f ρb,ξres)

√
G(2)

Lc E0
11

t1
(38)

where G(k)
Lc is the layer cracking event toughness for layer k and ξres = V2∆2/(V2∆2 +V1∆1). G(k)

Lc is a new material
property for wood. Ideally it would be measured by experiments described below. It is likely close to the toughness to
initiate cracks running parallel to wood grain (known as “RL” or “TL” toughness (Schniewind and Centeno, 1973)).
Typical values for wood range from 50 to 400 J/m2 depending on species (Shir Mohammadi and Nairn, 2014; Wilson
et al, 2013). For flat-sawn, Douglas fir used here, GLc might be close to the toughness to initiate TL fracture that
ranges from 120 to 220 J/m2 (Matsumoto and Nairn, 2012; Wilson et al, 2013).

A progressive failure analysis can predict residual stress cracking. CLT with non-glued edges starts as a pre-
cracked panel with initial crack spacings ρa and ρb equal to timber cross-section aspect ratios. If such a panel has
G(1)

Lc = G(2)
Lc and equilibrium residual stresses, cracking will start in the core layer because Fig. 2 shows that Ya is

always greater than Yb. As cracking proceeds, Ya decreases while Yb slightly increases. When Ya reaches Yb, cracking
will start in the surface layers as well. Once both layers are cracking, subsequent cracking will follow a path that
maintains Ya =Yb. Imagine 3D surface plots of Ya and Yb as a function of ρa and ρb. Residual stress cracking will start
along the Ya surface until it intersects the Yb surface. Thereafter, it will follow the intersection of the two surfaces.
The minus signs mean cracking only occurs when a combination of temperature and moisture change gives −V2∆2−
V1∆1 > 0 (i.e., residual shrinkage). This analysis is easily generalized to G(1)

Lc 6= G(2)
Lc and to non-equilibrium moisture

content and which layer cracks first may change. The effects of moisture gradients when drying is briefly discussed
below.

Figure 3 gives predictions of residual stress cracking for panels made from identical layers (V1 = 1/3, ∆1 =∆2, and
ξ = 2/3) using properties in Table 2, G(k)

Lc = 150 J/m2, and f = 1.25. These calculations assumed residual stresses were
caused by moisture change alone (∆T = 0). Calculated results for ∆1 were converted to precent moisture decrease
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Fig. 3 The predicted dimensionless crack density in core and surface layers as a function of moisture change (positive means decrease in
moisture content) for three different cross-laminated products. The “CLT t1=20” curves are for typical CLT made from 40×160 mm timber.
The “CLT t1=5” curves is made from thinner timber layers. The “Plywood” curves use 2×0.79 = 1.58 mm veneer layers. The two curves
labeled “No Precracks” are for a CLT panel with no initial cracks (i.e., very wide timber or glued edges).

using ∆c(%) = 100∆1(1+ νLt)/(EL(βT −βL)). The CLT was assumed to be made from 160 mm wide timber. The
“CLT t1 = 20” curves thus corresponds approximately to CLT made from 2′′×6′′ timber. At first, the dimensionless
crack density remains constant at the precrack density of 20/80 = 0.25 mm−1. At about 1% moisture change the core
layer starts to crack. The surface layers start cracking at about 1.5% moisture change. As moisture change increases
the core and surface layers continue to crack at similar rates.

The other curves in Fig. 3 examine residual stress cracking in modified CLT panels. The “No Precracks” curves is
for a CLT panel made with impossibly-wide timber or by gluing edges within layers. This change has very little effect
on eventual panel cracking. Soon after crack initiation, the crack density in a panel with no cracks equals the crack
density of a panel with non-glued edges. The kink in the core layer curve with no precracks is caused by the sudden
decrease in ρb once surface layer cracking starts; this decreases causes step change in Ya for core layer cracking (see
Fig. 2).

Because Ga and Gb scale with panel thickness, two examples considered CLT with thinner layers. As expected,
the moisture change required to initiate cracking scales as 1/

√
t1. Thus moisture change needed to initiate cracking

is doubled with 5 mm layers and is increased five fold in plywood (t1 = 0.79 mm). By varying surface and core layer
properties, additional plywood cracking predictions would provide a tool for modeling veneer checking of plywood
(Batey, 1955). The dimensioned crack density (i.e. number of cracks per unit length) is equal to dimensionless crack
density divided by 2t1. Thus, although thinner layers can suppress cracking, once cracking starts, they can develop
more cracks. Because Eq. (21) shows property degradation depends on ρ , however, plots of dimensionless crack
spacing are the preferred metric for monitoring damage caused by cracks. This approach might need to change for
properties affected by absolute number of cracks (e.g., appearance or acceleration of moisture update).

3.3 Uniaxial Tensile Loading at Constant Residual Stresses

For uniaxial tensile loading in direction 1, finite fracture mechanics predicts the load to induce the next crack in the
core or surface layers, respectively, is:

σ10 =
1

Ya( f ρa,ρb,ξ1)

√
G(1)

Lc E0
11

t1
+V2∆2 +V1∆1 or σ10 =

1
Yb(ρa, f ρb,ξ1)

√
G(2)

Lc E0
11

t1
+V2∆2 +V1∆1 (39)

where ξ1 = (σ10−V2∆2)/(σ10−V2∆2−V1∆1). These equations could be used to predict cracking in both layers as
load increases. An interesting special case, which is proposed here as a method to measure G(1)

Lc , is to use a sufficiently
narrow width W in direction 2 such that Yb(ρa, fW/(2t1),ξ1) is always less than Ya( f ρa,W/(2t1),ξ1). For such a
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Fig. 4 The predicted dimensionless crack density in the core layer as a function applied stress for three different cross-laminated products.
The four “CLT t1=20” curves are for typical CLT made from 40× 160 mm timber. The “CLT t1=5” curve is made from thinner timber
layers. The “Plywood” curve use 2× 0.79 = 1.58 mm veneer layers. The dashed curves show the change in the “CLT t1=20” results for
panels have various amounts of moisture content change (∆c) before testing.

specimen, loading will crack only the core layer. Uniaxial tension experiments can be fast enough that ∆1 and ∆2
remain constant, but their values depend on how the panel was made and on its environmental history.

Figure 4 gives predictions of core layer cracking by uniaxial loading of narrow panels (W = 100 mm) made from
identical layers (V1 = 1/3, ∆1 = ∆2, timber width = 160 mm) using properties in Table 2, G(1)

Lc = 150 J/m2, and
f = 1.25. To find ξ1, calculations started with an initial guess (between 2/3 and 1) to find a provisional σ10. This
value was then recursively used to refine ξ1 until calculated σ10 became constant (very few recursions were needed;
none when ∆1 = 0). Because mechanical and residual stresses both cause cracking, these curves are similar to the
residual stress cracking curves in Fig. 3. The solid curves are for panels with ∆1 = 0, which corresponds to panels
made at room temperature with timber at equilibrium moisture content and then immediately tested. The horizontal
segments for CLT panels with t1 = 20 or 5 mm correspond to initial crack density determined by timber width. The
dotted extensions of these curves show expected results for panels with glued edges. Such panels would reach the
same amount of layer cracking soon after cracking initiates. Because of thickness scaling, the stress to initiate layer
cracking doubles when t1 = 5 mm and increases five fold for plywood. The stress to initiate cracking in plywood
exceeds its tensile strength (Forest Products Laboratory, 2010). In other words, one would never see layer cracking in
plywood before the entire panel failed by axial wood failure.

The three dashed curves in Fig. 4 show effects of adding residual stresses for panels experiencing ±1% or -2%
moisture change between the time the panels are made and tensile experiments are run. Residual stresses shift the
curves left for moisture decrease or right for increase. As seen in Fig. 3, core layer cracking due solely to residual
stresses starts at about 1% moisture change. Thus panels with more than 1% decrease in moisture content will develop
cracks before testing causing the crack density curves at zero stress to start above the precrack density. A panel with
moisture increase (∆c =+1%) shifts initiation stress the same amount as reducing layer thickness by a factor of four.
Thinner layers, however, are more effective at reducing subsequent cracking rates than moisture increases.

Uniaxial tensile testing could be used to measure G(1)
Lc . A recommended experimental program is to make a series

of CLT panels that vary thicknesses of core layer, surface layer, or both layers. If panels are made with a room-
temperature cure adhesive and tested at room temperature, the thermal shrinkage term should be ∆T = 0. Accounting
for only moisture shrinkage and for layers with the same properties, the failure load prediction can be cast as:

σ10 = DR

√
G(1)

Lc +
(βT −βL)EL

1+νLt
∆c where DR =

1

Ya

(
f

2Dat1
, W

2t1
,ξ1

)√E0
11

t1
(40)

is a reduced crack density calculated from the counted cracks per unit length, Da, and the calibration function. These
experiments would monitor Da in the core layer as a function of applied stress σ10. A plot of σ10 vs. DR should be a
straight line with slope as an experimental result for G(1)

Lc and intercept as an experimental result for effective moisture
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change that has occurred since panel fabrication. Because both slope and intercept are independent of t1 and V1, a
collection of panels with variable t1 and V1 should all fall on the same line, which would provide many data points for
determining G(1)

Lc . Such experiments could also monitor toughness and moisture changes over time. Imagine a series of
specimens exposed to different environmental histories followed by core cracking experiments. Slope changes would
reveal changes in G(1)

Lc while intercept changes would reveal changes in effective ∆c.
A similar “master plot” method successfully correlates many experiments on cross-ply laminates with variable ply

thickness (Nairn et al, 1993). One difference needs comment. The Ya calibration function needed to find DR depends
on σ10 and ∆1 through the ξ1 term. The comparable terms in 2D microcracking do not have such dependencies (Nairn
et al, 1993). Fortunately, Ya, is only weakly dependent on ξ1 and it only varies within the narrow range of V2 to 1. It
should be acceptable to set it to any value in this range or just use ξ1 = 1 if mechanical loads dominate the test.

4 Discussion

CLT layer cracking is neither desirable nor ignorable. Formation of new cracks over time degrades the panel’s me-
chanical properties. In-plane tensile moduli degrade little, but in-plane shear modulus will tend to zero at high crack
density (Bogensperger et al, 2010; Nairn, 2017). Layer cracks have other consequences as well. Cracks in surface
layers degrade the appearance of exposed panels. Intersections of layer cracks with bond lines between layers can nu-
cleate adhesive bond failure or delaminations (Nairn and Hu, 1992). Nearly all wood product failures are associated
with unwanted moisture or biodegradation (Zabel and Morrell, 2012). Layer cracks provide pathways that accelerate
moisture uptake into panels thereby allowing moisture penetration into panel depths that otherwise would not occur.

The design of CLT structures should consider all effects of layers cracks forming over time and their role in CLT
durability. Finite fracture mechanics concepts combined with energy release rate equations derived here (Eqs. (19),
(31), and (33)) provide tools for developing improved CLT panels or designing durable CLT structures. This section
briefly considers several topics and suggests areas for future analysis or experiments.

4.1 Redesigning CLT to Suppress Cracks

The simplest change to suppress cracking is to use thinner layers. Each factor of four reduction in thickness doubles
the stress required to initiate cracks and reduces the dimensionless crack spacing that can develop in layers. Given
G(k)

Lc , one could calculate the thickness required such that a panel would fail by other mechanisms before layers start
to crack. For example, Fig. 4 predicts that plywood veneers are thin enough to suppress cracking. Experiments on
glass/epoxy composites confirm that thin-layer, crack suppression methods work (Parvizi et al, 1978).

A plan to ameliorate effects of non-glued edges acting as precracks or to delay formation of new cracks by edge-
gluing the timber is predicted to be ineffective. All calculations with typical dimensions and wood properties predict
that soon after cracking starts, a panel with glued edges develops the same level of cracking as a panel with non-glued
edges. An analogy can be drawn to concrete slabs where a plan to edge-glue timber corresponds to pouring a slab
with no expansion joints. Such a slab would crack just as much as a slab with expansion joints. A plan to combine
thinner layers with edge gluing, however, is promising. If layers are thin enough to suppress cracks, edge gluing could
eliminate deleterious effects caused by non-glued edges acting as the only remaining cracks.

4.2 Using Structural Loads to Suppress Cracks

The σ∗0
2 term in Eq. (19) suggests that cracks form under tension and compression, but that interpretation is wrong.

The general equation applies to both tension and compression, but only if the E11(ρa,ρb) and E22(ρa,ρb) analyses
are non-linear analyses that account for differences between opened and closed cracks. The analyses in Hashin (1987)
and Nairn (2017) both assume stress-free crack surfaces and therefore only apply when cracked layers are in tension.
A non-conservative, non-linear analysis would be to assume that cracks in compression act as if they disappear. A
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simple, non-linear analysis for in-plane moduli could be:

1
E11(ρa,ρb)

=



1
E0

11
+ V1χ1(ρa,ρb)

ρaρb
for σ

(1)
xx > 0 and σ

(2)
yy > 0

1
E0

11
+ lim

ρb→∞

V1χ1(ρa,ρb)
ρaρb

for σ
(1)
xx > 0 and σ

(2)
yy < 0

1
E0

11
+ lim

ρa→∞

V1χ1(ρa,ρb)
ρaρb

for σ
(1)
xx < 0 and σ

(2)
yy > 0

1
E0

11
for σ

(1)
xx < 0 and σ

(2)
yy < 0

(41)

with an analogous form for E22(ρa,ρb). This approach is non-conservative because cracks may not completely close
(e.g., due to surface damage or gaps) or structural shear stresses may cause slippage (e.g., a layer with closed cracks
may respond to shear differently than an uncracked layer). Substituting nonlinear E11(ρa,ρb) and E22(ρa,ρb) into

Eq. (19) predicts that cracks will not occur when σ
(1)
xx < 0 and σ

(2)
yy < 0 because that causes G = 0

One method to prevent cracks caused by residual stresses is to avoid exposure to net shrinkage due to temperature
and moisture changes. Residual stresses are controlled by ∆T and ∆c that are changes in temperature or moisture
relative to a reference, stress-free state. For CLT panels, the reference state is approximately the temperature and
moisture content of the timber at the time layers are bonded. Because adhesive chemistry determines bonding tem-
perature, ∆T is difficult to control. But, all things being equal, a low-temperature cure adhesive would result in lower
thermal residual stresses than a high-temperature cure adhesive. Controlling ∆c is easier. One method is to pre-dry
all timber to a moisture content below the lowest moisture content the panel might see in service. This method’s
motivation is to maintain ∆c > 0 throughout the panel’s life.

A centuries-old use of residual stresses to improve durability of steel blades is to quench or hammer the surfaces
to induce compressive residual stresses (Cheng and Finnie, 2007). Could a similar approach improve CLT durability?
For example, instead of drying all layers to low moisture content, what if only surface layers were dried? Simple cal-
culations show this method would induce compression in surface layers that could inhibit cracking, but unfortunately
it would cause tensile stress in the core layer (see Online Resource). The extra cracks that could form in a core layer
would still degrade mechanical properties although shear modulus would not degrade as much as when all layers
crack (Nairn, 2017). Compared to drying all layers to low moisture content, drying only surface layers provides very
little benefit in surface compression stress and causes detrimental tensile stress in core layers. If some layers are dried
to low moisture content, all layers might as well be dried.

Cracks might be suppressed by keeping panels constantly compressed. Obviously, compression in direction 1
compresses layer 1 in that same direction, but composite plate analysis shows that direction 1 compression also
induces transverse compression in layer 2. To find compression stress required to close all cracks, it suffices to analyze
a CLT panel with no cracks. Assuming a linear elastic analysis, transverse layer stresses can be written as

σ
(1)
xx = k(1)x1 σ10 + k(1)x2 σ20 + kth,1∆T + kc,1∆c and σ

(2)
yy = k(2)y1 σ10 + k(2)y2 σ20 + kth,2∆T + kc,2∆c (42)

where influence coefficients for an uncracked laminate are:(
k(k)x1 k(k)x2

k(k)y1 k(k)y2

)
=

(
Q(k)

xx Q(k)
xy

Q(k)
xy Q(k)

yy

)(
1/E0

11 −ν0
12/E0

11
−ν0

12/E0
11 1/E0

22

)
, (43)

kth,1 =
(
α

0
11−α

(1)
xx
)
Q(1)

xx +
(
α

0
22−α

(1)
yy
)
Q(1)

xy , and kth,2 =
(
α

0
11−α

(2)
xx
)
Q(2)

xy +
(
α

0
22−α

(2)
yy
)
Q(2)

yy (44)

and kc,i is found by analogy to kth,i using CMEs. The uncracked thermal expansion properties are given by substituting
E0

11, E0
22, and ν0

12 into Eqs. (9) and (13). The mechanical stresses that suppress cracks in layers 1 and 2 are:

σ
(1)
S =−

kth,1∆T + kc,1∆c

k(1)x1 ξm + k(1)x2 (1−ξm)
and σ

(2)
S =−

kth,2∆T + kc,2∆c

k(2)y1 ξm + k(2)y2 (1−ξm)
(45)

where σ
(i)
S = σ10 + σ20 and ξm = σ10/σ

(i)
S . For one example, consider a panel with identical layers of flat-sawn

timber experiencing ∆c =−1% moisture change alone (∆T = 0). The stresses required to suppress cracks in core and
surface layers are σ

(1)
S = −13.1 MPa and σ

(2)
S = −27.6 MPa. The stresses required to overcome just 1% moisture

content change are a significant fraction of the mean compression strength of CLT (38.7±1.6 MPa (Oh et al, 2015)).
Expecting compression in structures, such as walls, to prevent cracks is probably unrealistic.
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4.3 Durability Analysis Methods

While Eq. (19) predicts static conditions to cause a crack, it says nothing about fatigue cracking caused by oscillations
at subcritical loads or residual stresses. The usual fracture mechanics approach to fatigue analysis of crack propagation
is to use a Paris et al (1961) law:

da
dN

= A∆Km
FM (46)

where da/dN is crack growth rate per cycle and ∆KFM is variation of crack-tip stress intensity factor in each cycle.
A and m are two material properties that can be used to predict fatigue life. They are measured from intercept and
slope of log-log plots for da/dN as a function of ∆KFM . Finite fracture mechanics of CLT cracking can use Paris-law
methods by replacing crack length with crack density and stress intensity factor with cracking energy release rates:

dDa

dN
= A1∆Gm1

a and
dDb

dN
= A2∆Gm2

b (47)

where dDa/dN and dDb/dN are rates of crack density increase in core and surface layers and Ak and mk are two
new wood material properties characterizing durability of layer k with respect to cracking. Quantitative predictions of
long-term cracking in CLT should be based on measured Ak and mk and integrations of Eq. (47) using Eqs. (31) and
(33) up to design limits for Da and Db. In principle, Ak and mk can be measured by mechanical, thermal, or moisture
cycling. The results, however, may differ if G(k)

Lc varies with temperature and moisture. A few such experiments were
done on cross-ply, carbon/epoxy laminates and they fit a modified Paris-law well (Liu and Nairn, 1990; Nairn, 1992).
These experiments measured mk = 5.5 during mechanical cycling and mk = 6.7 during thermal cycling. Because Ga
and Gb scale with thickness, a Paris-law analysis suggests CLT durability scales with tmk

1 . If mk for wood is as high as
mk for carbon/epoxy laminates, thinner layers could enhance CLT durability more dramatically than the t1/2

1 scaling
implied by static cracking analysis.

4.4 Delamination

Layer cracks typically arrest when they reach an interface with an adjacent layer. But intersections between layer
cracks and interfaces cause stress concentrations that can promote interfacial failure or delamination. In CLT, this
delamination would be wood/adhesive bond failure between timber faces. Layer-crack-induced delaminations are
observed in aerospace composites (Crossman and Wang, 1982; Crossman et al, 1980), particularly on panel edges
(O’Brien, 1985, 1984). When delaminations start, they dominate over layer cracking and cause more significant
property degradation. In fact, delamination onset may be the prime factor in limiting composite durability (Gilchrist
et al, 1996). The design of durable CLT structures should be informed by an understanding of conditions that cause
layer cracks to turn into delaminations.

Delamination prediction is a conventional crack-propagation problem that can be modeled by finding energy
release rate for delamination growth from tip of a layer crack, GD, as a function of layer crack spacing, ρ . Although no
3D model for this energy release rate is available, a 2D result for GD (Nairn and Hu, 1992) provides some information.
Like Ga and Gb, GD scales with layer thickness. Thus, the thick layers in CLT promote both layer cracking and
delaminations. As crack density increases, GD decreases, but it decreases slower than Ga and Gb. As a consequence,
the predicted failure process is to start with layer cracks, but once Ga and Gb decrease to below GD, layer cracks
will turn into adhesive bond failures causing serious degradation to panel properties. The critical crack density for
delamination onset depends on GD and on relative toughness for wood cracking G(k)

Lc compared to adhesive bond-line
toughness, GBc. 2D calculations predict that if G(k)

Lc = GBc, delamination starts when dimensionless crack spacing is
1/ρ = 0.55 (see Online Resource and Nairn and Hu (1992)). This critical crack spacing increases or decreases with
GBc. Thus an important role for CLT adhesive is to inhibit delamination onset by maximizing GBc. Future work should
derive 3D results for GD and measure both G(k)

Lc and GBc.

4.5 Other Issues

The analysis tools developed here can provide information about more issues and suggest new areas for research. A
few are briefly described.
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This paper considered in-plane loading that is most appropriate for CLT walls. In contrast, CLT floors are under
bending loads. 2D analysis of layer cracking in bending is available (McCartney and Pierce, 1997; McCartney and
Byrne, 2001; Kim and Nairn, 2000a,b); it should be extended to 3D cracking of CLT in bending. The probable findings
would be that cracking is worse on the tension side of the panel and suppressed on the compression side. Delamination
onset in floor panels would likely be more deleterious to performance than delaminations in wall panels.

In-plane normal stress analysis is ignoring shear stresses. Because thermal and moisture expansion only occur in
normal strains (for orthotropic materials), energy released due to shear stress is decoupled from residual stress. Shear
effects can be included with a new term in Gmech. Calculations reveal an extra energy released by shear loading of

Gshear =
V τ2

12
2

d
dA

(
1

G12(a,b)

)
(48)

where τ12 is applied in-plane shear stress and G12(a,b) is the panel’s effective in-plane shear modulus (Nairn, 1997).
Approximate theories for G12(a,b) (Bogensperger et al, 2010; Nairn, 2017) can be used to calculate shear energy
contribution to energy release rate

The residual stresses were assumed to be caused by constant ∆T and ∆c in all layers, which corresponds to
panels at thermal and moisture equilibrium. This approach is appropriate for slow changes such as seasonal variations
in temperature and moisture content. Analysis of sudden events (e.g., relatively rapid changes in moisture content)
might need additional modeling. The same finite fracture mechanics concepts can be used but would need numerical
methods to account for gradients in temperature and moisture within a panel. For example, panel drying would dry
surface layers before core layers. The developed gradients might promote cracking in surface layers before core layers,
which is opposite of predictions above for equilibrium content in all layers.

∆T and ∆c are calculated from a reference state and some calculations here assumed that state to be the temper-
ature and moisture content at the time the faces are bonded. This approach assumes linear, hygro-thermal elasticity;
nonlinear effects, such as viscoelastic relaxations, might change the reference state. For example, imagine a CLT
structure exposed to significant moisture during construction (such as rain events). The added moisture will swell the
panels resulting in compression that suppresses cracks during construction. But, if wood softening at higher moisture
content relaxes residual stresses, the panel’s reference moisture content might shift to a higher value. As a result,
moisture shrinkage after construction would cause more cracks than in panels protected from rain during construc-
tion. Shifts in reference state due to weather exposure could be observed experimentally as shifts in intercepts from
experiments on uniaxial core-layer cracking (see above).

The wood cracking toughness, G(k)
Lc , is an important material property that should be measured. It is likely similar

to fracture toughness of wood for cracks parallel to the wood grain and that toughness depends on orientation of the
crack normal with respect to the growth rings. The energy driving layer cracks promotes cracks with surface normal
in the plane of the panel. Thus the crack normal in flat-sawn timber would be in the tangential direction (a TL crack)
while for radial-sawn timber would in the radial direction (a RL crack). Timber with curved growth rings would get
cracks between RL and TL cracks. Fracture experiments on wood show that crack initiation parallel to wood grain is
insensitive to growth ring orientation (Johnson, 1973; Schniewind and Centeno, 1973; Reiterer et al, 2000; Fruhmann
et al, 2002), but if experiments are continued into crack propagation, TL toughness is significantly higher than RL
toughness (Matsumoto and Nairn, 2012; Wilson et al, 2013). The increase in toughness is due to fiber bridging effects
(Mirzaei et al, 2016). Experiments to measure G(k)

Lc as a function of end-grain patterns could determine if layer cracks
are influenced by crack normal direction. If fiber bridging contributes to G(k)

Lc , CLT properties would be improved by
using only flat-saw timber and avoiding timber from near the pith.

An interesting option might be to include angled layers (e.g., at±45◦) in CLT panels. Angled plies may not inhibit
cracks (cracking of angled plies in aerospace composites is observed (Salpekar and O’Brien, 1991; Hu et al, 1993)),
but they may ameliorate property degradation. For example, effective layer analysis (Nairn, 2017) attributing zero
transverse stiffness to cracked layers predicts that a CLT panel with angled plies would retain useful shear stiffness
while a panel with only 0◦ and 90◦ layers would tend to zero shear stiffness. After delamination onset, angle-ply
layers may provide little benefit and may even exacerbate edge delaminations (Crossman and Wang, 1982; Crossman
et al, 1980).
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5 Conclusions

An understanding of cracking and delamination in CLT panels is a prerequisite to the design of durable structures.
The energy release rate analysis derived here can be a basis for that understanding. Additional modeling is needed
to predict onset of delaminations. Making quantitative predictions of cracking rates or structural lifetimes requires
input of new material properties. The most important properties are layer cracking toughness, G(k)

Lc , adhesive bond
toughness, GBc, and Paris-law fatigue properties, Ak and mk. Experimental methods for measuring these properties
were described.

The sample calculations done here suggest current CLT panels are prone to cracks. As little as 1% moisture
content decrease after fabrication is enough to start cracking and 2-3% decrease might result in serious damage and
delaminations. Finite fracture mechanics analysis can be a design tool for developing and assessing strategies for
improving CLT performance. Some readers might complain that the rather simple recommendations outlined here —
using thinner layers, sufficiently drying the timber, gluing edges (but only if using thin, dry layers), and optimizing
end-grain patterns — would increase the cost of CLT panels. But if cost analysis includes the cost of replacing a
building with cracked CLT panels, redesigning CLT panels before constructing buildings could be the lowest-cost
approach.
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