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SUMMARY

This paper reformulates the axisymmetric form of the material point method (MPM) using generalized
interpolation material point (GIMP) methods. The reformulation led to a need for new shape functions
and gradients specific for axisymmetry that were not available before. The new shape functions differ
most from planar shape functions near the origin where r = 0. A second purpose for this paper was
to evaluate the consequences of axisymmetry on a variety MPM extensions that have been developed
since the original work on axisymmetric MPM. These extensions included convected particle domain
integration (CPDI), traction boundary conditions, explicit cracks, multimaterial mode MPM for contact,
thermal conduction, and solvent diffusion. Some examples show that the axisymmetric shape functions
work well and are especially crucial near the origin. One real-world example is given for modeling a
cylinder-penetration problem. Finally, a check list for software development describes all tasks needed
to convert 2D planar or 3D codes to include an option for axisymmetric MPM. Copyright c© 2015 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The Material Point Method (MPM) [1, 2] is enjoying increasing popularity as a computational

tool for solid mechanics investigations, particularly for simulations involving large deformations

[3], contact [4, 5, 6], and fracture [7, 8, 9]. In addition, its utility for treating history dependent

material properties has led to MPM being implemented in the historically Eulerian CTH

software from Sandia National Laboratory [10]. Extensions to the original MPM formulations

described by Sulsky et al. [1, 2] include the Generalized Interpolation Material Point (GIMP)

Method [11] and more recently the Convected Particle Domain Interpolation (CPDI) Method

[3], which have done a great deal to improve the robustness and accuracy of the original MPM.
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Many interesting scenarios from the preceding categories lend themselves to being treated

as axisymmetric. These include, for example, impact and cratering events, rod penetration

and shaped charge jet formation. Sulsky and Schreyer presented the first, and thus far,

only, formulation for axisymmetric MPM [12]. Unfortunately, this prior axisymmetric MPM

was based on early MPM methods that treated particles as point masses. It has long been

recognized that this original MPM (i.e., particles represented spatially as Dirac delta functions)

has serious element crossing artifacts and should not be used. They have been replaced by GIMP

methods [11], which have been developed for cartesian coordinates, but are not available for

axisymmetric calculations. In addition to reformulation of axisymmetry using GIMP methods,

numerous other extensions to MPM have developed since the original work on axisymmetric

MPM [12]. Because none of these extensions considered axisymmetry, each one needs to be

re-examined for use in axisymmetric code.

This paper derives axisymmetric MPM methods within the GIMP framework, first for the so-

called uniform GIMP [11], where particle domains’ spatial extents and orientations remain

unchanged during a simulation, and then also for CPDI [3], where particle domains are

allowed to evolve. Those methods are not reviewed here; readers are encouraged to consult

the original references to review the context in which the current formulation is derived.

Following derivation of relevant formulae for the basic axisymmetric methods, descriptions

are provided for various additional features of MPM that require modification when used

in axisymmetric simulations. These include — traction boundary conditions, multi-material

contact, representation of cracks, diffusion calculations, and heat conduction. Following

the algorithmic descriptions are examples intended to demonstrate the efficacy of these

formulations. Finally, a check list for software development is presented to make addition of

an axisymmetric capability as straightforward as possible for the reader.

2. GENERALIZED MATERIAL POINT METHOD

Although Sulsky and Schreyer [12] present one form of axisymmetric MPM, it is not a

convenient starting point. Instead, we started from the cartesian formulation of GIMP [11] and

modified it for axisymmetry. The key changes were to replace volume integration by cylindrical

volume integration and to account for cylindrical coordinates in gradient evaluations. The main

MPM result for momentum rate on node i becomes:

dp i

d t
= f (int)

i + f (ex t)
i + f (b)i + f (s)i (1)

where nodal momenta are found by summation over all particles, p:

p i =
∑

p

p pSip (2)

where p p is momentum of particle p and Sip is an axisymmetric GIMP shape function defined

below. The f terms are nodal forces. f (int)
i is internal force due to specific Cauchy stresses on
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the particles:

f (int)
i =−

∑

p

mp









σ(s)r r,p σ(s)rz,p

σ(s)rz,p σ(s)zz,p









G ip −
∑

p

mp
�

σ
(s)
θθ ,p, 0

�

Tip (3)

Here mp is particle mass and G ip and Tip are axisymmetric GIMP shape function gradients

defined below. Nodal force f (ex t)
i and f (b)i are forces due to external loads, F p, and body forces

per unit mass, bp, on the particles:

f (ex t)
i =

∑

p

F pSip and f (b)i =
∑

p

mpbpSip (4)

where Sip is an axisymmetric GIMP shape function defined below. Finally, f (s)i is force due to

surface tractions, T :

f (s)i =
1

2π

∫

T Ni(r, z) dS (5)

which is integrated over the object boundary and Ni(r, z) are standard MPM grid shape

functions.

The axisymmetric GIMP shape functions and gradients are defined by

Sip =
1

Ap〈rp〉

∫

Ωp

r χp(r, z)Ni(r, z) dr dz (6)

Gip =
1

Ap〈rp〉

∫

Ωp

r χp(r, z)∇Ni(r, z) dr dz (7)

Tip =
1

Ap〈rp〉

∫

Ωp

χp(r, z)Ni(r, z) dr dz (8)

where Ωp is the deformed particle domain in the r-z plane, χp(r, z) is a particle weighting

function (its various choices are what make this method “generalized”), Ap is area of the

domain, and 〈rp〉 is mean radial position of the particle domain. Each MPM time step involves

evaluation of constitutive laws on the particles, which must be implemented in material models.

The deformation gradient is updated on each time step using F(n+1) = dF F(n) where dF is the

incremental deformation gradient given by:

dF= exp(∆t∇v) = I+∇u+
∞
∑

k=2

(∇u)k

k!
(9)

where∆t is the time step and∇v and∇u are the velocity and displacement gradients. In many

problems with sufficient resolution, dF can be found from the first two terms, but in problems

involving rotation (less common in axisymmetry, but possible in penetration), the k = 2 or

higher terms are needed (note that k > 2 terms in axisymmetry can be evaluated without

needing any matrix multiplications by using the Cayley–Hamilton theorem; they therefore can
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be included efficiently). The displacement gradient is given by

∇u=















∂ ur

∂ r
∂ ur

∂ z
0

∂ uz

∂ r
∂ uz

∂ z
0

0 0 dur

rp















(10)

where ur and uz are the r and z displacements. The deformation gradient terms are found by

extrapolating nodal velocities, v i , to the particles:

v i = p i/
∑

p

mpSip (11)

�

∂ ur

∂ r
,
∂ ur

∂ z

�

= ∆t
∑

i

vi,rG ip (12)

�

∂ uz

∂ r
,
∂ uz

∂ z

�

= ∆t
∑

i

vi,zG ip (13)

dur

rp
= ∆t

∑

i

vi,r Tip (14)

The original, or “classic,” axisymmetric MPM result [12] is recovered by selecting χ(r ) =
Apδ(r p), resulting in Sip = Ni(rp, zp), Gip =∇Ni(rp, zp), and Tip = Ni(rp, zp)/rp.

The main differences between planar GIMP [11] and axisymmetric GIMP are the σ(s)
θθ ,p

term in f (int)
i , particle masses are per radian (mp = ρAp〈rp〉) and vary with position, and

the incremental deformation gradient has dur/rp for hoop direction strain. Furthermore,

the r in the integrands causes Sip and G ip to differ from the corresponding planar GIMP

functions and axisymmetry requires a new GIMP shape function denoted here as Tip. The main

difference between a “classic” MPM version of axisymmetric MPM [12] and a GIMP version of

axisymmetric MPM is that new shape functions are needed. In “classic” MPM, it turned out that

axisymmetric MPM could re-use the planar shape functions, but when axisymmetric MPM is

extended to GIMP, new shape functions are required and those shape function are not available

in the literature. The rest of this section derives these new axisymmetric shape functions for

two forms of GIMP — uniform GIMP (uGIMP) and convected particle domain integration GIMP

(CPDI) [3].

2.1. Uniform GIMP

In uGIMP the particle domain is assumed to remain undeformed at the size of the initial domain

but translates along with the particle and χp(r, z) = 1 within the domain and zero elsewhere.

This approach is commonly used because of numerical difficulty evaluating GIMP integrals

for arbitrarily deformed particle domains. For simpler explicit calculations, uGIMP is restricted

to a regular grid with all elements having size ∆r ×∆z. For calculation at node i, we use

dimensionless coordinates:

ξ= 2
r − ri

∆r
and η= 2

z− zi

∆z
(15)
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such that node i is at (0,0) and element size is transformed to be 2× 2. The uGIMP shape

function can be partitioned into r and z components:

Sip = Sr(ξp, ri)Sz(ηp) (16)

where (ξp,ηp) is the dimensionless particle location particle and Sz(ηp) is identical to the

partitioning in planar uGIMP (see Appendix A) but Sr(ξp, ri) is different and given by:

Sr(ξp, ri) =
1

Wp〈rp〉

∫ rmax

rmin

r Ni(r) dr =
1

2lp(ξp + 2ni)

∫ ξp+lp

ξp−lp

(ξ+ 2ni)Ni(ξ)dξ (17)

where Wp = rmax − rmin is the width of the particle domain, 〈rp〉= (rmax + rmin)/2 is its

centroid, 2lp is the domain width in dimensionless units, ni = ri/∆r, and

Ni(ξ) =































2+ ξ
2

−2< ξ < 0

2− ξ
2

0≤ ξ < 2

0 otherwise

(18)

Accounting for all possible overlaps between the particle domain and the regions of Ni(ξ),
the above integral evaluates to:

Sr(ξp, ni) =



























































































(2+ lp + ξp)2

8lp

�

1−
2(1− lp) + ξp

3(2ni + ξp)

�

−2− lp < ξp <−2+ lp

2+ ξp

2
+

l2
p

6(2ni + ξp)
−2+ lp ≤ ξp <−lp

(4− lp)lp − ξ2
p

4lp
+
ξp(ξ2

p − 3l2
p)

12lp(2ni + ξp)
−lp ≤ ξp < lp

2− ξp

2
−

l2
p

6(2ni + ξp)
lp ≤ ξp < 2− lp

(2+ lp − ξp)2

8lp

�

1+
2(1− lp)− ξp

3(2ni + ξp)

�

2− lp ≤ ξp < 2+ lp

0 otherwise

(19)

The domain regions for Sr(ξp, ri) around node i are shown in Fig. 1. Sr(ξp, ri) is non-zero

between ±(2+ lp). This result has been expressed as planar GIMP result plus an additional

term that depends on 1/(2ni + ξp). Clearly, as ni →∞, Sr(ξp, ni) approaches planar uGIMP

shape functions (i.e., Sz(ξp)). But, near the origin they are different.

The above integration satisfies partition of unity (
∑

i Sr(ξp, ri) = 1), but when particles are

within lp∆r/2 of the origin, the particle domain crosses r = 0. As rp approaches zero, some

shape functions will have singularities at ξp =−2ni . We show below that this non-physical
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ri ri + Δrri - Δr
0-2 -2 ξ

r

-2-lp -2+lp -lp lp 2-lp 2+lp
i i +1i -1

ξ

Figure 1. One dimensional view for the extent of Sr(ξp, n) around node i. The dashed lines delimit the
five regions listed in Eq. (19). The shape function for node i is nonzero only between −(2+ lp) and

2+ lp, which means it extends to the second neighbor grid cells.

extension of the domain and shape function singularities can lead to loss of accuracy for

particles near the origin. The results are improved by truncating the particle domain, which

is only needed when ni < (1+ lp/2) and rp < lp∆r/2 (or ξp <−2ni + lp). For simplicity, if

the grid includes any nodes with ni < (1+ lp/2), the grid is required have nodes at r = 0 and

therefore all ni in a regular grid will be integers. In such a grid, special case evaluations are

needed only for ni =−1, 0, and 1.

The simplest approach in uGIMP is to truncate the particle domain at r = 0 and to disallow

particle positions less than r = 0. For ni =−1, the shape function reduces to zero (S(−1)
r (ξp) =

0). For ni = 0, new evaluation is needed when 0≤ ξp < lp. In this case, the truncated particle

domain width and centroid in dimensionless units are ξp + lp and (ξp + lp)/2; the required

integral reduces to

S(0)r (ξp) =
2

(ξp + lp)2

∫ ξp+lp

0

ξNi(ξ)dξ=































0 ξ < 0

3− lp − ξp

3
0≤ ξp < lp

Sr(ξp, 0) otherwise

(20)

For ni = 1, new evaluation is needed when −2< ξp <−2+ lp. In this case, the truncated

particle domain width and centroid in dimensionless units are ξp + lp + 2 and (ξp + lp − 2)/2;

the required integral changes to

S(1)r (ξp) =
2

(ξp + lp + 2)2

∫ ξp+lp

−2

(ξ+ 2)Ni(ξ)dξ=































0 ξ <−2

2+ lp + ξp

3
−2≤ ξp <−2+ lp

Sr(ξp, 1) otherwise

(21)

Figure 2 shows Sr(ξp, n) for n=−1, 0, 1, and 2 and lp = 1/2. The dashed lines show planar

results. The differences are most noticeable for r near zero. The dotted lines near the origin are

Sr(ξp,−1), Sr(ξp, 0), and Sr(ξp, 1) that do not truncate the particle domain as discussed above.
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2r/Δr

S r(r
p,n

)

-3 -2 -1 0 1 2 3 4 5 6
 -0.2 

 0.0 

 0.2 

 0.5 

 0.8 

 1.0 

ni=0 ni=1 ni=2ni=-1

Figure 2. The solid lines show Sr(ξp, n) for ni = 0, 1, and 2 with nodes located at the vertical, dotted
lines. The dashed lines shows planar results for ni from -1 to 2. The dotted red lines are calculations
that do not truncate the particle domain for ni =−1, 0, and 1. The result for ni =−1 is just the tail

singularity that is negative.

Both Sr(ξp,−1) and Sr(ξp, 1) are singular, although the singularities cancel to retain partition

of unity. Some calculations below show these singularities can reduce accuracy.

The uGIMP gradient shape functions can be partitioned into r and z components:

Gip =
�

2

∆r
dSr(ξp, ri)Sz(ηp),

2

∆z
Sr(ξp, ri)dSz(ηp)

�

(22)

where dSz(ηp) is identical to the partitioning in planar uGIMP (see appendix) but dSr(ξp, ri) is

different and given by:

dSr(ξp, ri) =
∆r

2Wp〈rp〉

∫ rmax

rmin

r
dNi(r)

dr
dr =

1

2lp(ξp + 2ni)

∫ ξp+lp

ξp−lp

(ξ+ 2ni)
dNi(ξ)

dξ
dξ (23)

This term evaluates to

dSr(ξp, ni) =























































































(2+ lp + ξp)

4lp

�

1−
2− lp + ξp

2(2ni + ξp)

�

−2− lp < ξp <−2+ lp

1/2 −2+ lp < ξp <−lp

−
ξp

2lp
−

l2
p − ξ

2
p

4lp(2ni + ξp)
−lp < ξp < lp

−1/2 lp < ξp < 2− lp

−
(2+ lp − ξp)

4lp

�

1+
2− lp − ξp

2(2ni + ξp)

�

2− lp < ξp < 2+ lp

0 otherwise

(24)
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2r/Δr

dS
r(r

p,n
)

-3 -2 -1 0 1 2 3 4 5 6
 -1.0 
 -0.8 
 -0.6 
 -0.4 
 -0.2 
 -0.0 
 0.2 
 0.4 
 0.6 
 0.8 
 1.0 

ni=0 ni=1 ni=2ni=-1

Figure 3. The solid lines show dSr(ξp, n) for ni = 0, 1, and 2 with nodes located at the vertical, dotted
lines. The dashed lines shows planar results for ni from -1 to 2. The dotted red lines are calculations
that do not truncate the particle domain for ni =−1, 0, and 1. The result for ni =−1 is just the tail

singularity that rises from zero.

This result has been expressed as planar GIMP result plus an additional term (if needed)

that depends on 1/(2ni + ξp). Clearly, as ni →∞, dSr(ξp, ni) approaches planar uGIMP (i.e.,
dSz(ξp)). But, near the origin they are different. Again, the particle domain needs to be

truncated for ni =−1, 0, and 1. For ni =−1, dS(0)r (ξp) = 0. For ni = 0, the integral changes

to:

dS(0)r (ξp) =
2

(ξp + lp)2

∫ ξp+lp

ξp−lp

ξ
dNi(ξ)

dξ
dξ=































0 ξ < 0

−1/2 0≤ ξp < lp

dSr(ξp, 0) otherwise

(25)

For ni = 1, the integral changes to:

dS(1)r (ξp) =
2

(ξp + lp + 2)2

∫ ξp+lp

−2

(ξ+ 2)
dNi(ξ)

dξ
dξ=































0 ξ <−2

1/2 −2< ξp <−2+ lp

dSr(ξp, 1) otherwise

(26)

Figure 3 shows dSr(ξp, n) for n=−1, 0, 1, and 2 and lp = 1/2. The dashed lines show the

planar results. The differences are most noticeable for r near zero. The dotted lines near the

origin are dSr(ξp,−1), dSr(ξp, 0), and dSr(ξp, 1) that do not truncate the particle domain and

all are singular. The truncation eliminates dSr(ξp,−1) and extends dSr(ξp, 0) and dSr(ξp, 1)
to the origin at constant ±1/2.
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Finally Tip is equal to planar uGIMP shape function except that it is divided by rp:

Tip =
2

∆r(2n+ ξp)
Sz(ξp)Sz(ηp) (27)

and that it needs truncation for ni =−1, 0, and 1. Those results are T (−1)
ip = 0,

T (0)ip =



































0 ξ < 0

1

∆r

�

4

lp + xp
− 1

�

Sz(ηp) 0< ξp < lp

2

∆rξp
Sz(ξp)Sz(ηp) otherwise

(28)

and

T (1)ip =































0 ξ <−2

1

∆r
Sz(ηp) −2< ξp <−2+ lp

2

∆r(2+ ξp)
Sz(ξp)Sz(ηp) otherwise

(29)

2.2. Convected Particle Domain Integration

Although uGIMP explicitly evaluates Sip, G ip, and Tip, it will lose accuracy as the actual

particle domain deforms. For example, large-deformation tension tests are limited to about

50% strain when using uGIMP. The solution is to evaluate the integrals over the deformed

particle domain. Although this task is easy in 1D [11], it is very difficult in 2D or 3D. One

approach, called convected particle domain integration method (CPDI) [3], integrates over the

deformed domain, but makes that task efficient by replacing Ni(r, z) in the integrand by an

approximation:

Sip =
1

Ap〈rp〉

∫

Ωp

r

 

4
∑

α=1

Mα(r, z)Ni(r
(α)
p )

!

dr dz (30)

where Mα(r, z) are shape functions in the particle domain and r (α)p are the coordinates for the

four corners of the domain (see Fig. 4).

This integral is evaluated as follows. First, the deformed particle domain is evaluated as a

parallelogram based on the particle deformation gradient, F, and defined by vectors d1 and d2

(see Fig. 4):

d1 = (Fr r∆r, Fzr∆z)/4 and d2 = (Frz∆r, Fzz∆z)/4 (31)

Next define natural coordinates within the parallelogram

(r, z) = r p +ρd1 + ζd2 =

 

4
∑

α=1

rαMα(ρ,ζ),
4
∑

α=1

zαMα(ρ,ζ)

!

(32)

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
Prepared using nmeauth.cls DOI: 10.1002/nme.4792



10 J.A. NAIRN AND J.E. GUILKEY

rp(1)

rp(2)

rp(3)

rp(4)

rp

d1

d2

edge 1

ed
ge

 2

edge 3

ed
ge

 4

Figure 4. Particle domain deformed into a parallelogram showing vectors d1 and d2, four corners, and
four edges. The corners and edges are numbered in the counter clockwise direction from the lower-left

corner.

where ρ and ζ range from −1 to 1 and Mα(ρ,ζ) are standard 2D, four-node isoparametric

shape functions (e.g., M1(ρ,ζ) = (1−ρ)(1− ζ)/4, etc. in the counter-clockwise direction).

Transforming Eq. (30) to parallelogram coordinates gives:

Sip =
1

Ap〈rp〉

∫ 1

−1

∫ 1

−1

 

4
∑

α=1

rαMα(ρ,ζ)

! 

4
∑

α=1

Mα(ρ,ζ)Ni(r
(α)
p )

!

|J| dρ dζ (33)

where J is the Jacobian of the transformation

J=

 

d1r d1z

d2r d2z

!

(34)

For a parallelogram, |J|= d1r d2z − d2r d1z = Ap/4, leading to

Sip =
1

4

��

1−
d1r + d2r

3rp

�

Ni(r
(1)
p ) +

�

1+
d1r − d2r

3rp

�

Ni(r
(2)
p )

+

�

1+
d1r + d2r

3rp

�

Ni(r
(3)
p ) +

�

1−
d1r − d2r

3rp

�

Ni(r
(4)
p )

�

(35)

As rp→∞, the axisymmetric Sip for CPDI approaches the planar CPDI result [3], but near the

origin they are different.
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A similar analysis for the G ip integral leads to:

G ip =
1

Ap〈rp〉

∫ 1

−1

∫ 1

−1

 

4
∑

α=1

rαMα(ρ,ζ)

!

×

 

4
∑

α=1

J−1
�

∂Mα(ρ,ζ)
∂ ρ

,
∂Mα(ρ,ζ)
∂ ζ

�

Ni(r
(α)
p )

!

|J| dρ dζ (36)

which evaluates to:

G ip =
1

Ap

��

d1z − d2z −
β

3rp

�

Ni(r
(1)
p ) +

�

d1z + d2z +
β

3rp

�

Ni(r
(2)
p )

−
�

d1z − d2z +
β

3rp

�

Ni(r
(3)
p )−

�

d1z + d2z −
β

3rp

�

Ni(r
(4)
p ), (37)

−
�

d1r − d2r
�

�

1−
d1r + d2r

3rp

�

Ni(r
(1)
p )−

�

d1r + d2r
�

�

1+
d1r − d2r

3rp

�

Ni(r
(2)
p )

+
�

d1r − d2r
�

�

1+
d1r + d2r

3rp

�

Ni(r
(3)
p ) +

�

d1r + d2r
�

�

1−
d1r − d2r

3rp

�

Ni(r
(4)
p )

�

where

β = d1r d1z − d2r d2z (38)

Again, the axisymmetric G ip for CPDI approaches the planar CPDI result [3] as rp→∞, but

near the origin they are different.

Finally, Tip is equal to planar Sip for CPDI [3] divided by rp or:

Tip =
1

4rp

h

Ni(r
(1)
p ) + Ni(r

(2)
p ) + Ni(r

(3)
p ) + Ni(r

(4)
p )
i

(39)

In accurate simulations, the deformed domain should naturally stay within valid territory, but

cruder calculations or round-off error might cause some corners to pass r = 0 (and they do in

some sample calculations). Truncating as done in uGIMP cannot be used because it would leave

a non-quadrilateral particle domain that is difficult to integrate. The option proposed here is

simply to shrink the domain to fit. This can be done by looking at rp − |d1r + d2r |. If this result

is negative, at least one corner has r < 0. When this occurs, define s = rp/|d1r + d2r | and then

scale d1 and d2 by s to get a truncated parallelogram that just touches the origin, but is entirely

within r ≥ 0. Calculations below show this truncation improves the results.

3. GENERALIZED MATERIAL POINT METHOD EXTENSIONS

As MPM has matured, various extensions have been developed. Whenever deriving a new

form of MPM, such as this new axisymmetric form of MPM, it is crucial to evaluate the

consequences of the new form on all other MPM options. One motivation for this paper was that

the original axisymmetric MPM [12] was described for classic MPM only and did not consider

any subsequent extensions of MPM (because they all appeared after Ref. [12]). The previous

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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12 J.A. NAIRN AND J.E. GUILKEY

section derived a new axisymmetric MPM for GIMP methods [11]. This section considers the

affect of axisymmetry on other important MPM extensions.

3.1. Traction Boundary Conditions

The most accurate method in MPM for applying tractions is to use the surface force term in

Eq. (5), but it is rarely done. Its problem is the challenge of integrating over the deformed

surface of the object, much like uGIMP is used to avoid integrating over the deformed particle

domain. But, this challenge can be solved by exploiting CPDI methods [3]. The process is to

replace the integrand by an approximation to the shape function and then integrate over one

specified edge of the deformed particle domain. Those edges with tractions are pre-selected

using simulation boundary conditions.

For example, consider application of constant traction T along edge 1 of a particle, which,

after deformation, will be traction along the corresponding edge of its deformed parallelogram

(see Fig. 4). By parameterizing the curve along edge 1 using g (ρ) = (r(ρ), z(ρ)) = r p +
ρd1 − d2, where ρ varies from -1 to 1, and realizing that surface increment is dS =
2πr(ρ)|g ′(ρ)|dρ = 2πr(ρ)|d1|dρ, the surface integral transforms to a line integral:

f (s)ip,1 =
1

2π

∫

T Ni(r, z) dS = T |d1|
∫ 1

−1

�

g (ρ) · (1, 0)
�

 

4
∑

α=1

Mα(ρ,−1)Ni(r
(α)
p )

!

dρ (40)

which evaluates to

f (s)ip,1 = |d1|
��

rpx − d2x −
d1x

3

�

Ni(r
(1)
p ) +

�

rpx − d2x +
d1x

3

�

Ni(r
(2)
p )
�

T (41)

Similar analyses for the remaining edges give:

f (s)ip,2 = |d2|
��

rpx + d1x −
d2x

3

�

Ni(r
(2)
p ) +

�

rpx + d1x +
d2x

3

�

Ni(r
(3)
p )
�

T (42)

f (s)ip,3 = |d1|
��

rpx + d2x +
d1x

3

�

Ni(r
(3)
p ) +

�

rpx + d2x −
d1x

3

�

Ni(r
(4)
p )
�

T (43)

f (s)ip,4 = |d2|
��

rpx − d1x −
d2x

3

�

Ni(r
(1)
p ) +

�

rpx − d1x +
d2x

3

�

Ni(r
(4)
p )
�

T (44)

This analysis applies to both axisymmetric uGIMP and CPDI, however, because uGIMP

uses undeformed particle domains, the forces simplify by using d1 = (lp∆r/2,0) and d2 =
(0, lp∆z/2) to:

f (s)ip,1 = d1x

��

rpx −
d1x

3

�

Ni(r
(1)
p ) +

�

rpx +
d1x

3

�

Ni(r
(2)
p )
�

T (45)

f (s)ip,2 = d2y

�

rpx + d1x

�

h

Ni(r
(2)
p ) + Ni(r

(3)
p )
i

T (46)

f (s)ip,3 = d1x

��

rpx +
d1x

3

�

Ni(r
(3)
p ) +

�

rpx −
d1x

3

�

Ni(r
(4)
p )
�

T (47)

f (s)ip,4 = d2y

�

rpx − d1x

�

h

Ni(r
(1)
p ) + Ni(r

(4)
p )
i

T (48)
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Finally, if the particle crosses r = 0, the particle domain should be truncated before calculating

surface forces. For CPDI, the same truncation method described above can be used. For uGIMP,

if rpx − d1x is less than zero, change them to new values r ′px = d ′1x = (rpx + d1x)/2.

We are not aware of corresponding planar MPM results for traction forces in the literature,

but they are easy to derive by the same methods using dS = B|g ′(ρ)|dρ along the edge with B
the thickness. For example, along edge 1, the planar result is:

f (s)ip,1 =

∫

T Ni(r, z) dS = T |d1|B
∫ 1

−1

 

4
∑

α=1

Mα(ρ,−1)Ni(x
(α)
p )

!

dρ (49)

The results for all edges (and for both uGIMP and CPDI) are

f (s)ip,1 = |d1|B
h

Ni(r
(1)
p ) + Ni(r

(2)
p )
i

T (50)

f (s)ip,2 = |d2|B
h

Ni(r
(2)
p ) + Ni(r

(3)
p )
i

T (51)

f (s)ip,3 = |d1|B
h

Ni(r
(3)
p ) + Ni(r

(4)
p )
i

T (52)

f (s)ip,4 = |d2|B
h

Ni(r
(1)
p ) + Ni(r

(4)
p )
i

T (53)

The difference between the planar results and the axisymmetric results is that thickness, B,

replaces all the coefficients in the axisymmetric results, which are radial positions along the

traction edge. Further extension to 3D is straightforward by integrating over the six faces of the

deformed particle domain.

The traction vector T is assumed constant over the edge during each time step. Furthermore,

two options for finding the traction appear useful. First, the traction could be tied to global

coordinate system. This form might correspond to macroscopically applied stress to an object

by a rigid loading system. Alternatively, the traction could be tied to edge orientation. In this

style, T would be calculated each time step from d1 and d2, such as to be normal or tangential

to the deformed edge. This form might correspond to an applied constant pressure to an object

that rotates during a simulation.

The alternative to traction boundary conditions is to apply particle forces. Use of such forces,

which are applied at the particle centroids, results in that force effectively being a distributed

load over the particle domain. This approach leads to unphysical stress fluctuations in the region

of the applied load. The traction approach described above remedies this problem. In planar

analysis, constant particle forces for particles on the boundary approximates application of

constant traction (albeit with edge artifacts). In axisymmetric calculations, the particle forces

method needs forces per radian and thus those forces will depend on radial position when

applied to a boundary that does not have r constant.

3.2. Explicit Cracks

Another advantage of MPM is it ability to model explicit cracks that use a particle-based

definition to allow propagation in arbitrary directions. This extension of MPM, called CRAMP

[9], requires dividing velocity fields into those above and below the crack by monitoring

whether or not lines between nodes and particles cross the crack surface. That task is entirely

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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14 J.A. NAIRN AND J.E. GUILKEY

geometrical and therefore works in axisymmetric MPM without any modification from planar

MPM.

Two crack mechanics options, however, do require modification for axisymmetry. First, MPM

cracks can model cohesive zones by implementing traction laws based on crack opening

displacements [13]. Cohesive laws are implemented in MPM by adding cohesive forces to the

internal nodal forces, f int
i [13]. The cohesive stress comes from the traction law, but it is that

stress times local crack surface area that provides the contribution to internal force. In planar

MPM, forces are applied to each segment of the crack and the required area is crack segment

length times thickness. In axisymmetric MPM, the traction force needs to change to force per

radian, which means the planar area is replaced by crack segment length times radial position

of the node.

Second, MPM can implement fracture mechanics and crack propagation using J integral [14]
methods [7, 8]. The J integral around an axisymmetric crack requires a different treatment

than the cartesian J integral. Our literature search, however, did not find any fully developed

results for axisymmetric J integral. Two different theoretical implementations are given in

Bergkvist and Huong [15] and in Broberg [16]. Although these different methods theoretically

give the same path independent result, they find it from different integrals. It remains to be

demonstrated which is more effective in numerical calculations. Another limitation is that both

these methods treat only radial cracks. The full implementation of J integral calculations for

arbitrary crack orientation in axisymmetric problem for both MPM and finite element analysis

is in need of additional development.

3.3. Multimaterial Contact Calculations and Imperfect Interfaces

MPM has proved well suited to problems involving massive amounts of contact because, in

principal, it can handle contact physics without any need for special contact elements. The

issue is discussed in [4, 5, 6, 17]. In brief, contact is handled by using multimaterial mode

MPM where each material extrapolates to its own velocity field. Nodes interacting with a single

material proceed by normal MPM methods, but nodes with more than one material use contact

physics to adjust the nodal momenta and/or to add internal forces. Available methods can

implement stick contact, frictional contact [4, 5, 6], or imperfect interface traction laws [17].
Most planar 2D contact tasks can be applied directly to axisymmetric MPM. The only

exception is determination of the normal vector between two contacting surfaces, and

experience has shown that accurate determination of the normal is crucial to accurate contact

simulations [6]. The traditional approach to finding the normal is to use the mass gradient,

or equivalently (and preferably when comparing gradients between materials with different

densities) to use the volume gradient. This gradient can be extrapolated to nodes using shape

functions gradients:

‖n i,a‖n i,a =−∇Va(x i) =
∑

p∈a

VpG ip (54)

where n i,a is an unnormalized, outward directed normal for material a at node i and the sum

is only for particles of material a. This method does not work in axisymmetric MPM because

Vp depends on radial position, which causes ∇Va(x i) to lose is connection to r-z plane surface

normal. The solution is to realize the geometric nature of this calculation and base it in on area
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gradient instead:

‖n i,a‖n i,a =−∇Aa(x i) =
∑

p∈a

ApG ip (55)

where Ap is the deformed area of the particle domain in the r-z plane.

Two other refinements for axisymmetric contact are helpful. First, by symmetry, the area

gradient in the r direction should be zero at r = 0, but that area gradient will always be non-

zero by the above extrapolation method. The solution is to set the r component of n i,a to zero

for all nodes with ri = 0. Similarly, some contact methods screen out non-contact nodes by

ignoring contact unless the total volume at a node is close the the cell volume in the mesh. For

axisymmetric MPM, this geometric result should switch from comparing volumes to comparing

areas instead. Furthermore, the nodal area for all nodes at ri = 0 should be doubled to account

for the fact it is the the middle of a solid object and not on an edge. This same modification

should be made in planar contact problems when they involve symmetry planes; the only

difference is that axisymmetry always has a symmetry plane at r = 0.

The implementation of imperfect interfaces on cracks [18] or within multimaterial methods

needs an additional adjustment for axisymmetric MPM when calculating the total interfacial

contact area. The development of these axisymmetric methods are given in [17].

3.4. Conduction and Diffusion

MPM can simultaneously model heat conduction and liquid/gas diffusion and couple the results

to mechanical strains through thermal or absorption expansion coefficients or temperature-

dependent material properties. The algorithm extends easily to axisymmetric MPM. A weak-

form analysis for conduction involves solving

∫

Ω

�

∇ · k∇T + q(x )−ρCp
∂ T

∂ t

�

w(x ) dV (56)

where T is temperature, k is conductivity tensor, q(x ) is heat source, ρ is density, Cp is constant-

stress heat capacity, and w(x ) is a weighting function. Using the divergence theorem on the first

term gives:

∫

∂Ω

(w(x )k∇T ) · n̂ dS =

∫

Ω

�

∇w(x ) · k∇T + q(x )w(x )−ρCpw(x )
∂ T

∂ t

�

dV (57)

Proceeding as in GIMP (i.e., expanding w (x ) in grid shape functions, expanding other terms

in particle basis functions, making use of arbitrariness of w(x ), and using cylindrical volume

integrals) [11] leads to:

Mi
dTi

d t
= f (g)i + f (s)i + f (e)i (58)

where

Mi =
∑

p

mpC (p)p Sip, Ti =
1

Mi

∑

p

mpC (p)p TpSip (59)

f (g)i =−
∑

p

Vpk∇Tp ·G ip, f (s)i =
∑

p

VpqpSip, f (e)i =

∫

∂Ω

Ni(x )Φ dS (60)
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Here Tp is particle temperature,∇Tp is particle temperature gradient that is calculated from Ti ,

∇Tp =
∑

i

TiG ip, (61)

and Φ is heat-flux boundary condition (i.e., specified boundary value for k∇T · n̂). The particle

temperature is updated using

T (k+1)
p = T (k)p +∆t

∑

i

dTi

d t
Sip (62)

and importantly not by extrapolating Ti , because that causes numerical conduction. However,

when using temperature in constitutive laws on particles, it is preferable to use an extrapolated

Ti instead of Tp. Ti is a better representation of the temperature field, while Tp is prone to local

fluctuations within grid cells.

The only changes needed for axisymmetry are to use axisymmetric Sip and G ip, to use

particle mass (mp) and volume (Vp) on per-radian basis, and to evaluate flux boundary

conditions as flux per radian on the cylindrical surface. This flux surface integral can be done

using axisymmetric traction boundary condition methods described above by replacing vector

traction, T , with scalar flux, Φ. An axisymmetric GIMP analysis for diffusion is recovered by

replacing k with the diffusion tensor, D, heat source q(x ) with a concentration source, mpC (p)p

with Vp, and temperature T with chemical potential, µ.

4. EXAMPLES

4.1. Uniform Radial Compression

A simple example is to pressurize a solid disk with initial radius R0 in the radial direction while

restraining it in the z direction. The resulting deformation gradient is constant throughout the

disk:

F=















1+ εr r 0 0

0 1 0

0 0 1+ εr r















(63)

where εr r =−∆R/R0 and ∆R is the amount of radial compression. Consider a Neohookean

material with energy, W , defined by

W =
K

2

�

1

2

�

J2 − 1
�

− ln J
�

+
G

2

�

Ī1 − 3
�

(64)

where J = |F|= (1+ εr r)2 is the relative volume, K is bulk modulus, G is shear modulus, and

Ī1 =
Bx x + By y + Bzz

J2/3
(65)
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Figure 5. Relative volume (in %) in particles near the origin as a function of their initial radial
particle position. The simulation was radial compression of a solid, flat disk with ∆R/R0 = 0.6. These
calculations used axisymmetric shape functions that were truncated (as recommended) or not truncated

at r = 0.

where B= FFT is the left Cauchy-Green tensor. For this material, the exact solutions for stresses

are:

σr r = σθθ =
�

J − 1

J

��

K

2
(J + 1) +

G1

3J2/3

�

(66)

σzz =
�

J − 1

J

��

K

2
(J + 1)−

2G1

3J2/3

�

(67)

First, we considered MPM calculations with five possible shape functions — uGIMP and

CPDI with truncated particle domains, uGIMP and CPDI without truncating particle domains,

and classic MPM shape functions — and compressed slowly (compared to wave speed

of the material) until εr r =−0.6 resulting in final relative volume of J = 16%. This high

compression provides a critical test of truncated vs. non-truncated shape functions near

r = 0. The disk had R0 = 50 mm, thickness of 10 mm, and the MPM grid cell size was

2.5× 2.5 mm. The Neohookean material had E = 2300 MPa and ν = 0.33 (K = 2254.9 MPa

and G = 864.662 MPa). Compression was done at fixed velocity using rigid particles.

Figure 5 plots J , or relative volume, in particles near the origin as a function of their initial

position. The only axisymmetric shape functions to correctly give J constant for all particles (the

thin line is the mean J) are the truncated uGIMP and CPDI shape functions. If uGIMP shape

functions are not truncated, the results are poor. Because CPDI approximately tracks deformed

particle domain, the effects of truncation are smaller. Nevertheless, CPDI without truncation

loses accuracy for the particle closest to the origin. No results for classic axisymmetric MPM

shape functions are given, because they became unstable as many particles crossed element

boundaries. GIMP was developed to solve this issue [11] and with these results now solves it

in axisymmetric calculations as well.

Figures 2 and 3 suggest that axisymmetric Sip and G ip are not significantly different then

planar shape functions except near r = 0. One is tempted to avoid the need for axisymmetric
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Figure 6. Relative volume (in %) in particles near the origin as a function of their initial particle position.
The simulation was radial compression of a solid, flat disk with ∆R/R0 = 0.6.These calculations
compared use of truncated, axisymmetric uGIMP shape functions (dsahed line) to planar shape
functions (solid lines). The planar shape functions used three different methods for boundary conditions

at r = 0.

GIMP shape functions by straightforward extension of classic axisymmetric MPM [12] to

GIMP simply by replacing planar Ni(rp, zp) and ∇Ni(rp, zp) shape functions from that work

with planar Sip and G ip shape functions (we tried that ourselves before deriving new shape

functions). Figure 6 compares the use of truncated, axisymmetric uGIMP formulation described

here, with results for the same problem, using axisymmetric methods, but with planar shape

functions. First, compare the curve labeled “uGIMP (planar, No Extra Node BC)” to the curve

using axisymmetric shape functions (labeled “uGIMP (truncated)”). These curves had the same

zero velocity boundary conditions at r = 0. The planar shape functions gave poor results near

the origin while the new shape functions gave the correct constant value as a function of particle

position.

Thus, simply using planar shape function instead of the axisymmetric shape function derived

here in axisymmetric problems can cause large errors at the origin (see “uGIMP (planar, No

Extra Node BC)” curve in Fig. 6). These errors, however, can be reduced by adding custom

treatment of the r = 0 boundary conditions as illustrated by additional curves in Fig. 6. For

all these simulations, the nodes at r = 0 had a boundary condition that set the r component

of velocity to zero, while leaving the z component unchanged. The planar shape function

results are differentiated by what is done with an extra layer of nodes located one cell away at

r =−∆r. Although these nodes are naturally and correctly uninvolved when axisymmetric

shape functions are used, they remain active for planar GIMP shape functions, because as

particles approach domain boundaries, a portion of the particle domain will hang off of the

defined computational domain. Without special logic, the numerical implementation of the

shape functions will return nodes outside of the domain as being among those that interact

with a particle. So called “extra nodes" (termed “ghost nodes" in some codes) are used to

prevent accessing data that would otherwise not be stored in memory.
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Figure 7. Average σr r = σθθ and σzz of all particles as a function of relative volume (in %) (solid lines)
compared to exact solution (dashed lines). The simulation was radial compression of a solid, flat disk.

Three different treatments of the boundary conditions at those extra nodes were considered.

The “No Extra Node BC" applies no special treatment to those nodes. The “Extra Node BC 0"

case applies the same boundary condition to the extra nodes that is used for the r = 0 nodes.

The “Extra Node BC mirror" case sets the r component of velocity on the extra node equal to

the negative of the r component of velocity on the “mirrored” node at r =∆r (leaving the z
component unchanged). This last option is meant to mimic the value that node would have in

a full three-dimensional simulation. What we observe is that, in the last option, which tends

to keep the particle pushed farther away from r=0, the use of planar shape functions gave

an acceptable result with constant level of compression. Note that because the axisymmetric

formulation presented here truncates the GIMP domains at r=0, the extra nodes do not

participate in the calculation, therefore the way boundary conditions are treated on those nodes

is inconsequential; the results are always correct.

To verify axisymmetric material modeling, Fig. 7 plots σr r = σθθ and σzz as a function of J
during radial compression. The dashed lines are the exact solutions. These calculations were

for either uGIMP or CPDI with truncation and are plotted up to 84% compression. The uGIMP

method broke down when compression reached 88%. The CPDI method began to break down

at about 93% compression.

In summary, acceptable results in uniform compression are possible without using new

shape functions, but only if great care is used in setting boundary conditions. Nevertheless,

the truncated axisymmetric shape functions are recommended for at least four reasons.

First, they are a natural result of re-deriving GIMP in an axisymmetric geometry and

therefore are reasonably presumed to be more accurate and/or converge better. Although

the effects are small in a simple example of uniform compression, larger effects might

arise in unanticipated modeling geometries or in more complicated stress states. Second,

the particle truncation method accounts well for r = 0 effects, which means ordinary zero-

velocity boundary conditions at r = 0 are handled accurately for all particles without needing

special treatment for the “ghost nodes” at r =−∆r. Third, when compared to prior work on
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Figure 8. Particleσzz as function of their initial axial (z) distance to the loaded edge using either traction
boundary conditions or particle force boundary conditions. The dotted, horiztonal line is the specified

final stress of 1000 MPa.

axisymmetric MPM [12], this extension of the method to GIMP methods is essential when

modeling large deformation because classic axisymmetric MPM methods are not robust. Fourth,

any code that supports planar GIMP methods can easily add the extra terms needed for

axisymmetric shape functions.

4.2. Traction Boundary Conditions

The simplest calculation to verify traction boundary conditions, and to focus on radial

dependence in the forces, is to load a surface that varies in r, such as to end load a solid cylinder.

This calculation used a cylinder of length 40 mm and radius 10 mm and MPM grid cell size was

2× 2 mm. The r = 0 plane was fixed at zero r displacement and the cylinder bottom was fixed

at zero z displacement. The particles on the top were loaded in tension by linearly increasing

stress using either traction boundary conditions (on edge 3) or particle force conditions. The

traction method calculated the forces as derived above. The particle force method applied force

per radian that depended on particle location of Fp(t) = σ̇rp lp∆r t. The Neohookean material

had E = 2300 MPa and ν = 0.33 (K = 2254.9 MPa and G = 864.662 MPa) and was loaded to

final stress of 1000 MPa at slow displacement rate compared to wave speed of the material

(∼ 1%). The final strain was about 50%.

The axial stress, σzz , in particles as a function of initial distance from the loaded edge

for traction or force boundary conditions is plotted in Fig. 8. These results confirm the new

axisymmetric surface forces and show two clear advantages of surface tractions compared to

particle force boundary conditions. First, the traction method maintains constant particle stress

including the particle on the edge of the object. In contrast, particle force boundary conditions

always have an artifact of low stress for the loaded particles. Second, the traction method

applies the specified traction and maintains that traction when the particle deforms. In contrast,

particle forces will apply a different stress if the surface area that is loaded changes during the

calculation. In this simulation, the cylinder contracted in the radial direction due to Poisson
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Table I. Material properties used for the penetration simulation as reported by Anderson et al. [21]. The
material models used a Johnson-Cook flow rule [19] and a Mie-Grüneisen pressure response [20].

Property Tungsten Steel
A (GPa) 1.50696 1.50
B (GPa) 0.17664 0.569

C 0.016 0.003
n 0.12 0.22
m 1.0 1.17

Tm (K) 1723 1777
C0 (m/s) 3980 3574

S 1.24 1.92
γ0 1.54 1.69

Density (g/cc) 17.6 7.85
Shear Modulus (GPa) 124.0 77.3

effects and therefore the applied forces, which were based on initial dimensions, caused higher

stresses. The ability of traction boundary conditions to maintain a specified stress requires CPDI

because it evaluates surface forces on deformed edges. In contrast, uGIMP calculates surface

forces using undeformed edges. The stresses in uGIMP would therefore increase like stresses

due to particle forces, but would still have the advantage of constant stress on edge particles.

The results for uGIMP are not given here because uGIMP calculations were not stable for the

simulated 50% tensile strain. CPDI is required for large strain calculations and for constant

stress boundary conditions.

4.3. Impact Penetration Example

To illustrate use of axisymmetric MPM in a complex stress state with most of the detail near

the origin, we simulated a blunt nosed tungsten alloy cylinder (0.4 cm in diameter, 5.0 cm

in length) impacting a high hard armor steel cylinder (4.0 cm in diameter, 4.95 cm long) at

1.70 km/s. Both materials were modeled as elastic-plastic, with a Johnson-Cook flow rule

[19] and a Mie-Grüneisen pressure response [20]. Material parameters used are provided

in Table I. These simulations are meant to represent the experimental configuration used by

Anderson, et al. [21], for which data were collected for the nose and tail position at various

times (using flash x-ray techniques). The numerical simulation depicted here used grid cells

with ∆r =∆z = 0.25 mm and 4 particles/cell were used to represent the material geometry.

Simulations done at higher and lower resolutions (not shown) to confirm that the results are

convergent with grid refinement.

Several views of the penetration process are provided in Fig. 9. The materials are colored

according to equivalent stress. The nose and tail positions for the tungsten impactor were

extracted from the numerical results and are plotted as smooth curves in Fig. 10. The simulation

results have good agreement with experimental results from Anderson, et al. [21], which are

plotted as symbols.
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Figure 9. Several views of the MPM simulation for tungsten penetrating into high hard steel armor at
10 µs, 30 µs, and 60 µs after impact. The colors show show equivalent stress. The bottom edge is the

r = 0 line of axisymmetry.
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Figure 10. The position of the nose and tail of the tungsten impactor as a function of time. The symbols
are experimental results from Anderson, et al. [21]. The lines are the axisymmetric MPM simulation.
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A. CONCLUSION

Reformulation of GIMP for axisymmetry leads to new shape functions and gradients that are

recommended for use in MPM axisymmetric simulations. The consequences of axisymmetry

were considered for many MPM extensions, and all of them could be used in axisymmetric

models with minor modifications, except for J integral calculations, which needs additional

work. The following is a check list of changes needed to convert typical MPM codes to include

an option for axisymmetric MPM:

1. Particle mass is mass per radian (mp = ρAprp).

2. If the grid has any nodes at r = 0, apply zero velocity boundary conditions in the r
direction.

3. Whenever shape functions or gradients are needed, find the axisymmetric shape functions

(for uGIMP or CPDI) with domain truncation. Some results that depend on shape function

gradients will also need Tip. A convenient method in some codes is to store Tip in the

unused third component of a 3D gradient vector.

4. If including multimaterial contact, extrapolate the r-z plane area gradient to nodes and

for nodes at r = 0 set the r component of that gradient to zero. This gradient is used to

find contact normals. If contact methods use nodal areas for detecting contact, double the

nodal area on r = 0 nodes.

5. On strain updates, find the hoop component of the deformation gradient using dur/r in

Eq. (14).

6. Each material used in simulations must support axisymmetric deformation gradients in

their constitutive laws including updates for hoop stresses and strains.

7. When applying traction boundary conditions, calculate the axisymmetric form of the

surface forces. When applying forces directly to particles, make sure the input is in force

per radian and the forces correctly depend on position, if needed, to get desired stress

along the edge.

8. When finding f (int)
i , include the hoop stress term in Eq. (3).

9. When updating particle positions, if any particle crosses r = 0, stop the calculations (or

attempt a fix, such as to move to r ≥ 0).
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APPENDIX A

The terms in shape functions and gradients along the z direction are identical to the corresponding
terms in planar uGIMP along either direction. For reference, those terms are from [11] and given by:
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
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