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ABSTRACT: A new analysis for stress transfer from the fiber to the matrix through an imperfect interface
was derived using a Bessel-Fourier series. The new analysis is specific for the fragmentation test. It satisfies
equilibrium and compatible every place and satisfies most boundary conditions exactly. The only approximation
is the axial stress boundary condition in the fiber which is satisfied in an averaged sense instead of exactly.
Two important advantages of the stress transfer analysis are that it can analyze anisotropic fibers and it can
include imperfect interfaces or interphases. Theoretical predictions of stress stress transfer were compared
to experimental Raman spectroscopy results. The predictions agree well experiments and they can be used
to measure interface properties. The stress transfer analysis was coupled with an interfacial failure criterion
to model the fragmentation test. The results of modeling fragmentation data as a function of applied strain
suggested new ways of interpreting fragmentation experiments and cast doubt on the relevance of the commonly
measured interfacial shear strength.

KEY WORDS: composites, stress transfer, Raman spectroscopy, fragmentation test, imperfect interface,
interphase, Bessel functions, axisymmetric stress analysis

In the single-fiber fragmentation test, a single fiber is embedded in a matrix and loaded in tension until the
fiber fractures into fragments [1–6]. The average fragment length and the distribution of fragment lengths
as a function of applied strain tell us something about the fiber/matrix interface. But the question remains:
what do the results tell us about the interface? Furthermore, which experimental results do we need? How
do we interpret those results? This paper discusses a new stress analysis for stress transfer from the matrix
to the fiber in a fragmentation specimen. We use the analysis to model the fragmentation test and to make
suggestions about interpreting fragmentation test results.

At the first fiber break in a fragmentation test, the axial stress in the fiber is zero. Stress transfer across the
interface permits stress to return to the fiber which permits additional fiber breaks with continued loading.
The fragmentation process ceases when there is insufficient stress transfer over the length of a fragment
for the stress to reach the strength of the fiber. To interpret the fragmentation test we must analyze the
process of stress transfer from the matrix to the fiber. One analysis method is to assume an elastic-plastic
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interface [7]. In the post yield condition the interface is assumed to have a constant shear stress and therefore
a linear rate of stress transfer into the fiber. With this model, the critical fragment length, or the length
when the fragmentation process ceases, is easily calculated to be [7]

lc =
σf (lc)r1

τic
(1)

where σf (lc) is the strength of the fiber for specimens of length equal to the critical length, r1 is the fiber
radius, and τic is the critical interfacial shear stress. This elastic-plastic model is sometimes incorporated into
a two-zone model with a constant shear stress or frictional stress in the yield zone and elastic stress transfer
through a perfect interface in the undamaged zone (e.g., Ref. [8]). The elastic stress transfer part is analyzed
by one-dimensional, shear-lag methods. We suggest these models are too simplistic. The assumption of a
constant interfacial shear stress is unrealistic for many interfaces. The one-dimensional methods give no
information about radial stress and thus do a poor job of accounting for thermal stresses and frictional
effects. Finally, these models only give qualitative measures of interface properties (e.g., τic) which are of
limited practical use when the goal is to predict the role of the interface in real laminates.

The first, three-dimensional, axisymmetric analyses of stress transfer from a rod to an elastic medium were
done by Muki and Sternberg [9–11]. They treated the matrix as a three-dimensional elastic continuum. The
fiber is reduced to a fictitious one-dimensional reinforcement over the cross-section of the actual fiber. They
reduced the resulting problem to an integro-differential equation that could be solved numerically. Since their
original paper, the method of replacing the fiber by a one-dimensional reinforced continuum has been widely
used (e.g., Refs. [12–16]). Unfortunately, the method is not suitable for the fragmentation test. Instead
of transfer from a single break to an elastic medium, we want to analyze stress transfer in the presence of
periodic cracks. Instead of isotropic fibers, we want to analyze anisotropic fibers such as carbon fibers or
aramid fibers. Finally, replacing the fiber by a one-dimensional reinforced continuum blurs the interface.
This blurring gives poor results about interfacial stresses [11] and makes it difficult to model an imperfect
interface.

In this paper we give a three-dimensional axisymmetric analysis of the fragmentation test by using Bessel-
Fourier series stress functions. The new analysis is nearly exact. It obeys equilibrium and compatibility every
place. It obeys all boundary conditions except one. The single approximation is that instead of the fiber
axial stress being exactly zero at the fiber break, only the average axial fiber stress is equal to zero. Some
advantages of the analysis are that it can handle anisotropic fibers, it can model an imperfect interface, and
it gives explicit results for all components of stress along the interface. After outlining the derivation of the
stress analysis, the predictions are compared to direct experimental results of stress transfer using Raman
spectroscopy. The experiments and predictions agree well. Finally, we used the analysis and a simple model
for interfacial damage to model the fragmentation tests. The results of the modeling led to suggestions about
conducting and interpreting fragmentation experiments

Stress Analysis

Stress Function Approach

Figure 1 shows the boundary conditions for analysis of the fragmentation specimen. Figure 1A shows a
fragmentation specimen. A single fragment from that specimen is magnified in FIG. 1B. Because the fiber is
broken at the two ends of the fragment, the axial stress (σzz) and shear stress (τrz) on the fiber must be zero.
By continuity of displacement from one fragment zone to the next, the axial displacement (w) in the matrix
at the fragment ends must be a constant or independent of r. Symmetry dictates that the shear stress (τrz)
in the matrix at the fragment ends must be zero. Finally, the entire specimen is subjected to a temperature
differential of T = Ts − T0 where Ts is the specimen temperature and T0 is the stress-free temperature.

For convenience, we divide the problem into two problems illustrated in Figs. 1C and 1D. Figure 1C
shows the far-field problem or the stresses for an infinitely long transversely isotropic cylinder embedded
in an infinite matrix while the matrix is under an axial load of σ0 and temperature differential of T . The
boundary conditions are:

σzz,2(±l/2) = σ0 τrz,1(±l/2) = τrz,2(±l/2) = 0 w1(±l/2) = w2(±l/2) = ± l
2

(
σ0

Em
+ αmT

)
(2)
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FIG. 1 — A. In the fragmentation test, a single fiber embedded in a large amount of matrix fragments into
multiple small fragments. B. The boundary conditions on a cell containing a single fiber fragment of length
l extending from z = −l/2 to z = +l/2. σzz,1 = 0 on the fiber ends; τrz,1 = τrz,2 = 0 at z = ±l/2; w2
at z = ±l/2 is constant (“±con.”) or independent of r; the temperature differential is T . C. The far-field
stresses are the stresses for an infinitely long, unbroken fiber in an infinite matrix under an applied stress of σ0
and temperature differential T . D. For perturbation stresses, σzz,1 = −ψ∞ on the fiber ends; τrz,1 = τrz,2 = 0
at z = ±l/2; w2 = 0 at z = ±l/2; the temperature differential is 0.

The form of the far-field stresses is

σzz,1 = ψ∞ σrr,1 = σ∞ σθθ,1 = σ∞ τrz,1 = 0
σzz,2 = σ0 σrr,2 = r2

1σ∞
r2 σθθ,2 = − r2

1σ∞
r2 τrz,2 = 0

(3)

where subscripts “1” and “2” refer to the fiber and the matrix, respectively, and r1 is the radius of the fiber.
By equating axial strains and the interfacial radial displacements in the fiber and matrix, it is easy to solve
for the constants ψ∞ and σ∞:

ψ∞ =

(
2νAνm
EA
− 1−νT

ET
− 1+νm

Em

)
EAσ0
Em

+
(

2νA
EA

(αT − αm) +
(

1−νT
ET

+ 1+νm
Em

)
(αA − αm)

)
EAT

2ν2
A

EA
− 1−νT

ET
− 1+νm

Em

(4)

σ∞ =
−(νA − νm) σ0

Em
+
(
νA(αA − αm) + (αT − αm)

)
T

2ν2
A

EA
− 1−νT

ET
− 1+νm

Em

(5)

where E is modulus, ν is Poisson’s ratio, and α is thermal expansion coefficient. The subscripts A and T refer
to axial and transverse properties of the transversely isotropic fiber. The subscript m refers to properties of
the isotropic matrix.

Figure 1D shows the harder problem—the perturbation stresses. Here the matrix ends have zero shear
stress and zero axial displacement. The fiber ends are also under zero shear stress but have a compressive
axial stress of −ψ∞. Because temperature differential is included in the far-field stresses, the stress analysis
for the perturbation stresses uses T = 0. The boundary conditions are:

σzz,1(±l/2) = −ψ∞ τrz,1(±l/2) = τrz,2(±l/2) = 0 w1(±l/2) = w2(±l/2) = 0 (6)

We define ~σ0,i as the far-field stresses in component i (i = 1 or 2) and ~σp,i as the perturbation stresses in
component i due to unit compression on the fiber; then, by superposition, the stresses in the fragment in
FIG. 1B are ~σi = ~σ0,i + ψ∞~σp,i. We now proceed to find ~σp,i.
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From Lekhnitskii [17], the stresses and displacements for an axisymmetric stress state in a transversely
isotropic fiber can be written as

σrr = − ∂

∂z

(
∂2Ψ
∂r2 +

b

r

∂Ψ
∂r

+ a
∂2Ψ
∂z2

)
(7)

σθθ = − ∂

∂z

(
b
∂2Ψ
∂r2 +

1
r

∂Ψ
∂r

+ a
∂2Ψ
∂z2

)
(8)

σzz =
∂

∂z

(
c
∂2Ψ
∂r2 +

c

r

∂Ψ
∂r

+ d
∂2Ψ
∂z2

)
(9)

τrz =
∂

∂r

(
∂2Ψ
∂r2 +

1
r

∂Ψ
∂r

+ a
∂2Ψ
∂z2

)
(10)

u =
b− 1
2GT

∂2Ψ
∂r∂z

(11)

w =
1
GA

(
∂2Ψ
∂r2 +

1
r

∂Ψ
∂r

)
+

(d+ 2νAa)
EA

∂2Ψ
∂z2 (12)

where u is radial displacement and the constants are

a =
−νA(1 + νT )

1− ν2
A
ET
EA

(13)

b =
νT − νAET

EA

(
EA
GA
− νA

)
1− ν2

A
ET
EA

(14)

c =
EA
GA
− νA(1 + νT )

1− ν2
A
ET
EA

(15)

d =
EA
2GT

(1− νT )

1− ν2
A
ET
EA

(16)

where G is shear modulus. The stress function Ψ must satisfy the equation

∇2
1∇2

2Ψ = 0 (17)

where the operators are defined by

∇2
i =

∂2

∂r2 +
1
r

∂

∂r
+

1
s2
i

∂2

∂z2 (18)

and the constants, s1 and s2 are

s2
1 =

a+ c+
√

(a+ c)2 − 4d
2d

(19)

s2
2 =

a+ c−
√

(a+ c)2 − 4d
2d

(20)

The hoop displacement (v) and the unspecified shear stresses (τrθ and τθz) are zero in axisymmetric stress
states. For an isotropic matrix, these equations reduce to the well-known result in Love [18]:

σrr =
∂

∂z

(
νm∇2χ− ∂2χ

∂r2

)
(21)

σθθ =
∂

∂z

(
νm∇2χ− 1

r

∂χ

∂r

)
(22)

σzz =
∂

∂z

(
(2− νm)∇2χ− ∂2χ

∂z2

)
(23)
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τrz =
∂

∂r

(
(1− νm)∇2χ− ∂2χ

∂z2

)
(24)

u = − 1
2G

∂2χ

∂r∂z
(25)

w =
1

2G

[
2(1− νm)∇2χ− ∂2χ

∂z2

]
(26)

where the equation for χ is
∇4χ = 0 (27)

We begin by stating stress functions for the fiber and matrix that solve the perturbation stresses in the
fragmentation specimen almost exactly. The stress functions in the fiber (Ψ) and the matrix (χ) for a
fragment of length l with the origin for z = 0 at the center of the fragment are

Ψ = A30z
3 +A32r

2z +
A50

c

(
cz5 +

15ad
8

r4z − 5dr2z3
)

+
∞∑
i=1

sin kiz
(
b1iI0(β1ir) + b2iI0(β2ir)

)
(28)

χ = A1z ln r +
∞∑
i=1

sin kiz (a0iK0(kir) + a1ikirK1(kir)) (29)

where Aij , A1, bji, and aji are undetermined constants,

ki =
2iπ
l

and βji =
ki
sj

(30)

Both the fiber and matrix stress functions contain a Bessel-Fourier series. The fiber stress function has
modified Bessel functions of the first kind (I0(x)); the matrix stress function has modified Bessel functions of
the second kind (K0(x) and K1(x)). The fiber has only modified Bessel functions of the first kind, because
the second kind diverge as r approaches 0; the matrix has only modified Bessel functions of the second
kind because the first kind diverge as r approaches ∞. The Fourier series include only sin kiz terms due to
symmetry about z = 0.

In deriving the stress functions, we started with the Bessel-Fourier series terms. Bessel-Fourier series are
a well-known method for analysis of cylinders with arbitrary transverse loading [18], but, by themselves
they cannot solve the fragmentation problem. If they are used by themselves, the only possible solution is
one that vanishes identically. We traced this problem to the substitution of Fourier series into equations
involving derivatives (e.g.,Eqs (7)–(12)). Unfortunately, the derivative of a Fourier series is not necessarily
the Fourier series of the derivative of that function. In particular, stress functions based only on a Bessel-
Fourier series will never recover components of the stress state that are independent of z. To compensate
for this deficiency, we added more terms to the stress function. The leading terms in Eqs (28) and (29) were
selected because they provide the desired z-independent components to the stresses and they are consistent
with the boundary conditions. The leading terms in the fiber are based on the polynomial stress functions
described by Lekhnitskii [17]. We choose polynomial stress functions including terms up to z5. The final
form of the additional terms in the fiber stress function is dictated by symmetry and by a requirement that
the shear stress at z = ±l/2 remains zero. The leading terms in the matrix stress function were chosen to
give z-independent normal stresses and zero shear stress.

In the interest of brevity, we will not explicitly state all stresses, strains, and displacements. Instead, we
only state the ones needed to reproduce the results in this paper — the axial stresses, shear stresses, radial
stresses, axial strains, and radial displacements in the fiber and matrix:

σzz,1 = B2 +B3dξ
2 +

∞∑
i=1

cos kiζ
[
b1i

(
c

s2
1
− d
)
I0(β1iξ) + b2i

(
c

s2
2
− d
)
I0(β2iξ)

]
(31)

τrz,1 =
∞∑
i=1

sin kiζ
[
b1i

(
1
s2

1
− a
)
I1(β1iξ)
s1

+ b2i

(
1
s2

2
− a
)
I1(β2iξ)
s2

]
(32)

σrr,1 = B1 −B3

[
(1 + νT )ρ2

3
+

(1− νT )a
4

ξ2
]

+
∞∑
i=1

cos kiζ

[
−B3(−1)i

4(1 + νT )
k2
i

+ b1i

((
a− 1

s2
1

)
I0(β1iξ)
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+
(1− b)
s2

1

I1(β1iξ)
β1iξ

)
+ b2i

((
a− 1

s2
2

)
I0(β2iξ) +

(1− b)
s2

2

I1(β2iξ)
β2iξ

)]
(33)

εzz,1 =
∂w1

∂ζ
= −2νA

EA
B1 +

1
EA

B2 +
B3

2GT

[
(1− νT )ξ2 +

2νAETρ
2

3EA

]
+
∞∑
i=1

cos kiζ

[
B3(−1)i

8νA(1 + νT )
EAk2

i

+ b1i

(
1

s2
1GA

− d+ 2νAa
EA

)
I0(β1iξ) + b2i

(
1

s2
2GA

− d+ 2νAa
EA

)
I0(β2iξ)

]
(34)

u1 = ξ

(
1− νT
ET

B1 −
νA
EA

B2

)
+
B3(1− νT )

2GT

(
aξ3

4
− ξρ2

3

)
+

1
2GT

∞∑
i=1

cos kiζ

[
−B3(−1)i

4(1− νT )ξ
k2
i

+
b1i(b− 1)

s2
1

I1(β1iξ)
β1i

+
b2i(b− 1)

s2
2

I2(β2iξ)
β2i

]
(35)

σzz,2 =
∞∑
i=1

cos kiζ
[
a0iK0(kiξ) + a1i

(
kiξK1(kiξ)− 2(2− νm)K0(kiξ)

)]
(36)

τrz,2 =
∞∑
i=1

sin kiζ
[
a0i (−K1(kiξ)) + a1i

(
2(1− νm)K1(kiξ)− kiξK0(kiξ)

)]
(37)

σrr,2 =
A1

ξ2 +
∞∑
i=1

cos kiζ
[
a0i

(
−K0(kiξ)−

K1(kiξ)
kiξ

)
+ a1i

(
(1− 2νm)K0(kiξ)− kiξK1(kiξ)

)]
(38)

w2 =
1

2Gm

∞∑
i=1

sin kiζ
ki

[
a0iK0(kiξ) + a1i

(
kiξK1(kiξ)− 4(1− νm)K0(kiξ)

)]
(39)

εzz,2 =
∂w2

∂ζ
=

1
2Gm

∞∑
i=1

cos kiζ
[
a0iK0(kiξ) + a1i

(
kiξK1(kiξ)− 4(1− νm)K0(kiξ)

)]
(40)

u2 = − 1
2Gm

A1

ξ
+

1
2Gm

∞∑
i=1

cos kiζ
(
a0i
K1(kiξ)
ki

+ a1iξK0(kiξ)
)

(41)

These stresses, strains, and displacements were calculated by substituting the appropriate stress function
into one of Eqs (7)–(12) or Eqs (21)–(26) and then transforming into a dimensionless coordinate system
with ξ = r/r1 and ζ = z/r1. We defined some new constants (B1, B2, and B3) and redefined the remaining
constants all in terms of the original constants in Eqs (28) and (29). For use in dimensionless equations, we
have also redefined ki to be

ki =
2r1iπ

l
=
iπ

ρ
(42)

where ρ = l/(2r1) is the aspect ratio of the fragment. Finally, we note that the displacements ui and wi are
dimensionless displacements (uactual/r1 or wactual/r1).

The radial stress, axial strain, and radial displacement in the fiber all have a term in the Fourier expansion
summation that does not involve a Bessel function. These non-Bessel function terms arise from the leading
terms in the fiber stress function. These leading terms give stresses and strains that are independent of ζ
and also stresses and strains that vary as ζ2. Because our analysis involves term-by-term equating of the
coefficients of the Fourier expansion, we must resolve the ζ2 terms into a Fourier series. The constant parts of
these series are kept with the ζ-independent stresses. The Fourier parts are added to the Fourier expansion
summation. These non-Bessel function terms in the Fourier expansion are crucial to our analysis procedure.
Without them, our method would be unable to yield a nonzero solution to the problem. With them, a
solution is possible.

In the dimensionless coordinates, the fiber fragment extends from −ρ to ρ. Inspection of the matrix shear
stress, the matrix axial displacement, and the fiber shear stress show that

τrz,2(±ρ) = 0 w2(±ρ) = 0 τrz,1(±ρ) = 0 (43)
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Thus the stress state exactly satisfies most of the boundary conditions. The single remaining boundary
condition is σzz,1(±ρ) = −1. Because σzz,1(±ρ) in Eq (31) is a function of ξ, this final boundary condition
cannot be satisfied exactly. Instead, we satisfy it in the average or we satisfy 〈σzz,1(±ρ)〉 = −1. Integrating
σzz,1 over the cross-section gives the average axial stress in the fiber:

〈σzz,1〉 = B2 +
B3d

2
+
∞∑
i=1

cos kiζ
[
b1i

(
c

s2
1
− d
)
I1(β1i)
β1i

+ b2i

(
c

s2
2
− d
)
I1(β2i)
β2i

]
(44)

Thus we seek to satisfy

− 1 = B2 +
B3d

2
+
∞∑
i=1

(−1)i
[
b1i

(
c

s2
1
− d
)
I1(β1i)
β1i

+ b2i

(
c

s2
2
− d
)
I1(β2i)
β2i

]
(45)

Because the fiber stress function satisfies ∇2
1∇2

2Ψ = 0 and the matrix stress function satisfies ∇4χ = 0,
the stress state derived from those stress functions satisfies equilibrium and compatibility at all locations.
From above, we see that the stresses satisfy the matrix boundary conditions and fiber shear-stress boundary
condition exactly. The single approximation is that we only satisfy the fiber axial-stress boundary condition
in the average. The solution can be said the be exact except in regions very near the fiber ends. An
exact solution would show stress singularities where the fiber crack tip meets the matrix. Our Fourier
expansion solution cannot have mathematical singularities, but our solution does correctly show large stress
concentrations near the crack tip. Very local to the crack tip the stresses increase as the number of terms
in the Bessel-Fourier series increases. Slightly farther away from the crack tip, the stresses rapidly converge
and become independent of the number of terms in the Bessel-Fourier series. Finally, we note that the fiber
stress function does not reduce to the correct result for an isotropic fiber. Similar results for isotropic fibers,
however, can be generated by using the new fiber stress function of

Ψ = A30z
3 +A32r

2z +A50

(
(2− νf )z5 − 15νf

8
r4z − 5(1− νf )r2z3

)
+
∞∑
i=1

sin kiz
(
b1iI0(kir) + b2ikirI1(kir)

)
(46)

where νf is the Poisson’s ratio of the isotropic fiber.
The solution for a full fragmentation specimen can be constructed by piecing together individual solutions

for each individual fiber fragment. Formally, such a solution only applies to specimens with periodic fiber
breaks. If the breaks are not periodic, the solution will still obey boundary conditions, but it will include
discontinuities in the matrix axial stress at the junctions between fiber fragments. Thus, this solution
contains an additional approximation when applied to specimens with nonperiodic breaks.

Imperfect Interface

Most analyses of stress transfer from a matrix to a fiber resort to assuming a perfect interface [9–14]. A
definition of a perfect interface is that σrr, τrz, u, and w are all continuous at r = r1 or at ξ = 1. The goal of
the fragmentation test and other interface tests, such as the pull-out test [19, 20] or microbond test [21, 22],
is to measure interface properties. It is self-evident that analyses that assume a perfect interface will never be
helpful in interpreting such tests. The assumption of a perfect interface predetermines the interface properties
in the analysis and thus cannot be used to study the effect of varying those properties on experimental results.
We must therefore include some model for an imperfect interface into our fragmentation test analysis.

The mathematician’s approach to an imperfect interface is to relax interfacial continuity conditions and
allow there to be discontinuities in σrr, τrz, u, and w [23]. In linear theories, the discontinuities are assumed
to be linear functions of the interfacial stress state. In static loading conditions, stress equilibrium requires
σrr and τrz to be continuous regardless of the quality of the interface. The remaining discontinuities in
u and w are functions of the interfacial stresses. Hashin put this imperfect interface model into physical
terms for composites [24, 25]. The interface in real composites is better described as an interface zone of
finite dimension or an interphase. Within the interphase, the mechanical properties differ from both the
fiber and the matrix. If the interphase plays a role in composite properties, then it must allow the fiber
to displace relative to the matrix. Unfortunately, we are unlikely to have detailed information about the
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thickness or the mechanical properties of the interphase. To make matters more complex, there might
be a gradient of mechanical properties across the interphase. Adding an interphase zone with variable and
probably unknown mechanical properties severely complicates our analysis of the fragmentation test. Hashin
proposed collapsing the 3D interphase into a 2D interface [24, 25]. The effect of the interphase is modeled
by allowing displacement discontinuities at the 2D interface that are linearly related to the stress in each
displacement direction. Denoting interface discontinuities with square brackets (e.g., [u] = u2(1, ζ)−u1(1, ζ)),
a fiber interface reduces to

[u] =
σrr,1(1, ζ)

Dn
=
σrr,2(1, ζ)

Dn
(47)

[w] =
τrz,1(1, ζ)

Ds
=
τrz,2(1, ζ)

Ds
(48)

[v] =
τrθ,1(1, ζ)

Dt
=
τrθ,2(1, ζ)

Dt
(49)

For axisymmetric stresses, τrθ = [v] = 0 and we only need to consider [u] and [w]. The terms Dn and Ds

are called interface parameters. A perfect interface is described by Dn = Ds = ∞; a disbonded interface is
described by Dn = Ds = 0; intermediate values describe an imperfect interface. It is important to recognize
that collapsing the interphase to a 2D interface does not mean we are ignoring the reality of an interphase.
Instead, we are using a mathematical trick that lumps the effect of the interface into two interface parameters
— Dn and Ds. In principle, Dn and Ds could be calculated for an interphase if its mechanical properties and
dimensions were known. Some sample calculations for planar interfaces are given in Ref. [23]. For example,
consider an interphase of thickness ti on a fiber. The discontinuity in axial displacement across the interphase
is r1[w] (w here is a dimensionless displacement). A simple one-dimensional analysis for shear strain in the
interphase gives

γrz,i =
r1[w]
ti

(50)

Substituting the imperfect interface model for [w] and assuming the interphase shear stiffness is Gi we find
a physical interpretation for Ds as

Ds =
r1Gi

ti
(51)

Thus Ds has units of a modulus and is related to the effective shear stiffness of the interphase. This one-
dimensional picture probably oversimplifies the physical meaning of Ds. Ds isbetter imagined as a measure
of the ability of the interphase to transfer stress from the matrix back into the fiber.

In the fragmentation test, thermal shrinkage of the matrix and differential Poisson’s contraction between
the fiber and the matrix both promote compressive radial stresses [26]. Calculation of σrr(1, ζ) from the
above stress analysis confirms that σrr is compressive over the entire interface except possibly for extremely
small zones near the fiber ends. Under dominantly compressive radial stresses, the expression for [u] implies
a negative discontinuity or implies the matrix penetrates into the fiber. This situation illustrates a flaw in
a linear imperfect interface. While negative discontinuities are permissible for tangential displacement, they
should be forbidden for normal displacements. In the fragmentation test we have the fortunate simplification
that σrr is compressive. We can thus prevent negative discontinuities in normal displacements while still
using a linear theory simply by setting Dn = ∞. We are not assuming the interface is perfect in the radial
direction; we are just exploiting the fact that σrr is compressive and therefore the quality of the interface in
the radial direction should have no effect on fragmentation results.

The boundary conditions for the fragmentation test with an imperfect interface reduce to:

σrr,1(1, ζ) = σrr,2(1, ζ) (52)
τrz,1(1, ζ) = τrz,2(1, ζ) (53)

[u] = 0 (54)

[w] =
∫ ζ

0

(
εzz,2 − εzz,1

)
dζ =

τrz,1(1, ζ)
Ds

(55)

〈σzz,1(±ρ)〉 = −1 (56)
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FIG. 2 — Sample calculation of the effect of an imperfect interface on the average axial tensile stress in an
HM carbon fiber as a function of distance along the fiber for a fiber fragment that is 200 fiber diameters long.
All stresses have been normalized to the far-field axial fiber stress of ψ∞. Ds = ∞ is a perfect interface.;
Ds = 0 is a disbonded interface; intermediate Ds’s (in MPa) are imperfect interfaces.

These conditions are exactly enough conditions to determine all the constants in the stress functions in
Eqs (28) and (29). The need for this result influenced the choice of the leading terms in the stress functions.
The constants are determined by equating, term-by-term, the terms in the Bessel-Fourier series of each
boundary condition. This process involves solving a 4× 4 linear system for each term in the Bessel-Fourier
series and one 4× 4 linear system for the constant terms. These equations can easily and rapidly be solved
on a personal computer.

For a sample calculation, we plot stress transfer from a high modulus (HM) carbon fiber to a room-
temperature cured epoxy matrix (see fiber and matrix properties in Table 1). Figure 2 plots the average
axial stress in the HM carbon fiber for various values of Ds. The stress has been normalized by dividing by
ψ∞. For a perfect interface (Ds = ∞) the stress transfers back into the fiber in about 30 fiber diameters.
Experimental results for stress transfer on the same fiber and matrix show stress transfer in about 50 fiber
diameters [27, 28]. Our calculations for a perfect interface with no parameters are in qualitative agreement
with experimental results. We note that stress transfer into anisotropic, high-modulus carbon fibers is
considerably slower than into isotropic glass fibers. The slower transfer into carbon fibers is mostly a
consequence of the higher modulus ratio between the fiber and the matrix [11, 15]. As Ds decreases, the
stress transfer zone gets longer. As Ds approaches zero, the axial stress approaches zero, as it should for a
disbonded interface. The specific value of Ds about 500 MPa gives a stress transfer zone of 50 fiber diameters
which agrees exactly with experimental results [27, 28].

Comparison to Raman Experiments

Certain Raman bands in carbon fibers shift when the fiber is under stress [29]. Several investigators have
used this shift to directly measure the stress in a carbon fiber embedded in a matrix (e.g., Refs. [27–32]).
Here we consider a specific set of experiments on a short HM carbon fiber embedded in a room-temperature
cured epoxy [28]. The mechanical properties for the fiber and matrix are given in Table 1. The short fibers
were embedded in the matrix and the stress in the fiber as a function of distance from the fiber end was
measured at several levels of applied strain. Details about the experimental procedures are given in Ref. [28].
In this section we compare two experimental results to predictions. The two experimental results are stress
transfer at low strain and stress transfer at high strain after evidence of interfacial damage.

The stress analysis in this paper is for a fragment that has broken away from a continuous fiber. The
experimental results are for an isolated end of an embedded short-fiber, which is formally different than the
end of a fragment from a continuous fiber. There is another consideration, however, that argues in favor
of comparing the analysis to experiments on short fibers instead of experiments on fragmented fibers. To
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FIG. 3 — A comparison of Raman measurements of stress transfer at an applied strain of 0.6% to predictions
using the Bessel-Fourier series. The Ds =∞ curve is the prediction for a perfect interface. Setting Ds = 500
MPa gives a more accurate prediction of the stress transfer process.

make specimens with fiber fragments, it is necessary to embed a continuous fiber in a matrix and extend
the specimen until the fiber begins to fragment. The first fragments do not appear until the applied strain
exceeds the strain to failure of the fiber or around 0.8% strain for HM fibers. Thus, it is impossible to
do experiments on fragments that have been loaded to less than 0.8% strain. If the fragmentation process
itself causes interfacial damage, then it is also impossible to study “elastic” transfer from the matrix to the
fiber. By elastic transfer, we mean stress transfer through an undamaged, although perhaps still imperfect,
interface. To get some results in the elastic regime, it is preferable to do experiments on short-fiber specimens.

Figure 3 compares the Raman measurements of stress transfer at an applied strain of 0.6% to the pre-
dictions of the Bessel-Fourier series stress analysis. We began by assuming a perfect interface. The result
in the Ds = ∞ curve shows that the predictions agree reasonably well with experimental results. The
experimental stress transfer, however, is slightly slower than the predictions. By varying Ds, we found
that Ds = 500 MPa agrees better with experimental results. Comparison to other experiments in the low-
strain regime (ε < 0.8%) [28] showed that they could all be fit well the same value of Ds. We claim that
Ds = 500 MPa provides a useful measure of the quality of the interface between HM carbon fibers and the
epoxy matrix.

Figure 4 shows experimental results at an applied strain of 1.0%. The stress transfer begins slowly, but
at about 50 fiber diameters from the end undergoes a discontinuous change in slope. Comparison to FIG. 2
shows that no single value of Ds can predict such a change in stress transfer rate. Instead, we suggest that
the high applied strain has caused a damaged zone in the vicinity of the fiber end. The damaged zone

TABLE 1 — Thermal and mechanical properties used for the fiber and the matrix.

Property HM or T50 Carbon Fibers Epoxy Matrix

Diameter (2r1) (µm) 7
Tensile Modulus (EA or Em) (GPa) 390 2.6
Transverse Modulus (ET ) (GPa) 14
Axial Shear Modulus (GA or Gm) (GPa) 20 0.97
Axial Poisson’s Ratio (νA or νm) 0.20 0.34
Transverse Poisson’s Ratio (νT ) 0.25
Axial CTE (αA or αm) (10−6/◦C) -0.36 40
Transverse CTE (αT ) (10−6/◦C) 18
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FIG. 4 — A comparison of Raman measurements of stress transfer at an applied strain of 1.0% to predictions
using the Bessel-Fourier series. The predictions are for a two zone model with Ds = 5 near the fiber break
and Ds = 500 in the central portion of the fiber.

could be caused by numerous events such as matrix cracking, matrix yielding, interfacial debonding, or fiber
splitting. Whatever the cause of the damage, we claim its effect is to change the effective value of Ds near
the fiber end. We thus propose a two-zone model as illustrated in FIG. 5. Within the damaged zone that
extends a distance rd from the fiber end, the interface is characterized by a low value of Ds. The stresses are
found by analysis of a fragment of axial ratio ρ1 which is equal to the axial ratio of the entire fragment. In
the central portion of the fragment, the Ds value is high. The stresses are found by analyzing a fragment of
length ρ2 where ρ2 is chosen such that the average axial fiber stress is continuous at the edge of the damaged
zone. The two-zone model is only an approximate model because only the average fiber stress is continuous
at the junction between the two zones. The axial and shear stresses in the matrix and the shear stress at
the interface will be discontinuous. We believe the two-zone model still provides a useful model for stress
transfer in the presence of a damaged interface.

Figure 4 compares predictions of the two-zone model to experimental results at an applied strain of 1.0%.
The Ds value in the center of the fiber represents stress transfer across an undamaged interface. As such,
it should be expected to be the same as the Ds value measured over the entire fiber fragment in low-strain
experiments. We thus used Ds = 500 MPa for the central zone. The best-fit Ds for the damaged zone

D  = 500 MPas

D  = 5 MPas

rd

ρ1
ρ2

FIG. 5 — A simple two-zone model for predicting stress transfer in the presence of interfacial damage. The
Ds value is low near the fiber ends and high in the middle of the fragment. rd is the length of the damaged
zone. The value of ρ2 is chosen such that the average axial stress in the fiber is continuous at the edge of the
damaged zone.
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was Ds = 5 MPa. Using these two values of Ds and a damaged zone size of rd = 48 fiber diameters, the
analysis agrees well with experimental results. Note that the high strain experiments have less scatter than
the low strain experiments because the absolute shifts in the Raman bands are larger. The Ds = 500 MPa
result obtained by fitting the central portion of the fiber is perhaps more reliable than the similar result
obtained by comparison to low-strain experiments. We also calculated the interfacial shear stresses and the
octahedral shear stress in the matrix using the two-zone model. The interfacial shear stress agrees well
with the Raman results [28]. The octahedral shear stress results suggest that the mechanism for interfacial
damage is matrix yielding. In other words, the size of the damage zone used to fit the experiments in
FIG. 4 coincides identically with the damage zone required to prevent the octahedral shear stress from ever
exceeding the condition for matrix yielding.

Fragmentation Test Analysis

In the fragmentation test, a given fiber fragment is typically assumed to break into two smaller fragments
when the stress in the fiber reaches the strength of the fiber at the length of the fragment. The peak stress
in a fragment is always in the middle. The fragmentation test is thus described by the equation

〈σzz,1(ζ = 0)〉 = σult(l) (57)

Inserting the Bessel-Fourier series analysis for 〈σzz,1(ζ = 0)〉 and inverting gives fragment length or fiber
break density (= 1/l) as a function of applied stress (σ0) and temperature differential (T ). In this section
we compare predictions to experimental results. Unfortunately, many fragmentation results report only the
critical length or the fiber break density after the fragmentation process ceases. To get more insight into
the fragmentation process, it is preferable to have data at sub-critical lengths or data that gives fiber break
density as a function of applied load [5, 6, 32]. Here we compare our predictions to experimental results by
Huang and Young [32]. They measured fiber break density as a function of applied strain for high-modulus,
PAN based, T50 carbon fibers in a room-temperature cured epoxy. The mechanical properties of the fiber
and matrix are given in Table 1.

The fiber length-strength relation was empirically found to be linear on a semi-log plot. T50 fiber strength
in GPa as a function of length in mm was measured to be [32]

σult(l) = 3.75− 0.817 log l (58)

Combining Eqs (57) and (58) and assuming the interface is characterized by a single value of Ds, we can
predict the fragmentation process as a function of Ds. The results are in FIG. 6. At low break density, the
experimental results can be predicted with a range in Ds. No single, value of Ds, however, can predict all
experimental results. The experimental results bend over more quickly than any of the theoretical curves.
Analogous to the Raman results, we suggest that the fragmentation results at high crack density should be
modeled with a two-zone model instead of a single value of Ds

To conduct a two-zone analysis of the fragmentation test we need to know Ds in the central portion of the
fiber, know Ds near the fiber break, and have enough information about the interfacial damage process to
predict rd as a function of applied strain. Ds in the central zone reflects stress transfer across an undamaged,
although possibly imperfect, interface. We find this value from the results at the lowest break densities. From
FIG. 6, the value of Ds that fits the results best without ever dropping below the results is Ds = 100 MPa.
Ds in the damaged zone influences the rate at which the predictions level off at high strain. For now, we
treat it as an adjustable parameter.

An important part of analyzing fragmentation tests is understanding the interfacial damage process and
predicting rd as a function of applied strain. We did not have specific information about interfacial damage
in these specimens. To guess a damage mechanism, we examined the interfacial stresses for applied strains
at the onset of damage or at the onset of deviations from the predictions when Ds = 100 MPa. We noticed
that the octahedral stress, defined as

τoct =
1
3

√
(σrr − σzz)2 + (σrr − σθθ)2 + (σzz − σθθ)2 + 6τ 2

rz, (59)

predicted no yielding for low strains, but predicted matrix yielding for strains above the onset of damage.
In other words, τoct ≈

√
2

3 σy, where σy = 75 MPa is the tensile yield stress of the matrix [32], at the onset of
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damage. We therefore suggest that interfacial damage in these specimens was controlled by matrix yielding
at the interface. For any given DS values in the damaged zone and the central zone, it is a simple calculation
to plot τoct along the interface for various values of rd. For each applied strain, we selected rd such that
the interfacial value of 3τoct√

2
was lower than the tensile yield stress of the matrix. One complication of this

analysis was that for a finite number of terms in the Bessel-Fourier series, there were oscillations in τoct. To
average out the high-frequency oscillations, we looked at the average value of τoct over a small region at the
tip of the damaged zone. We averaged τoct over a region that was 2% of the fiber length. This region size
was selected empirically; it was the smallest region for which the prediction of rd as a function of applied
strain was observed to independent of the number of terms used in the Bessel-Fourier series.

The results of predicting fragmentation results using a two-zone model are given in FIG. 7. We assumed
Ds = 100 MPa in the central zone, that the matrix tensile yield stress is 75 MPa, and that the interfacial
damage process is controlled by matrix yielding. By fitting the experimental data, we found Ds = 20–
30 MPa in the damaged zone. The predictions agree well with the experimental results. Although the
fit may not be unique, we have used fragmentation data to extract three pieces of information about the
interface. Ds = 100 MPa in the central zone characterizes stress transfer across an undamaged interface.
Ds = 20–30 MPa in the damaged zone characterizes stress transfer across a damaged interface. The yield
stress of 75 MPa characterizes the failure process at the interface.

Discussion

Analysis of both Raman experiments and fragmentation experiments makes it possible to determine Ds in
the “elastic” regime and Ds for a damaged interface. In Raman experiments, the elastic Ds can be determined
from either low-strain experiments or from the central portion of high-strain experiments. The damage-zone
Ds can be determined from results near the fiber end in high-strain experiments. In the fragmentation test,
the elastic Ds can be determined from the low break-density results. The damage-zone Ds can be determined
from the critical length results or from the rate at which the break density curve levels off. Both values of
Ds give information about the interface, but we suggest that the elastic Ds is much more relevant to real
laminates than the damage-zone Ds. Real laminates are not fragmented into critical length fragments. Thus
stress transfer in real laminates is controlled by the elastic Ds. To the extent that the interface plays a role
in laminate properties, its effect should be determined by the elastic Ds and much less influenced by the
damage-zone Ds.

We note that most work using the fragmentation test reports only the critical length or the corresponding
interfacial shear stress. Because critical length is controlled by the damage-zone Ds, it is possible that critical
length results are not relevant to the role of the interface in real laminates. The flaw of the fragmentation test
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FIG. 6 — Comparison between fragmentation experiments on T50 carbon fibers in a room-temperature cured
epoxy matrix and theoretical predictions assuming the interface can be characterized by a single value of Ds
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FIG. 7 — Comparison between fragmentation experiments on T50 carbon fibers in a room-temperature cured
epoxy matrix and theoretical predictions using a two -zone model. Ds = 100 MPa in the central zone; Ds,d (or
Ds in the damaged zone) equal to various values; the size of the damaged zone was assumed to be controlled
by matrix yielding at a tensile yield stress of 75 MPa.

is not in the experiment itself, but rather in the idea that only critical length is important. The fragmentation
test can be fixed by doing experiments at sub-critical length or at low break density [5, 6, 32]. The analysis
in this paper can be used to extract the elastic Ds from such experiments.

Complete modeling of the fragmentation test requires modeling the interfacial damage process. Here
we assumed a matrix yielding process based on the interfacial octahedral shear stress. An advantage of
the Bessel-Fourier series stress analysis is that we can calculate all the components interfacial stress and
therefore do a realistic interfacial yielding analysis. Some previous analyses have assumed shear yielding and
examined only the interfacial shear stress. Because interfacial shear stress is zero at the fiber break, a simple
shear yielding model is inadequate. It predicts there will be no yielding near the fiber break. In contrast,
the octahedral shear stress it not zero. Because of large radial, hoop, and axial stresses near the fiber break,
the octahedral shear stress is nonzero and yielding is naturally predicted to extend from the fiber break
along the interface. A realistic analysis of interfacial yielding must account for the important contributions
of normal stresses to the yielding process.

We do not claim that matrix yielding is the damage process in all fragmentation experiments. Other
damage modes such as matrix cracking, fiber cohesive failure, frictional sliding, or interfacial debonding might
occur instead. In principle, the Bessel-Fourier series stress analysis could be used to develop fragmentation
models based on other interfacial damage processes. For example, optical observation of the interface with
glass fibers in certain matrices suggests interfacial debonding as the fragmentation process proceeds [33]. We
are in the process of predicting such interfacial damage by calculating the energy release rate for growth of
an interfacial debond. The debonding could be predicted to grow when that energy release rate exceeds the
interfacial toughness. Perhaps the fragmentation test can then be used to measure interfacial toughness.

In principle, a fragmentation test as a function of applied strain can be used to extract information about
stress transfer across damaged or undamaged interfaces and about the interfacial damage process. Practi-
cally speaking, however, there are too many variables to be guaranteed of finding accurate information. A
preferred approach is to couple fragmentation experiments with independent experiments on the same spec-
imens. One could, for example, couple fragmentation experiments with Raman spectroscopy experiments.
The Raman experiments could be used to directly measure the elastic Ds and the damage-zone Ds. The
fragmentation experiments could input these parameters and focus on the interfacial damage process. Mod-
eling the interfacial damage could further be coupled with optical microscopy to insure that the proposed
failure models are realistic.
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