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Abstract

Because damage mechanics modeling involves damage initiation followed by propagation
that releases energy, it is often uncritically assumed to be an alternative implementation of
fracture mechanics. This paper tests that claim by running side-by-side damage mechanics
and explicit crack fracture mechanics simulations within the same code on three separate
problems. For a center-notched specimen loaded in tension, damage mechanics can repro-
duce all features of fracture mechanics, but with three restrictions. First, damage mechanics
must implement anisotropic damage mechanics rather then simpler isotropic or scalar dam-
age methods. Second, initiation stress and toughness used in damage mechanics must be
calibrated before damage mechanics can reproduce either fracture mechanics or experimental
results. Third, damage mechanics properties must scale with absolute size of discretization el-
ements. Two other problems considered were mixed-mode, dynamic fracture and cracking of
a brittle coating on a substrate. In each case, anisotropic damage mechanics can be made con-
sistent with fracture mechanics by suitable calibration of properties. An advantage of damage
mechanics is its potential to model certain complicated issues better then explicit crack frac-
ture mechanics. Two examples are dealing with a transition to shear failure and modeling of
fracture events such as periodic cracking in coatings.

Keywords: Damage Mechanics; Fracture Mechanics; Material Point Method; Computational
Mechanics

1. Introduction

While material response to subcritical loading is well modeled by computational mechanics,
extensions to numerically model initiation and propagation of failure is more complicated.
One approach with convincing results is modeling propagation of existing cracks in elastic
materials using fracture mechanics. Methods such as crack closure [1] or J -integral analysis
[2] can accurately calculate crack-tip stress intensity factors or energy release rate and use
those results to predict crack initiation. When using numerical methods that can grow cracks,
such modeling can include crack propagation predictions. Fracture mechanics models have
been validated by comparison to experiments.
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Nomenclature
Ac Particle crack area KI , KI I Stress intensity factors
ADaM Anisotropic Damage KI c , KI I c Critical stress intensity

Mechanics factors in fracture mechanics
CRAMP MPM with explicit cracks K(d)I c , K(d)I I c Critical stress intensity

factors in ADaM
D Damage tensor MPM Material Point Method
D Crack density ηn, ηt Stability scaling factors
dn, di j Damage parameters (0 to 1) ρ Density
δn, δi j Cracking strains σ Stress tensor
E Modulus σn Initiation normal stress
ε Strain tensor tc , ts Coating and substrate thickness
εres residual strain tensor τt Initiation shear stress
fn(δ), fn(δ) Normal and shear un, ui j Crack opening displacements

softening laws
G I c Energy released per Vp Particle volume

unit volume
G(d)I c , G(d)I I c Damage mechanics toughness ν Poisson’s ratio
GI c , GI I c Fracture mechanics toughness ∆xp Particle size
Gx y , Gxz Shear moduli ∆z Semiwidth of damaged zone
I Identity tensor

Fracture mechanics works very well for problems with a single existing crack or multiple,
non-interacting cracks. When real world problems start with no cracks or damage evolution re-
sults in interacting cracks, computational fracture mechanics modeling can become untenable.
A potential failure-modeling alternative is damage mechanics [3]. In brief, damage mechan-
ics introduces an evolving fourth-rank damage tensor (D) into the material’s constitutive law
between stress (σ) and strain (ε):

σ = (I−D)C0(ε − εres) (1)

where C0 is the undamaged material’s fourth-rank stiffness tensor and εres is a residual strain
(such as εres = α∆T for residual thermal strain due to temperature change ∆T with ther-
mal expansion tensor α). Damage mechanics can start without initial cracks (and D = 0)
and predict their initiation and orientation using various damage initiation criteria. But this
initiation only starts failure. Following initiation, damage evolves with final failure occurring
only after dissipation of energy equal to the material’s toughness. A connection between en-
ergy dissipated in damage mechanics and critical energy release rate in fracture mechanics is
typically cited as evidence that damage mechanics is equivalent to fracture mechanics. But
such claims are rarely validated by quantitative comparisons between damage mechanics and
fracture mechanics models.

Two damage mechanics methods are isotropic damage mechanics and anisotropic damage
mechanics. In isotropic damage mechanics, D is replaced by dI I where dI is a “scalar” damage
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parameter that evolves from 0 at initiation to 1 at final failure [4, 5]. In isotropic damage
mechanics, damage evolution leads to softening in all directions (or all elements of C0, see
Eq. (1)), but that is a very poor description of failure. Most failure proceeds by coalescence of
damage into a crack that causes the material to become anisotropic. For example, the tensile
modulus normal to the crack will be lower than tensile moduli parallel to the crack. These
fundamental problems with isotropic damage mechanics are potentially resolved by extension
to anisotropic damage mechanics, referred to here as ADaM. For example Chaboche et al.
[6, 7, 8] proposes an anisotropic D that depends on three damage parameters — dn for damage
normal to the cracks and dx y and dxz for shear damage transverse to the crack. Their proposed
D leads to softening in modulus normal to the crack and in two shear moduli parallel to the
crack plane. After damage, an initially isotropic material becomes an orthotropic material.

ADaM has several other features that recommend it as the preferred damage mechanics
method. First, the three damage parameters can be connected to three components of crack
opening displacement [9]. In other words, ADaM can model a so-called “strong discontinuity”
that physically represents a real crack [4, 5]. Second, normal and shear damage parameters
can partition dissipated energy into tensile (mode I) and shear (modes II and III) damage
energy. Such a partitioning is a prerequisite for modeling mixed-mode failure. Third, the abil-
ity to track crack opening displacement means ADaM can account for crack surface contact if
damaged zones are unloaded after damage initiation. Isotropic damage mechanics lacks these
features. A single damage parameter can neither track crack-opening displacement vector nor
partition energy into normal and shear components. Isotropic damage mechanics has more
in common with softening plasticity theory then fracture mechanics [4, 5]. ADaM, however,
goes beyond softening plasticity giving it potential as an alternative to fracture mechanics.

This paper uses implementations of both anisotropic damage mechanics [9] and explicit
crack fracture mechanics [10] within the same computational mechanics code and runs direct
comparisons between the two methods. Three problems were considered — mode I crack prop-
agation in a center-notched specimen, mixed-mode dynamic crack propagation, and cracking
of a brittle coating on a substrate. The first two were conventional fracture mechanics prob-
lems. ADaM modeling can reproduce fracture mechanics predictions provided ADaM failure
properties are calibrated to match. The “toughness” and “’strength” needed for ADaM mod-
eling differ from experimental toughness and strength values. The ADaM toughness must
be lower than experimental fracture mechanics toughness to account for ADaM describing
damage energy over a finite volume while fracture mechanics interprets toughness as energy
per unit fracture area. The ADaM strength describes initiation of failure in a region of stress
concentration that is physically distinct from experimental failure stress. Furthermore, ADaM
properties must scale with resolution otherwise damage mechanics predictions would be in-
consistent with scaling effects inherent in fracture mechanics. The third, coating/substrate
example is a problem that starts without cracks. ADaM can predict initiation and develop-
ment of multiple cracks in the coating that are consistent with many experimental results and
with energy models for predicting cracking as a function of coating thickness.
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2. Numerical Methods

All results here used the Material Point Method (MPM), which is a solid mechanics nu-
merical tool that is well suited for solving problems with large deformations, history- and
orientation-dependent damage, and contact [11, 12]. MPM is a hybrid Eulerian-Lagrangian
formulation where a modeled object is discretized into material points or particles. Infor-
mation needed to solve equations of motion is extrapolated back and forth between material
points and a background grid each time step. This work selected MPM because it has im-
plementations of both explicit crack propagation in arbitrary directions [10] and anisotropic
damage mechanics [9]. Although all numerical calculations used MPM, this work’s findings
are general and apply to comparisons between fracture mechanics and damage mechanics in
both MPM and finite element analysis (FEA). Calculations involving “particles” (or the mate-
rial points) in MPM correspond to calculations involving “elements” in FEA. This section briefly
describes explicit crack and damage mechanics modeling in MPM.

Explicit cracks can be modeled in MPM using the CRAMP (for “CRAcks in MP(M)”) algo-
rithm [10]. In brief, CRAMP extends MPM by introducing crack surfaces whose geometry is
defined by a collection of massless particles (in 2D, crack particles connect to define a crack
path). When extrapolating between material points and the background grid, the crack geom-
etry is used to partition velocity on the grid into separate velocity fields above and below the
crack surface. With these two velocity fields, MPM explicitly models the crack discontinuity
[10], can implement contact [13, 14] or traction laws [15] on crack surfaces, and can find
crack tip parameters such as J integral [16, 17]. The CRAMP extension of MPM is analogous
to XFEM extension of FEA to implement crack discontinuities [18, 19]. Because crack particles
work well in the particle-based MPM, CRAMP is a more natural extension of MPM than XFEM
is of FEA. Unlike XFEM, CRAMP does not need to modify any shape functions, does not need
any assumptions about crack-tip stress state, and can rigorously handle two interacting cracks
in the same background grid cell.

To model explicit, mixed-mode crack propagation in 2D problems considered here, total J
integral is partitioned into mode I and mode II stress intensity factors (KI and KI I) [16, 17]. The
partitioning is done by tracking crack opening displacements using the two grid velocity fields.
Mixed-mode crack propagation requires two criteria — a criterion to predict crack initiation
and a method to determine its propagation direction. These simulations used the maximum
hoop stress (or maximum energy release) criterion where a crack is predicted to propagate
in the maximum hoop stress direction (equivalently maximum mode I stress intensity factor
direction) [20]. The angle from crack direction to maximum hoop stress direction is [20]:

cosθ =
3R2 +

p
1+ 8R2

1+ 9R2
, sinθ = −R(3 cosθ − 1), and R=

KI I

|KI |
(2)

The mode I stress intensity factor in the hoop direction is [20]:

KIθ = cos
θ

2

�

KI cos2 θ

2
−

3
2

KI I sinθ
�

(3)

The maximum hoop stress criterion predicts crack propagation occurs when KIθ equals the
material’s mode I critical stress intensity toughness (KI c) and that crack propagation is in the
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θ direction. An alternate criterion is to assume crack growth in direction where KI Iθ = 0; this
approach would have similar predictions to the maximum hoop stress direction used here. In
CRAMP, a crack propagates by adding a crack particle ahead of the crack tip at angle θ to the
crack plane at a distance equal to MPM particle size. A special case for mode I fracture (where
KI I = 0) models crack propagation when KIθ = KI = KI c by self-similar propagation (θ = 0).

The damage mechanics (or ADaM) simulations here used the recent MPM implementation
described in Ref. [9] that uses the anisotropic D proposed by Chaboche et al. [6, 7, 8]. In brief,
an initially isotropic material loads elastically until a principle stress exceeds its tensile initi-
ation stress (σn) or until maximum shear stress exceeds its shear initiation stress (τt). Once
damage initiates, a particle is marked as damaged with a complete crack spanning its entire
cross-section. The crack normal and its area within the particle (Ac) are determined by princi-
ple stress directions and failure mode. The crack normal provides a one-to-one correspondence
between damage variables (dn, dx y , and dxz) and three components of the crack-opening dis-
placement vector (u = (un, ux y , uxz)) [9]. Within the crack axis system (coordinate system
with crack normal in the x direction), the material becomes orthotropic with reduced tensile
modulus normal to the crack (Ex x) and reduced shear moduli tangential to the crack (Gx y and
Gxz). The damage mechanics properties needed for initiation, damage evolution, and failure
are:

1. Two initiation stresses — σn and τt to initiate tensile or shear failure.
2. Evolve three cracking strains — (δn,δx y ,δxz) = Acu/Vp where Vp is particle volume and

Ac is crack surface area in the particle.
3. Two softening laws — fn(δn) to characterize how crack normal opening affects damage

and ft(δi j) to characterize how tangential crack sliding (in 2D) or two tangential slid-
ing directions (in 3D) affect damage. Note that 3D simulations have two shear damage
variables that can express different levels of damage in the two orthogonal shear direc-
tions, but by material isotropy, they use the same softening law. All simulations here
used linear softening laws.

The softening laws are made dimensionless and monotonic such that they decrease from
f (0) = 1 to f (δc) = 0 at some critical crack-opening strain. Damage evolution is determined
by limiting crack tractions to σn fn(δn) and τt ft(δi j) [9]. The area under the full softening law
is energy dissipated per unit volume, G I c. It is related to damage mechanics energy released
per unit area, G(d)I c , by scaling by the Vp/Ac ratio:

G(d)I c =
Vp

Ac
G I c =

Vpσn

Ac

∫ δnc

0

fn(δ) dδ =

∫ un,cri t

0

σn fn(un) dun (4)

where un,cri t is the critical crack-opening displacement. In other words, G(d)I c is area under
dimensioned softening law within a particle as a function of particle crack-opening displace-
ments. Analogous expressions hold for shear toughness, G(d)I I c .

ADaM models a “strong discontinuity” [4, 5] and tracks crack opening displacements. This
modeling allows ADaM to model mixed-mode failure with separate properties for mode I and
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Figure 1: A. Center-notch specimen loaded in tension. The right half of the specimen was modeled by symmetry.
B. Edged notch specimen loaded by impact between two notches with a impactor whose width equals the distance
between notches. The top half of the specimen was modeled by symmetry. C: Coating/substrate specimen loading
by axial tension.

mode II toughness. Modeling of mixed-mode failure used an elliptical failure criterion such
that 2D failure occurs when:

�

GI

G(d)I c

�2

+

�

GI I

G(d)I I c

�2

= 1 (5)

where GI and GI I are determined from energy released up to current crack-opening displace-
ment and G(d)I c and G(d)I I c are two damage mechanics toughness properties [9]. Finally, stability
in damage mechanics requires sufficient spatial resolution. As derived in Ref. [9], particle
linear dimensions, ∆xp (or element dimensions in FEA), must satisfy

∆xp <min

 

ηn

�

K (d)I c

σn

�2

,ηt

�

K (d)I I c

τt

�2!

(6)

where ηn and ηt depend on the softening law. The squared ratios of critical stress intensity
factor (K (d)I c or K (d)I I c ) to strength (σn and τt) have units of length and scale with crack-tip,
damage zone size [21, 22]. This stability condition shows that modeling brittle materials with
small damage zones requires higher resolution than modeling ductile materials. The η factors
are equal to 2 for linear softening. Furthermore they are maximized for linear softening,
which means linear softening is the most stable damage mechanics softening law [9]. Some
seemingly-reasonable softening laws should be avoided because they are always unstable (e.g.,
power-law softening).

3. Results

Three examples shown in Fig. 1 were used to compare fracture mechanics using CRAMP
to anisotropic damage mechanics using ADaM.
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3.1. Center-Notched Specimens in Tension
Figure 1A shows a tension-loaded, center-notched specimen (CNT). The modeled material

was aluminum with elastic properties E = 74 GPa, ν = 0.34, and ρ = 2.78 g/cm3. Typical
mode I failure properties for aluminum are GI c = 8 kJ/m2 (KI c = 25.87 MPa

p
m) [23] and

tensile strength σmax = 300 MPa. The specimen was loaded at a constant displacement rate
such that an aluminum stress wave (with vwave = 5159 m/s) would make n transits across
specimen length by the time the specimen is loaded to 1% strain. This timing corresponds
to a displacement rate equal to 1/(2n) percent of the material’s wave speed. The value of
n was increased until stress-strain curves approximated quasi-static conditions as evidenced
by simulated failure using fracture mechanics modeling agreeing with quasi-static fracture
predictions. A value of n = 25 was sufficiently slow and corresponds to displacement rate of
0.02% of the material’s wave speed. Each MPM simulation modeled the right half the specimen
with symmetry conditions along the midplane. All 2D simulations used a regular background
mesh with square cells and four particles per cell.

A CRAMP simulation for crack length as function of time for a specimen with l = w =
50 mm and a/W = 0.51 using 1 mm cells in the background mesh (or 0.5 mm particles)
is given in Fig. 2 (dashed curve). When cell size was varied from 0.25 mm cells to 5 mm
cells both initiation time and crack propagation speed remained constant, which indicates
fast convergence. Because explicit crack propagation is done in discrete increments equal
to particle size, low-resolution crack length curves had a “stair-step” appearance. A 1 mm
cell size was chosen for reference simulations because crack growth curves were relatively
smooth. Convergence was also confirmed by comparing simulated maximum stress, which
was σmax = 77.2 MPa, to fracture mechanics result of [21]:

σmax =
KI c

Y (a/W )
p
πa

(7)

where Y (a/W ) is fracture mechanics calibration function for CNT specimen with l/w = 1
and uniform displacement loading. Y (a/W ) was calculated using finite element crack closure
methods [24] resulting in Y (0.51) = 1.18 leading to fracture mechanics result of σmax =
77.5 MPa.

For ADaM modeling, mode I crack growth depends on G(d)I c , σn, and the linear softening
law fn(δn) (mode II properties were not needed). Figure 2 illustrates the process of comparing
ADaM properties to fracture mechanics predictions. The ADaM curves plot extent of failure by
tracking positions of failed materials points (decohesion by Eq. (5)) that develop starting at the
tip of an explicit (but non-propagating) crack. In other words, CRAMP was used to introduce
an explicit crack, but ADaM and crack tip stress state modeled the crack propagation. First,
a reasonable σn value was selected and G(d)I c was varied. Choosing G(d)I c = GI c significantly
differed from fracture mechanics. The explanation is that damage mechanics dissipates energy
over a damaged volume of particles in the crack path; the dissipated energy per unit volume
is G I c in Eq. (4). If we assume the damage volume extends a distance ∆z on either side of the
crack plane, equating total dissipated ADaM energy (G I c×(damage volume)) to total fracture
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Figure 2: Comparison of explicit fracture mechanics crack propagation by CRAMP modeling (thick dashed line)
with GI c = 8 kJ/m2 to several ADaM simulations with various values for G(d)I c and σn.

mechanics energy (GI c×(crack area A)) and using Vp/Ac ∼∆xp, leads to:

G I c2 A∆z = G(d)I c

Ac

Vp
2A∆z = GI cA or G(d)I c ∼ GI c

∆xp

2∆z
(8)

All simulations damaged at least one particle on each side of the crack plane suggesting ∆z ≥
∆xp and G(d)I c ≤ 0.5GI c. A more precise scaling was determined by fitting ADaM predictions
to fracture mechanics models. The main effect of varying G(d)I c was to shift crack initiation
time; setting G(d)I c = 0.354GI c led to damage mechanics simulations that matched fracture
mechanics initiation time. To refine the fit, damage initiation stress, σn, was varied from 100
to 1000 MPa (see Fig. 2). This variation predominantly changed crack growth rate, but could
affect initiation time (see σn = 1000 MPa curve). A best fit was found for σn = 330 MPa and
G(d)I c = 0.354GI c.

In summary, by calibrating ADaM properties, damage mechanics models can be made to
agree with fracture mechanics in virtually all features. The crack growth rates matched well
as did the full stress-strain curves (see Fig. 3) and specimen stress distributions [9]. Impor-
tantly, ADaM properties differ from aluminum failure properties. G(d)I c had to be scaled down
to account for damage volume in damage mechanics vs. energy per unit area in fracture me-
chanics. Initiation stress, σn, was determined by fitting to fracture mechanics modeling and
therefore had no relation to experimental strength of aluminum (although coincidentally, this
first initiation stress was close to its strength).

Consider this thought experiment — imagine a series of geometrically identical CNT spec-
imens (i.e., l/w and a/w constant ) with varying absolute widths. Elasticity analysis of such
specimens reveals that stress distributions as a function of non-dimensional x/w and y/w are
independent of specimen size. Fracture mechanics predictions of failure, however, depend
on size because stress intensity factor scales with absolute crack length. Now construct some
numerical failure model as an alternative to fracture mechanics. If that model is based on a
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Figure 3: Predicted stress strain curves for CRAMP modeling (dashed lines) compared to ADaM modeling (solid
curves) as a function of specimen width (as indicated) in mm. The oscillations are small dynamic effects, but
the loading rate was slow enough that transients never caused failure and the peak load agreed with quasi-static
fracture mechanics predictions.

stress-based criterion with input material properties that do not scale with absolute size, such
a numerical model would never agree with fracture mechanics. Fortunately, ADaM is not purely
a stress-based failure model. Although stress state is used to initiate damage, damage evolu-
tion is controlled by energy dissipated per unit volume. As discussed in Ref. [9] (and shown in
Eq. (4)), for constant input G(d)c , energy dissipation per unit volume scales with particle size.

To test ADaM scaling, a series of CNT specimens with l = w ranging from 1 to 200 mm
were analyzed. All specimens used 50 cells across the width leading to cell sizes ranging from
0.02 to 4 mm and all were loaded at a displacement rate equal to 0.02% of the material’s
wave speed. The triangular symbols in Fig. 4 plot ADaM failure load as a function of cell
size when using properties determined by fitting fracture mechanics for a 50 mm specimen
(σn = 330 MPa and G(d)I c = 0.354GI c). Although failure load changed with specimen width,
it did not match fracture mechanics predictions (solid line labeled σmax). The smallest 1 mm
specimen never fully damaged. The problem is that for constant σn and G(d)I c , the critical crack
opening displacement at failure (ucri t = 2G(d)I c /σn for linear softening) is also constant. To
reach ucri t , the crack-opening strain must reach ucri t/∆xp. For very small ∆xp, the required
strain is not reached prior to large-strain, crack-tip, numerical instabilities.

Two explanations are possible. First, ADaM may be giving the correct response to short
cracks. Fracture mechanics is known to eventually break down for short cracks [25] and
perhaps damage mechanics is realistically modeling a transition to different failure modes
for short cracks. Second, fracture mechanics is the correct model for elastic failure implying
that ADaM must change σn and/or G(d)I c with particle size to replicate fracture mechanics.
The required ADaM property changes for this second option were found by fitting to CRAMP
simulations as described above. The best-fit σn as function of cell size is plotted in Fig. 4. The
power-law fit has a slope of -0.49 that is caused by characteristic 1/

p
r dependence in crack
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Figure 4: Initiation stress, σn, and final failure stress, σmax , for aluminum CNT specimens as a function of cell
size. The triangles are ADaM results with constant σn = 330 MPa and G(d)I c = 0.354GI c; the open circles are
ADaM simulations with variable properties; the solid squares are CRAMP results. These results all varied cell
size by changing absolute width specimen. The diamonds are for a 50 mm CNT specimen where cell size was
changed by varying the resolution.

tip stress state [22]. All calibrated ADaM simulations agreed well with fracture mechanics
predictions as demonstrated by matching stress strain curves in Fig. 3. The maximum stresses,
σmax , from stress-strain curves are plotted in Fig. 4; ADaM and CRAMP were virtually identical
and agreed with fracture mechanics in Eq. (7). The best-fit G(d)I c increased slightly for smaller
specimens, but except for the smallest 1 mm specimen (20 µm cells), G(d)I c = (0.36± 0.03)GI c

over a 100-fold change in cell size.
A second scaling test kept specimen width constant (w = 50 mm) but varied particle size

(i.e., varied resolution). Figure 4 (diamond-shaped symbols) plots the σn needed to match
fracture mechanics. These results are plotting the effect of cell size on σn for constant width
but variable resolution. The trend matches previous results for effect of cell size at variable
width but constant resolution (circles). The resolution results did not continue to smallest cell
size because the total number of particles made the problem too large for practical, manual
calibration of properties. In practice, simulations of this specimen would not need 0.2 mm
cells (or 200 cells across the specimen width) to resolve crack tip details, but all results show
that properties do need to scale with particle size for both changes in resolution and changes
in absolute specimen size.

The above ADaM simulations used CRAMP to introduce an explicit crack and ADaM to
predict propagation. The same problem can also be modeled entirely using damage mechanics
by modeling the crack with a line of fully damaged particles when the simulation begins. Such
simulations gave results identical to above simulations provided that the initially damaged
particles spanned the width of an entire cell in the background grid. In other words, in MPM
modeling with 2 particles across width of each cell, the initial crack requires a path of failed
particles at least two particles wide.
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In summary, ADaM properties differ from material toughness and strength and they must
scale with particle size. For aluminum modeling, best-fit ADaM properties in mode I were
σn ∼ 330/

p

2∆xp MPa and G(d)I c ∼ 0.36GI c = 2880 J/m2. All these simulations used a regular
grid with equally-sized particles having the same ADaM properties. In contrast, FEA models
that use variably-sized elements in an effort to resolve some areas more than others (or MPM
modeling with variable size particles), must vary ADaM properties within the same simulation
depending on element (or particle) size. Without such scaling, the model will not correctly
predict damage propagation that moves between areas in the model having different resolu-
tion. Scaling rules determined here were for square elements. The scaling for rectangular or
arbitrary, isoparametric elements may differ.

3.2. Mixed Mode Simulation Compared to Experiments
Figure 1B shows a double-edge notched specimen impacted with a cylindrical projectile

whose diameter matches the distance between the two cracks. Selected experiments with this
configuration are described by Kahltoff and Winkler [26, 27] and their results have been the
subject of several numerical investigations [28, 29, 30]. The projectile was fired with air gun
velocities ranging from 10 m/s to 100 m/s. The specimen was 100×200 mm with two 50 mm
cracks separated by 50 mm. The fracture experiments were done on high-strength steel. No
steel properties were provided; these simulations used typical high-strength steel properties
E = 190,000 MPa, ν= 0.3, and ρ = 7.83 g/cm3. The experimental papers [26, 27] specified
neither length nor mass of the steel projectile. Assuming a figure in Ref. [27] was drawn to
scale, the projectile was estimated to be 75 mm in length. To model using 2D simulations,
projectile density was adjusted such that mass of the modeled 75 × 50 mm rectangular slab
had the same total mass as a 75 mm long cylinder. The simulations modeled the top half of
the specimen using midplane symmetry. Both experiments and simulations impacted a free-
floating specimen or a specimen not held by any fixtures or boundary conditions.

The experiments were done on specimens prepared with different notch radii and con-
cluded that observations scale with vimp/

p
r where vimp is impact velocity and r is notch-tip

radius [26, 27]. Some experiments were labeled “precracked” and meant to be sharp cracks
(with estimated r = 0.2 mm [26, 27]). The simulations done here did not attempt to resolve
notch-tip radius effects and therefore focused on sharp-crack results. A summary of experi-
mental observations scaled to sharp cracks conditions [26, 27] follows:

1. At low velocity, impact causes no crack propagation, but at a critical velocity of about
10 m/s, it suddenly causes a full crack (i.e., complete specimen failure) with initial crack
growth at about 70◦ to the initial notch direction.

2. For velocities above about 20 m/s, failure transitions to shear failure.
3. After the transition, impacts cause incomplete shear failure with the shear cracks “in a

direction which is almost identical with the original direction of the notch,” but “inclined
by a small angle” toward the specimen midplane [27]. The shear damage increases in
length until becoming a full crack through the specimen at about 40 m/s.

These crack-length “observations” as a function of impact velocity are plotted in Fig. 5.
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Figure 5: Final crack growth for double-edge notched specimens loaded in impact as a function of impact velocity.
The thick solid curves are idealized experimental “observations”; the open squares are CRAMP results; the open
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CRAMP simulations for this specimen used 1 mm cells (or 0.5 mm particles). The steel
toughness was determined by varying KI c until no crack growth was observed below the ex-
perimental initiation at vimp = 10 m/s. The numerically-determined, plane-strain toughness
was KI c = 37 MPa

p
m (or GI c = 6557 J/m2). The predicted crack angle started at 70◦ and

then decreased slightly as crack propagation developed (see Fig. 6). The experimental result
of 70◦ was determined from “only the beginning of the crack path” [27] and therefore matched
the CRAMP modeling. Simulations at other resolutions confirmed that 1 mm cells provided
converged results. All subsequent ADaM simulations used this same resolution.

The observed crack growth at 70◦ is characteristic of a mode I failure path for a crack
subjected to mode II loading. By maximum hoop stress criterion, pure mode II loading has

lim
KI→0

cosθ =
1
3

or θ = 70.5◦ (9)

In other words, the maximum hoop stress criterion in explicit crack modeling should inevitably
get crack growth at close to 70◦. ADaM modeling, however, has no direction criterion. The
direction is controlled by initiation criterion, which here used principle stress directions. To test
ADaM simulation of angled cracks, the first simulations focused on mode I damage mechanics
properties. Again, G(d)I c had to be less than 0.5GI c to observe transition to crack initiation
around vimp = 10 m/s. For fixed G(d)I c , changes in σn had two effects. First, crack angle
increased from about 60◦ to 85◦ as σn increased from 500 to 1500 MPa. Second, if σn was too
low, dynamic stress waves caused crack initiation on the free edge opposite the impact that
propagated along the specimen midplane. Once a midplane crack formed, the angled crack
propagation stopped. With G(d)I c = 0.5GI c,σn had to be 800 to 1000 MPa to reproduce observed
crack angle, but this stress was too low to prevent midplane cracking. By decreasing G(d)I c to
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Figure 6: The crack propagation paths predicted by CRAMP modeling (solid line), by ADaM tensile failure simu-
lations, and by ADaM simulations with shear failure (solid symbols). For reference, the dashed line shows a 70◦

crack that corresponds to the initial crack direction observed in experiments at impact velocity below 20 m/s.

0.3GI c and using σn = 1200 MPa, ADaM gave a single angled crack close to the experimental
angle. The initial ADaM crack angle was higher then 70◦, but overall averaged about 70◦(see
Fig. 6). Because the damage process turned from the initial crack to the mode I stress direction,
as long as mode II properties had τt > 0.5σn = 600 MPa and G(d)I I c > GI c, failure was dominated
by mode I damage and results were unaffected by mode II properties.

Figure 5 plots final crack length as a function of impact velocity for both CRAMP (open
squares) and mode I failure using ADaM (open circles) simulations as a function of impact
velocity. The CRAMP simulations, like experimental results, had an abrupt change from no
crack growth to complete failure by an angled cracks at vimp > 10 m/s. The crack angle
decreased to about 62◦ at vimp = 40 m/s, but never switched to shear cracks as observed in
experiments [26, 27]. Mode I ADaM simulations also had a transition to complete failure
around vimp = 10 m/s, but it was more gradual than for CRAMP — failure started with vimp =
8 m/s and did not reach failure until vimp = 15 /ms. For vimp > 20 m/s, mode I ADaM
simulations continued to show a dominant crack at angles around 70◦. The highest velocity
started to develop horizontal branches off the main crack. While appearance of branching at
high velocities is potentially interesting, no branched was mentioned in experiments [26, 27].

Neither CRAMP nor ADaM can predict a transition to shear failure at vimp = 20 m/s. Frac-
ture mechanics modeling would require proposing new mixed-mode criteria for failure load
and direction at higher impact velocity. But, how or why should these change? Similarly, ADaM
modeling would require rate-dependent damage properties, but maybe only small changes
would be needed? The next ADaM simulations attempted to fit experimental observations by
changing just G(d)I I c , and τt while keeping mode I properties fixed. While these simulations
showed shear cracks, they did not arrest the angled crack. For simulations consistent with
experiments, G(d)I c was increased until shear failure dominated the damage process and then

13



G(d)I I c , and τt were varied to match experimental results. The solid circles in Fig. 5 compare
ADaM crack propagation to experimental observations by using G(d)I c = 2GI c, G(d)I I c = 5.7GI c,
and τt = 500 MPa (σn was kept constant at 1200 MPa). With these properties, predicted
crack length vs. impact velocity tracked observations well (see Fig. 5). Predicted shear cracks
were in the direction of the original crack with a slight bend toward sample midplane near
the free edge (see Fig. 6). Experimental observations may indicate slightly more inclination
toward specimen midplane [26, 27]. Although selected changes in ADaM properties (such as
to G(d)I I c = 3.8GI c and τt = 425 MPa) could replicate more inclination toward the midplane,
the final failure became coalescence of a crack emanating from the crack tip with a crack that
initiated later on free edge of the specimen. The experiments did not have the time resolution
needed to determine if shear cracks formed by this process.

In summary, all experimental results can be reproduced by setting G(d)I I c = 5.7GI c and σn =
1200 MPa while G(d)I c and τt depend on impact velocity. For vimp < 20 m/s, G(d)I c = 0.3GI c and
τt > 600 MPa. But for vimp > 20 m/s, G(d)I c increases significantly (to at least G(d)I c = 2GI c)
and τt decreases slightly to τt = 500 MPa. Certainly ADaM could not predict double-edge
notched specimen results by input of literature values for toughness and strength of high-
speed steel. But, once damage mechanics properties are calibrated by these experiments,
one could hope ADaM simulations could predict dynamic fracture of high-speed steel under
other loading conditions. With additional experiments, damage mechanics properties and
their rate dependences could be refined further. As determined in CNT simulations, these
damage mechanics properties for high-speed steel, especially σn and τt , would need to scale
with absolute material points (or element) size.

3.3. Cracking of Coatings and Comparison to Finite Fracture Mechanics
Reference [9] showed that ADaM can predict formation of periodic cracks in brittle coatings

that reproduces many features seen in experiments. This section extends that modeling to
higher-resolution simulations, to looking at effect of coating thickness, and to compare ADaM
predictions to finite fracture mechanics modeling for coating cracks.

Figure 1 shows a coating of thickness tc (with mechanical properties Ec = 10 GPa, νc =
0.33, and ρc = 1 g/cm3) on a substrate of thickness ts = 10 mm (with mechanical properties
Es = 1 GPa, νs = 0.33, and ρs = 1 g/cm3). A specimen of length L = 200 mm was loaded
by displacement control in the x direction up to 2% total strain. To simulate brittle cracking,
damage mechanics properties of the coating were wet to σc = 10 MPa and G(d)I c = 100 J/m2.
For simulation of tensile cracking, mode II damage properties had no affect provided τt > σn/2
and G(d)I I c § G(d)I c . Figure 7 shows three simulations for tc = 2, 3, and 4 mm. Each simulation
initiated damage throughout the entire coating soon after applied strain reached initiation
strain of εn = σn/Ec = 0.1%. On continued loading, isolated regions failed as “decohesion
cracks” (see Fig. 1) that eventually developed into a periodic array of coating cracks. The
symbols in Fig. 7 plot crack density as a function of applied strain. All simulations used 0.5 mm
cells (0.25 mm particles), which was verified as sufficiently small for convergence. Crack
density curves were independent of loading rate providing the rate was less than 2 m/s; all
simulations used 1 m/s, which corresponds to 0.1% of the substrate’s tensile wave speed (or
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Figure 7: Crack density as a function of applied strain by ADaM simulations (symbols) and as fit to finite frac-
ture mechanics modeling (solid lines). The three curves are for three different coating thicknesses. All ADaM
simulations used σn = 10 MPa and G(d)I c = 100 J/m2. All finite fracture mechanics fits used Gmc = 500 J/m2 and
f = 1.4. The vertical dashed line is the assumed ADaM initiation strain.

0.32% of the coating’s tensile wave speed). These simulations are an interesting example of
predicting localization (i.e., formation of multiple cracks), but it is challenging to speculate
on why it worked so well. Presumably, once a particle fails the nearby particles are rapidly
induced to fail and a crack propagates across the width of the coating while stress reduction
on other particles near the crack plane kept the damage localized. This localization occurs
despite the use of homogenous properties. Localization into multiple cracks in other materials
might need new numerical methods such as stochastic initiation of failure properties providing
weak zones that promote cracks.

ADaM predictions for crack density as a function of applied strain agree with experimental
observations on cracking of coatings [31, 32, 33, 34]. Specifically, soon after the first coating
crack, crack density increases rapidly. Eventually at higher strain, cracking slows or approaches
a saturation crack distribution. Notice that the strain to initiate cracking is 0.40%, 0.24%, and
0.20% for the 2, 3, and 4 mm thick coatings, respectively. All these values are above the
damage mechanics initiation strain of εn = 0.1%. While some might be tempted to accept
the strain at initiation of cracking as an experimental measure of damage mechanics initiation
strain, that approach would be wrong. Damage mechanics initiation strain is when damage
starts, but that damage would typically be invisible. The first crack only forms after sufficient
energy has been dissipated to fail the particles. This observation is an example of the difference
between damage mechanics initiation criteria needed and experimental strength observations
as determined by stress at some observed failure.

Because all coating simulations used the same size particles (0.25 mm), damage mechan-
ics properties were kept constant as coating thickness changed. Nevertheless, ADaM simu-
lations predicted scaling effects in cracking of coatings. As coating thickness increased, the
strain at crack initiation decreased. At high strain, the saturation crack density decreased for
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thicker coatings. These scaling predictions agree with experimental observations on cracking
of coatings [31, 32, 33, 34] and on more-extensive cracking observations in layered compos-
ites [35, 36, 37]. Any attempt at failure modeling based on crack formation when stress in a
layer reaches its strength would never agree with experiments. This short-coming of strength
criteria has been confirmed by poor results when strength criteria were use to interpret layer
cracking experiments [35, 36, 37]. ADaM’s ability to correctly predict scaling is a significant
feature that recommend its use for future work on unexplored issues about layer cracking.

Predicting coating cracks is an example problem that relies on initiation criteria. A damage
mechanics approach has potential to work on such problems while explicit crack fracture me-
chanics is hindered by lack of initial cracks. Although conventional fracture mechanics cannot
be used and strength-based models always fail to predict scaling effects, cracking of coatings
and layers in composites has been successfully modeled by an extension of fracture mechanics
to a method termed “finite fracture mechanics” [35, 38, 36, 37]. Finite fracture mechanics is
an energy-based method to predict fracture events whereby the next fracture event is predicted
to occur when total energy released by that event equals material toughness [31, 39, 34].

Finite fracture mechanics for coatings requires analysis for energy released by each coating
crack. The analysis can begin by evaluating effective modulus of the coating/substrate spec-
imen, Ee f f (D), as a function of current crack density, D, in the coating layer. A variational
mechanics analysis results in [31, 39]:

1
Ee f f (D)

=
1
E0

�

1+
2t2

c D

tc + ts
ψ(D)

�

(10)

where ψ(D) is a dimensionless function.1 Now imagine a new crack forming between two
existing cracks separated by distance L = f /D. The factor f is used to account for a distribution
of crack spacings. Because the amount of energy released is higher for larger L, each new crack
tends to form in regions with higher L implying f > 1. Experimental results confirm that
f = 1.25 to 1.5 provides good approach to accounting for crack distribution effects [35]. The
energy release rate for forming a crack in such an interval interval (in the absence of residual
stresses as modeled here) is [31, 39]:

Gm =
P2

2
dC
dA
→

P2

2
∆C(D/ f )
∆A

= σ2 tc

Y 2
c (D/ f )

E0
(11)

where Yc(D) =
p

2ψ(D/2)−ψ(D) is a dimensionless calibration function. Importantly, Gm is
found by discrete differentiation of compliance, C(D) = f /

�

D(tc + ts)W Ee f f (D/ f )
�

, and finite
area due to formation of a complete coating crack (∆A= t1W ). Alternative models that treat
D as a continuous variable give poor results [35]. Predicted failure strain as a function of crack
density becomes:

εmax(D) =
σmax(D)
Ee f f (D)

=

p

Gmc E0

Ee f f (D)Yc(D/ f )
p

tc
(12)

1Equation (10) is derived from Eq. (21) in Ref. [39] by defining ψ(D) = 2C3E2
c χ(ρ)/E0 where ρ = 1/(2tc D)

is a dimensionless crack spacing, C3 is constant with units 1/pressure, and χ(ρ) is dimensionless function derived
from solution to a 4th order differential equation that minimizes complementary energy.
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where Gmc is the coating’s cracking toughness. which is assumed to be a thickness-indepen-
dent, material property. This finite fracture mechanics result is analogous to the conventional
fracture mechanics result in Eq. (7). Crack-length scaling in conventional fracture is replaced
by coating thickness scaling in finite fracture mechanics. The

p
tc in the denominator explains

why initial cracking strain decreases as coating thickness increases.
Finite fracture mechanics predictions were compared to ADaM simulations. The finite frac-

ture mechanics modeling needed three material properties — Gmc, f , and Ec(εi). Like GI c vs.
G(d)I c for crack propagation, Gmc is expected to be different, and higher, than G(d)I c = 100 J/m2

used in ADaM simulations. The parameter f can refine fits, but should remain between 1.25
and 1.5. Finally Ec(εi) is coating modulus at the onset of cracking where εi is strain to ini-
tiate cracking (which is always greater than εn to initiate damage). In linear-elastic, finite
fracture mechanics modeling, Ec is simply the coating modulus [31, 39]. But that analysis is
predicting energy associated with cracks forming in an undamaged coating. The ADaM simu-
lations show that damage accumulates prior to the first crack. Because fits using undamaged
coating modulus did not work well, Ec(εi) was adjusted to account for damage. From the
average stiffness seen in ADaM modeling with a 2 mm coating prior to any coating cracking,
the effective modulus of the damaged coating was estimated as Ec(0.40%) = 3.4 GPa. By
Eq. (12), initiation strain decreases for thicker coatings suggesting less damage at initiation
or that Ec(εi) should increase with

p
tc. The coating modulus at initiation was therefore as-

sumed to be Ec(εi) = 3.4
p

3/2 = 4.16 GPa and Ec(εi) = 3.4
p

4/2 = 4.81 GPa for 3 and
4 mm coatings, respectively. In brief, finite fracture mechanics modeling was fit to ADaM sim-
ulations by varying Gmc for values greater than 100 J/m2, keeping f between 1.25 and 1.5,
and fixing Ec(εi) to values determined above. These Gmc and f parameters were assumed to
be thickness-independent material properties. The finite fracture mechanics fits are the solid
lines in Fig. 7 and all agreed well with the ADaM simulations. The finite fracture mechanics
properties were Gmc = 500 J/m2 and f = 1.4. The ADaM simulations are consistent with finite
fracture mechanics models and both are consistent with experiments on cracking of coatings.

4. Conclusions

Direct comparisons of damage mechanics simulations to fracture mechanics modeling with
explicit cracks on the same problem within the same code has revealed both the potential
power of damage mechanics and significant pitfalls of damage mechanics modeling if done
incorrectly. Some key conclusions are:

1. Damage mechanics implementation must use anisotropic damage mechanics [6, 7, 8,
9]. Anisotropic features are needed to partition loading into tensile and shear modes
for modeling of mixed-mode failure and to handle crack contact. Isotropic (or scalar)
damage mechanics has no sensible means for either partitioning dissipated energy or
tracking crack opening displacements.

2. Damage mechanics properties for initiation stress and toughness require calibration to
match fracture mechanics predictions. The toughness is always lower than observed
toughness. Initiation stress for damage differs from experimental stress at failure. If
suitable damage mechanics properties are selected, damage mechanics works well.
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3. Damage mechanics initiation stress is not a material property because it must scale with
material point size (or element size in FEA). This scaling would extend to simulations
with variable-sized material points (or elements) within a single simulation where ini-
tiation stress must be different for each particle (or element). The damage mechanics
toughness is relatively insensitive to scaling and therefore a material property, albeit one
that differs from experimental material toughness.

4. If anisotropic damage mechanics only reproduced fracture mechanics, it would be un-
interesting. The simulations of periodic cracks in coatings that combined initiation and
propagation show that anisotropic damage mechanics has potential in problems where
fracture mechanics is unsuitable.
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