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Abstract

Extensive estimates of forest productivity are required to understand the relationships between shifting land use, changing climate

and carbon storage and fluxes. Aboveground net primary production of wood (NPPAw) is a major component of total NPP and of net

ecosystem production (NEP). Remote sensing of NPP and NPPAw is generally based on light use efficiency or process-based

biogeochemistry models. However, validating these large area flux estimates remains a major challenge. In this study we develop an

independent approach to estimating NPPAw, based on stand age and biomass, that could be implemented over a large area and used in

validation efforts. Stand age is first mapped by iterative unsupervised classification of a multi-temporal sequence of images from a

passive optical sensor (e.g. Landsat TM). Stand age is then cross-tabulated with estimates of stand height and aboveground biomass

from lidar remote sensing. NPPAw is then calculated as the average increment in lidar-estimated biomass over the time period

determined using change detection. In western Oregon, productivity estimates made using this method compared well with forest

inventory estimates and were significantly different than estimates from a spatially distributed biogeochemistry model. The generality of

the relationship between lidar-based canopy characteristics and stand biomass means that this approach could potentially be widely

applicable to landscapes with stand replacing disturbance regimes, notably in regions where forest inventories are not routinely

maintained.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Several alternative approaches have been employed for

spatial scaling of net primary production (NPP) in forests.

One approach relies heavily on remote sensing of fAPAR (the

fraction of photosynthetically active radiation (PAR)
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absorbed by the canopy). The combination of fAPAR and

incident PAR is used to determine absorbed PAR (APAR)

and a model based on light use efficiency converts APAR to

NPP per unit area (e.g. Goetz et al., 1999). A second scaling

approach relies on models that are more process-based and

that are driven primarily by distributed meteorological data

(e.g. Bachelet et al., 2003). Validation of scaled NPP

products from both of these approaches has been limited.

However, comparisons with independent measurements are

needed to improve model parameterization and to further

model development.

For the purposes of understanding the carbon cycle,

estimation of aboveground wood production (NPPAw) is
ent 95 (2005) 549–558



Fig. 1. Map of sampling areas used to create the unified equation relating

lidar measurements to field estimates of aboveground biomass. A total of 87

plots were distributed in these five areas. The lines indicate ecoregion

boundaries.
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particularly important since NPPAw is often closely related

to net ecosystem production (NEP, Curtis et al., 2002). This

relationship of NPPAw to NEP is strongest in young stands

but breaks down in recently disturbed stands where

heterotrophic respiration is high, and in old stands where

tree mortality tends to balance NPPAw. Some light use

efficiency models, e.g. the 3-PG model (Landsberg &

Waring, 1997), and most process-based models have

allocation algorithms that isolate NPPAw. The difficulties

in validating modeled NPPAw relate to both methodological

issues with measurements of NPPAw and constraints on

achieving a comprehensive sample of points over large

spatial domains.

Measurement strategies have focused defining NPP as

NPP ¼ RPi þ Hi

where Pi is the net production of dry biomass for plant

tissue (i) and H is the loss to herbivory (Gower et al.,

1999). In temperate forests, NPPAw is commonly deter-

mined by an allometric method (e.g. Acker et al., 2002),

wherein total stem biomass is estimated from allometric

equations based on stem diameter, and NPPAw is

estimated from the difference in stem biomass at two

points in time. Some of the issues that arise include:

evaluating the suitability of allometric equations, account-

ing for mortality, and ensuring continuity in the measure-

ment protocols. With regard to devising the layout of

sample points, critical issues include: achieving represen-

tativeness, optimizing sample locations to maximize

access to existing roads, and minimizing spatial autocor-

relation. In some cases, existing networks of permanent

plots–such as the U.S. Forest Service Forest Inventory

and Analysis (FIA) plots–have been used for NPPAw
validation (Jenkins et al., 2001; Law et al., 2004), but are

therefore limited to areas where such inventories are

available.

In this study, we demonstrate the potential of integrated

lidar and Landsat datasets for characterizing NPPAw over a

spatially extensive set of plots (the lidar/change detection or

LCD approach). We first developed a generalized relation-

ship between forest canopy characteristics (estimated by

lidar remote sensing) and tree biomass (calculated from field

measurements). We then used multitemporal Landsat

imagery (1972–1995) to determine stand ages up to 23

years over a large area of coniferous forest in western

Oregon. A set of 407 plots was then identified by

segmenting them from the portions of existing lidar flight

lines that were coincident with areas of change. NPPAw was

then calculated as the average increment in lidar-estimated

biomass during stand development. Both the NPPAw and

aboveground biomass estimates provide a basis for evaluat-

ing estimates of the same variables from a spatially

distributed biogeochemistry model. Results were also

compared to regional, age-specific, NPPAw estimates from

FIA data.
2. Methods

2.1. A generalized canopy structure–biomass equation

To relate lidar estimates of canopy structure to field

measurements of stand biomass, field data was collected in

five study areas (Fig. 1). Plots were established along lidar

transects, with plot locations based on the objective of

achieving a range of stand ages and canopy structures.

2.1.1. SLICER data collections

Lidar waveforms were collected by the SLICER (Scan-

ning Lidar Imager of Canopies by Echo Recovery) instru-

ment in September 1995 (Fig. 2). SLICER is a modified

scanning version of a profiling laser altimeter developed at

Goddard Space Flight Center (Blair et al., 1994). The

SLICER system digitizes the entire height-varying return

laser power signal, resulting in a waveform that records the

reflection of light from multiple canopy elements (foliage

and woody structure) over a large (5–10 m diameter)

footprint, at the wavelength of the transmitted pulse (1064

nm). The lidar waveforms used in this work had a nominal

footprint diameter of 10 m, and were collected in a swath

that was 5 footprints wide (Lefsky et al., 1999a).

Georeferencing of lidar footprints is accomplished by

combining laser ranging data with aircraft position, obtained

via kinematic GPS methods, and laser pointing, obtained
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with a laser-ring gyro Inertial Navigation System mounted

on the SLICER instrument (Blair et al., 1994). Georeferenc-

ing of the SLICER data used in this study was done at

Goddard Space Flight Center using software developed by

J. Bryan Blair. During the period in which these measure-

ments were taken, the vertical resolution of the waveforms

collected by SLICER was set at 11 cm, which when

combined with the 600 vertical sample waveform, limited

the waveform to a maximum height of 66 m. Due to

additional constraints in the waveform processing software,

all waveforms greater than 63 m have been truncated to 63

m. Given the tall stature of trees in Oregon and Washington

forests (up to 75 m), the truncation problem affects about

3% of the waveforms used in these analyses. Ground returns

on several footprints of old-growth plots had to be set by

hand due to loss of the ground return as a consequence of

the truncation error. Ground return positions were set based

on the characteristics of adjacent footprints and independent

estimates of topography (Means et al., 1999).

2.1.2. Field dataset

Field sampling was performed in 1996 at H.J. Andrews

Experimental Forest (26 plots), in 1998 at the Metolius

Research Natural Area (12 plots), in 1999 at the Cascade

Head Experimental Forest (13 plots) and Coast study area

(25 plots), and in 2000 at Mt. Rainier National Park (10

plots). Tree composition at these locations reflects climate

and edaphic variability, potential vegetation type, and past

and present management practices in Pacific Northwest

forests (Franklin & Dyrness, 1988). Cascade Head, the

most productive site, is dominated by Picea sitchensi

(Sitka spruce) and Tsuga heterophylla (western hemlock).

Both the Coast Range forest and H.J. Andrews sites are

predominately Pseudotsuga menziesii (Douglas-fir), with

significant T. heterophylla (western hemlock) at HJA, and

abundant Alnus rubra (red alder) in the understory of the

coastal forest. The plots at Mt. Rainier are all above 1300

m elevation and their composition is largely made up of a

variety of btrueQ firs: Abies amabilis (Pacific silver fir),

Abies lasiocarpa (sub-alpine fir), and Abies procera (noble

fir) as well a number of other species, including
Chameocyparis nootkatensis (Alaskan cedar), T. hetero-

phylla, and T. mertensiana (mountain hemlock). The

Metolious Research Natural Area on the east side of the

Cascade Range near Sisters, Oregon, is dominated by

Pinus ponderosa (Ponderosa Pine), which accounts for

88% of basal area.

Eighty-four 0.25 ha field plots were established under

existing SLICER transects using locations determined using

differentially corrected GPS (Global Positioning System)

receivers. At each plot a 50-by-50 m plot was oriented with

the bearing of the SLICER transect, and laid out with

dimensions corrected for slope. The intensity of field

sampling was a function of stand structure. On old-growth

plots all trees greater than 1.37 m tall were measured. On

young and mature plots where tree densities were higher, all

trees greater than 1.37 m tall were measured on subplots.

Tree diameters were initially measured on 3 or 5 subplots,

each 10 m in diameter. Then the number of additional

subplots (5, 9, or 13) needed to sample at least 30 dominant

and codominant trees was estimated and regularly spaced to

cover the full extent of the plot. In each subplot, all trees

greater than breast height (1.37 m), species, diameter at

breast height, and crown ratio (the proportion of the bole

with live crown) were recorded. More details on field data

collection and processing can be found in Lefsky et al.

(1999a).

Total aboveground biomass (AGBM) was estimated

from DBH and height using allometric equations gen-

erated from a dataset of tree volume collected in 18

different protected areas and experimental forests through-

out the Pacific Northwest and Colorado (Franklin, 2002).

Site productivity has a significant effect on the allometric

relations between tree height and DBH, and as a

consequence, AGBM and DBH. The Schumacher equa-

tion (Schumacher & Hall, 1933) was adopted to reduce

the impact of site productivity on estimates of above-

ground biomass at each site. The Schumacher equation

uses both the height and diameter of trees to predict stem

volume, or when wood density is considered, stem

biomass. Because trees in high productivity locations

are taller, in general, for a given diameter, they will also
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have higher volume and biomass than trees of the same

diameter on lower productivity sites. Therefore equations

based on DBH alone may be biased when applied at sites

of varying productivity. Wood and bark densities were

taken from USDA Forest Products Laboratory’s Wood

Handbook (USDA Forest Products Laboratory, 1999). As

in Lefsky et al. (2005a) an additional 10% was added to

the bole biomass to account for branch biomass, which

along with bole biomass provides aboveground woody

biomass.

To utilize these equations, estimates of height and DBH

are required for every tree. Measuring the height of each

individual tree was not feasible for all 11280 trees sampled

in this study; the heights of 1096 trees were measured using

a laser rangefinder. The height of trees that did not have

measured heights was estimated using an imputation

procedure (Lefsky et al., 2005a; Moeur & Stage, 1995)

and allometric equations based on the Schumacher equation

were used to compute aboveground biomass for each tree

(Lefsky et al., 2005a).

2.1.3. Lidar processing

We used the 84 field plots for the development of

canopy structure–biomass regression equations. Sixty-four

of the field plots (76%) had 25 waveforms (collected as a

five-by-five array). Six of the 19 plots that had less than

25 waveforms were at the Mt. Rainier site. These plots are

all found where varying aircraft speed led to the distance

between waveforms being stretched in the direction of

flight, changing the number of waveform footprints that fit

within the standard 50 m�50 m sampling plots. For one

plot at the COAST site and two plots at the HJA site, we

sampled conditions that were less than 50 m�50 m in

size, and therefore we used a subset that was smaller than

25 waveforms. This was due to a need to obtain certain

forest conditions that were only available in patches less

than the standard size. The remaining 10 plots are all

located at the Metolius site, where the fine grained spatial

pattern of the ponderosa pine stands meant that a 50�50

plot would have encompassed a wide variety of stand

conditions, and so between 5 and 23 waveforms (12 on

average) defined a plot.

In a waveform-recording system such as SLICER, the

height of the canopy is measured as the vertical distance

between the elevation of the first return energy and the

elevation of the peak of the ground return. The elevation of

the first return energy is the point at which the power of the

reflected light exceeds a threshold value; passing this

threshold triggers the sensor’s waveform recording process.

The position of the peak of the ground return is calculated

using the IMH (Interactive MacArthur-Horn) waveform

processing software (Harding et al., 2001). The mean

canopy height is then calculated for all the waveforms

coincident with a stand.

A second variable used in this work is based on the

calculation of the canopy height profile (CHP) which is a
modification of the foliage height profile or FHP (Mac-

Arthur & Horn, 1969). The FHP quantifies the distribution

of foliage surface area as a function of height. Because

SLICER cannot distinguish woody surface area and foliage

surface area, the CHP is defined as the distribution of both

foliar and woody surface area as a function of height. One

measurement made using CHPs is the quadratic mean

canopy height which is calculated as the mean of the canopy

height profile weighted by the squared height of each

element. This variable has been shown to be valuable in the

prediction of stand characteristics in an eastern deciduous

forest (Lefsky et al., 1999b). In this work, the standard

deviation of each of the quadratic mean canopy heights

associated with a plot is used as an estimate of canopy

variability.

The third variable used in this work is the oligophotic

volume, which is derived from the canopy volume method

(CVM, Lefsky et al., 1999a). This method is explicitly

volumetric as it uses a grid of contiguous lidar waveforms

(e.g. 5�5 horizontal footprints) to characterize the forest

canopy as a three-dimensional array. Oligophotic volume is

the volume of space that is filled with foliage and woody

biomass but which is below the height at which 65% of the

lidar signal has been returned to the sensor—a proxy for

shaded lighting conditions. Oligophotic volume is, there-

fore, the estimated volume of shaded foliage and woody

material within the canopy.

Lefsky et al. (1999a) and Lefsky et al. (2005b) fully

describe these canopy structure indices, and the mecha-

nisms relating them to aboveground biomass. Estimates

of these indices of canopy structure from SLICER were

transformed into estimates of aboveground biomass using

a single equation derived from analysis of data collected

on the 87 field plots. Stepwise multiple regression was

used to develop the following equation relating lidar

estimates of forest canopy structure and field estimates of

aboveground biomass (Fig. 3):

AGBM ¼ 4:236þ 0:200TCHP H X2 þ 13:325TOLIGO

þ 24:300TCHP Q SD ð1Þ

where AGBM units are Mg ha�1, CHP_H_X2 is the

mean height of the forest canopy (m), squared, OLIGO is

the volume of shaded foliage and woody biomass in the

canopy (m3), and CHP_Q_SH is the standard deviation

of the quadratic mean height of the canopy (m).

The R2 of the equation is 87% (Pb0.0001), the RMSE is

118.5 Mg ha�1. When regressions between predicted and

observed AGBM were performed for individual study sites,

none of the resulting regressions showed significant differ-

ences between their slopes and intercepts and those

expected with a identity relationship (e.g. Intercept=0,

Slope=1). The relationship was then applied to the total

lidar dataset by segmenting the lidar footprints into 5�5,

non-overlapping, arrays of data, processing the data to

produce estimates of canopy structure indices for the entire
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dataset, and then using the above equation to create

estimates of aboveground biomass, as well as well canopy

height.

2.2. Determining stand age

A time series of Landsat images was used to estimate the

ages of all stands disturbed between 1972 and 1995. This is

possible because, in this region, stand replacement dis-

turbance has a strong and distinct spectral signal in Landsat

data (Cohen et al., 1998). Stand age at the time of the

SLICER flights was determined as the difference between

the year of the SLICER flights (1995) and the midpoint of

the time period in which stand replacement occurred.

Estimates of stand age from image processing used in this

paper were developed and verified by Cohen et al. (1998,

2002), and their methods are only briefly described here.

The images used are from the Landsat satellite; the earlier

dates are from the Multispectral Scanner (MSS) sensor and

the latter are from the Thematic Mapper (TM) sensor. Cohen

et al. (2002) selected the years 1972, 1977, 1984, 1991 and

1995 as target years from image processing, although in

some cases, good quality images from these year were not

available and images from adjacent years were used. As in

Cohen et al. (1998), each individual MSS and TM image

was transformed into Tasseled Cap brightness and greenness

vegetation indexes (Crist & Cicone, 1984; Kauth &

Thomas, 1976), and for TM images, the Tasseled Cap

wetness index, for a total of 15 spectral bands. A
georeferenced mosaic of images from 1988 was developed;

all images from the other dates were georeferenced to this

mosaic. There were radiometric differences among the

images in both space and time, but the noise associated

with temporal radiometric differences is minimal relative to

the signal from stand replacement forest disturbance (Cohen

et al., 1998).

This method follows a prototype disturbance detection

exercise reported by Cohen et al. (1998) and a conceptual

examination of change detection algorithms by Cohen and

Fiorella (1998). First, an unsupervised classification is

performed on a full stack of 15 Tasseled Cap indices.

Unsupervised clustering was an iterative process whereby

individual image pixels were labeled as bdisturbedQ (by time

period), bundisturbed,Q or bconfused.Q bConfusedQ pixels

were reclustered several times until all pixels could be

confidently labeled as bdisturbedQ or bundisturbed.Q The

resulting map was subjected to two additional processes for

further refinement. The first was to relabel all nonforest

land-use areas as nonforest, using a zoning data layer

available through the Oregon State Services Center for GIS.

The second process was to bsmoothQ all patches within the

forest class (both disturbed and undisturbed) using a 3�3

majority filter and then merge all patches less than 2 ha with

surrounding patches that were larger than 2 ha. The rule set

used allowed all patches of forest disturbed during different

time intervals to be merged prior to any mergers of disturbed

and undisturbed forest. Fig. 2 illustrates the intersection of a

lidar transect with the ages of patches defined by the multi-

temporal image analysis.

2.3. Estimation of NPPAw from lidar and Landsat

For segments of the SLICER transects that were

identified as disturbed by the Landsat change detection,

AGBM was calculated and averaged. NPPAw was then

calculated as the rate of increase in the average AGBM

that occurred between two time periods. Originally the two

time periods used were the youngest and oldest but, due to

biases in the earliest years’ AGBM estimates, the 14.5 and

20.5 age-classes were used for subsequent analysis. During

the first years of succession, the change in foliar biomass

is minimal relative to the change in woody biomass so our

NPPAw is effectively mean annual wood production over

the life of the stand. Note that formally, mean annual

increment (MAI) is based specifically on the age at

maximum annual increment (Hanson et al., 2002), but

that here the reference age is set by the change detection

analysis.

2.4. Estimation of NPPAw with Biome-BGC

Biome-BGC is a daily time-step biogeochemistry model

with physiologically based algorithms for photosynthesis,

autotrophic respiration and heterotrophic respiration (Run-

ning & Hunt, 1993; Thornton, 1998; Thornton et al., 2002).
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For the purposes of scaling NPP or its components such as

NPPAw over a region, the model is run cell-by-cell over a

grid covering the area of interest. Model inputs for this study

included distributed meteorological data from an 18-year

daily climatology for the PNW region at a 1-km resolution,

developed from the DAYMET model (Thornton et al., 2000,

1997; Thornton & Running, 1999).

The general procedures for application and validation

of Biome-BGC in the Pacific Northwest (PNW) region

have been reported elsewhere (Law et al., 2004; Turner et

al., 2003, 2004a). The major carbon compartments, or

pools, in the model include leaves and fine roots, as well

as bole, coarse roots, coarse woody debris (CWD), litter

and two classes of soil organic matter. To establish the

initial conditions for those pools, a model bspin-upQ is

run. The soil carbon pools are brought into approximate

equilibrium with the local climate during this thousand-

year model run. In the spin-up, a multi-year climate time

series is run repeatedly. Because most stands in the PNW

region originated from catastrophic disturbances (Wallin

et al., 1996), i.e. fire or logging, two successive dis-

turbances are simulated at the end of each spin-up. The

model was then run forward to the stand age specified by

the change detection analysis. Then the Biome-BGC

estimate of aboveground biomass associated with each

disturbed plot along the lidar transect (407 plots) was

isolated and NPPAw was determined from stand age and

biomass. No attempt was made to correct for the difference

in spatial resolution between the 1 km spatial resolution of

BIOME-BGC model and the 50 m resolution of the

SLICER data; a direct comparison were made between each

dataset.

2.5. Estimation of biomass and NPP from forest inventory

data

To serve as a third source of biomass and NPPAw
estimates, plot-level data collected by the USDA Forest

Service Forest Inventory and Analysis (FIA) program

(USDA Forest Service Forest Inventory and Analysis,

1992) and the Forest Service’s Current Vegetation Survey

were obtained for western Oregon. These two surveys

cover the majority of forested lands, both private and

public, although they exclude the small amount of forest

on BLM lands in western Oregon. Inventory methods vary,

but plots averaged about 1 ha in area. The species and

diameter of each tree with a diameter at breast height

greater than 2.54 cm were sampled on 1–10 nested fixed

or variable-radius plots, and height was measured on a

sub-sample of the trees (Ohmann & Gregory, 2002). As

with the field data from lidar calibration plots, the heights

of trees that did not have measured heights were estimated

using an imputation procedure (Lefsky et al., 2005a;

Moeur & Stage, 1995), and allometric equations based

on the Schumacher equation (Lefsky et al., submitted for

publication-a) were used to compute aboveground biomass
for each tree. Ages for the forest inventory plots are

defined using the age-at-breast height information collected

by the inventory. The FIA plots were aggregated into age

class bins for the purposes of comparisons with the age

classes based on change detection, and NPPAw was

calculated in the same manner as for the lidar estimates

of aboveground biomass.
3. Results

Across all segments in the lidar transects, the mean rate

of canopy height growth increased nonlinearly with age

(Fig. 4), and mean canopy height reached 11.5 m in the

oldest age class (20.5 years). The relationship of lidar

predictions of AGBM for all plots against AGBM

estimated by Biome-BGC shows that Biome-BGC esti-

mates (Fig. 5) are lower, particularly at low values, but are

well correlated (R2=64%). There are likely a number of

reasons that the relationship is not stronger. First the ages

of disturbed stands were estimated as the midpoint of each

~5 year interval. Second BGC estimates are based on a

complex physiological model that may be inexactly para-

meterized and formulated. Thirdly, both sets of estimates

are based on non-linear allometric equations that are by

nature somewhat generalized. Finally, in the earliest age-

classes there is a small positive offset in the lidar estimates

of aboveground biomass (~22 Mg ha�1), due to the lidar

device over-estimating the height of the trees in the

smallest stands—probably a result of the presence of

snags, stumps, etc., that cause an over estimation of stand

height.

The mean aboveground biomass for each of the age

classes, as predicted using lidar and Biome-BGC showed a

similar pattern of increase with stand age. For the first two

age classes the inventory estimates were between those

from lidar and BGC, but were highest for the oldest 3 age

classes. In all age-classes, the estimates are within a 20–30

Mg ha�1 range. Differences between the inventory results

and lidar estimates are partially related to the spatial



0

20

40

60

80

100
Lidar

BIOME-BGC

2
.0

5
.5

9
.0

1
4
.5

2
0
.5

Years Since Disturbance

Estimates of Aboveground Biomass (Mgha-1)

Fig. 7. Estimates of aboveground biomass (Mg ha�1) as a function of years

since disturbance, for two methods: lidar predictions and Biome-BGC mode

results. Results from each method have been split into two classes: above

and below the 50th percentile aboveground biomass value for each dataset.

r2 = 64%

0

20

40

60

80

100

120

140

160

180

L
id

ar
 E

st
im

at
e

20 40 60 80 100 120 140 160 1800

Biome-BGC Estimate 

Estimates of Aboveground Biomass (Mgha-1)

Fig. 5. Comparison of aboveground biomass (Mg ha�1) estimated from

lidar/change detection and from Biome-BGC.

M.A. Lefsky et al. / Remote Sensing of Environment 95 (2005) 549–558 555
limitation of the lidar transects relative to the inventory

data. Calculation of regional mean NPPAw was performed

using the oldest age classes (ages 14.5–20.5), due to the

lidar method’s higher estimates of aboveground biomass

for the earlier age classes that were noted before (e.g.

presence of stumps and small trees in early succession

plots). The calculation resulted in the following estimates:

6.7 Mg ha�1 year�1 for the LCD approach, 6.8 Mg ha�1

year�1 for Biome-BGC, and 7.2 Mg ha�1 year�1 for the

inventory approach.

We also tested the ability of this NPPAw method to

measure variability in productivity. To define productivity

classes, the Biome-BGC estimates of final plot biomass

were used to classify each patch into either high productiv-

ity (above mean biomass) or low productivity (below mean

biomass). Both the Biome-BGC and lidar estimates of

biomass were plotted as in Fig. 6, but split into high and low

classes on the basis of the Biome-BGC productivity classes

(Fig. 7). At 20.5 years, the difference between high and low
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Fig. 6. Estimates of aboveground biomass (Mg ha�1) as a function of years

since disturbance, from three methods: lidar predictions, Biome-BGC

model results, and forest inventory plots.
productivity estimates from lidar is ~10 Mg ha�1, while the

difference between high and low estimates from Biome-

BGC was ~20 Mg ha�1.
4. Discussion

The method presented here for estimating NPPAw may be

widely applicable. It requires only that, over the area of

interest, a significant number of patches have undergone

stand replacement disturbance of a type that can be mapped

with confidence. In some high productivity areas, distin-

guishing even very young stands may be difficult (Nelson et

al., 2000), although high temporal resolution for the change

detection may be one way to circumvent this problem.

Regions in which clearcutting is the dominant mode of

forest harvest would be particularly suitable. In areas with

high cloud cover, such as some tropical areas, obtaining

lidar and multi-temporal coverage of stand disturbance may

be difficult (Asner, 2001). However, this method allows

considerable flexibility in image selection, both in terms of

the time of year, and the year of coverage. The year of

coverage can be shifted by multiple years, as long as the

year of coverage of individual multi-temporal stacks of

images are recorded, and the years of the other images are

shifted to avoid having too large a time interval. The time

interval used in this study (~5 years) is fairly coarse; an

interval of 1–3 years would help in reducing the error in the

aboveground biomass (and therefore NPPAw) estimates.

This method also requires the availability of an adequate

number of lidar observations coincident with the disturbed

patches, and that a relationship between lidar measurements

of canopy height and aboveground biomass is available for

the area in question. The former requirement could be met

either by airborne lidar collections over a large area (as in

this work, but preferably with more systematic sampling) or

from spaceborne lidar with systematic sampling of a large

landscape. Predicting aboveground biomass from lidar-
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measured canopy height has now been shown to be

straightforward exercise in a variety of forested biomes,

and physiognomic types (Drake et al., 2002; Lefsky et al.,

1999a, 1999b). In addition, it has now been shown that

height-to-biomass relationships are quite stable among

contrasting biomes (Lefsky et al., 2002) and among sites

of different productivities within a biome (Lefsky et al.,

2005b). Nevertheless, local calibration of these relationships

would be desirable.

Because the satellite record extends back only to 1972

(with the launch of the first Earth Resources Technology

Satellite, later renamed Landsat), the LCD approach to

estimating NPPAw is currently restricted to the first 30 years

or so of stand development. When and if a spaceborne lidar

sensor with the ability to accurately measure canopy height

is deployed, the potential will exist for extensive coverage

of the land. As the lidar record is extended and disturbed

sites begin to be revisited, it will also be possible to begin

estimating the periodic annual wood increment (PAI) rather

than the MAI (e.g. on a decadal scale). NPP and NPPAw
generally increase in early succession and achieve their

maximum values approximately when LAI is at its

maximum (Ryan et al., 1997). Declines in NPPAw in older

stands are often on the order of 50% (Acker et al., 2002;

Gower et al., 1999). The periodic annual increment would

be most relevant to validation of light use efficiency and

process-based models driven by the LAI/fAPAR and climate

observed from the same period.

In this study, the results for the 14–20 year old stands

were most reliable; noise associated with residual vegetation

left after disturbance introduces error on the younger sites.

Note, however, that in terms of estimating the actual NPPAw
this method would have a low bias that would increase with

stand age. The issue here is that an estimate of NPPAw based

on differences in total live biomass misses the effects of

mortality. Field measurements of NPPAw based on resurveys

of permanent plots usually track each tree and can thus

either count production tree by tree, in which case mortality

can be ignored, or account for the effects of mortality if

estimating NPPAw by difference in total biomass. The

mortality term is a small proportion of NPPAw (calculated

by difference in total biomass) in a young stand but can be

quite large in old stands (Acker et al., 2002); although the

length of the satellite record is not yet long enough to

include these old stands.

A primary advantage of the LCD approach to

validation of models used for modeling NPP is its

potential to be spatially extensive. Because of the

significant resource requirements for measuring NPP

(Clark et al., 2001), and the significant scaling issues

associated with the local heterogeneity and the mismatch

in scale between the coarse resolution of the satellite-based

NPP estimates (e.g. 1 km) and the fine resolution at which

NPP measurements are made (e.g. 25 m plots), efforts to

validate the NPP estimates from the AVHRR and MODIS

sensors have been quite limited (Running et al., 1999;
Turner et al., 2004b). When process-based models are

used in the development of validation data, the LCD

approach could help in model calibration and validation.

In this study, we found an apparent underestimation of

NPPAw from the Biome-BGC model runs; this could

potentially be addressed by efforts to refine model

parameterization. A notable virtue of the LCD approach

is that it requires little or no historical data collection, thus

extending validation efforts to forest areas that do not

have established forest inventory programs.

Besides identifying possible overall estimation errors in

model output, the LCD approach also potentially gives

information on model sensitivity to environmental variation.

The spatially varying inputs to Biome BGC include soil

properties, as well as climate variables that could be

formulated as climate indices, e.g. growing season precip-

itation. Plots of residuals in the LCD vs. model-based

approach against these spatially varying inputs could help

isolate particular weaknesses in model algorithms that might

be the focus of further model development.

In using mean values for different age classes to estimate

mean regional NPPAw by age class, this study suffers from

the usual limitations associated with a space-for-time study

design. This type of analysis typically is successful when

the effect of particular historic events is small relative to the

overall historic trend, and fails when historic effects are

large (Pickett, 1989). In this case, aboveground biomass in

any one time period is treated as if it is independent of the

particular time period of stand initiation. It could be that the

climatic conditions that were prevalent during one period

would lead to variations in stand initiation that could affect

aboveground biomass. However, the biomass of these

stands are related to the accumulated climatic effects that

were prevalent during (in the case of the periods used for the

regional NPPAw analysis) the first 14.5 to 20.5 year of stand

development, and those stands had 14.5 years in common.

While this does not rule out the possibility of variations in

productivity due to climatic effects, it should minimize

those effects.

More troubling is the possibility that the population of

stands that were disturbed in the 14.5 year old age class is

fundamentally different from those stands being disturbed in

the 20.5 year old age class. If, as in this landscape, logging

is the primary disturbance, these activities may move from

high productivity sites to low productivity sites or from

publicly managed lands to privately managed lands. If, for

instance, logging did progress from easily accessible, high

productivity sites in the lowlands to higher altitude, lower

productivity sites along hill slopes, the difference between

older and younger stands is likely to be overstated, resulting

in an overestimate of NPPAw. Therefore, knowledge of the

disturbance and climatic history of an area, along with

explicit analysis of the spatial distribution of disturbance, is

desirable in using the LCD approach.

Pickett (1989) notes that space-for-time studies and more

rigorous short- or long-term analyses are not mutually
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exclusive. In fact, a simple complementary analysis using

lidar to estimate productivity is possible using a modified

design in which a small number of plots are followed up

with a second set of lidar observations, spatially coincident

with the first set, but taken 3–5 years later. In this case,

NPPAw could be directly estimated using separate above-

ground biomass estimates for each date, and then compared

to NPPAw estimates from the space for time age class

sequence based on the regional set of points.

Because lidar is effective at quantifying LAI and leaf

biomass (Lefsky et al., 1999a), there is also the possibility of

adding an estimate of foliage production (NPPf) to NPPAw.

In a deciduous forest, NPPf is simply the foliar biomass. In

evergreen forests, the situation is more complicated because

foliage retention time (FRT) may vary among species and

age classes (Reich et al., 1995). However, generalizations

about particular forest types are possible and estimates of

NPPf are made based on foliage biomass and FRT (e.g.

Runyon et al., 1994). Given estimates of NPPAw and NPPf,

then allometric relationships of NPPAw to coarse root

production, and NPPf to fine root production, make possible

an estimate of total NPP. New uncertainties have of course

been added at each step and results would require significant

validation based on whole ecosystem measurements of NPP.

Nevertheless, these estimates of NPP would be relevant to

validation of the MODIS NPP product which is based on a

light use efficiency algorithm but does not specifically

allocate NPP to wood, foliage and roots (Running et al.,

1999).
5. Conclusions

Validation of regional to global estimates of NPP is a

significant research challenge. The combination of lidar

estimates of biomass and change detection estimates of

stand age (the LCD approach) makes it possible to produce

spatially extensive estimates of NPPAw over forested regions

that are relevant to large scale validation efforts. In this

study, the LCD approach was applied to estimate only

NPPAw for relatively young stands in western OR, however,

the on-going extension of the lidar and Landsat records will

gradually increase the proportion of the forest land surface

that can be analyzed.
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