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Abstract

Spatially-distributed estimates of biologically-driven CO2 flux are of interest in relation to understanding the global
carbon cycle. Global coverage by satellite sensors offers an opportunity to assess terrestrial carbon (C) flux using
a variety of approaches and corresponding spatial resolutions. An important consideration in evaluating the ap-
proaches concerns the scale of the spatial heterogeneity in land cover over the domain being studied. In the Pacific
Northwest region of the United States, forests are highly fragmented with respect to stand age class and hence C
flux. In this study, the effects of spatial resolution on estimates of total annual net primary production (NPP) and
net ecosystem production (NEP) for a 96 km2 area in the central Cascades Mountains of western Oregon were
examined. The scaling approach was a simple ‘measure and multiply’ algorithm. At the highest spatial resolution
(25 m), a stand age map derived from Landsat Thematic Mapper imagery provided the area for each of six forest
age classes. The products of area for each age class and its respective NPP or NEP were summed for the area wide
estimates. In order to evaluate potential errors at coarser resolutions, the stand age map was resampled to grain sizes
of 100, 250, 500 and 1000 m using a majority filter reclassification. Local variance in near-infrared (NIR) band
digital number at successively coarser grain sizes was also examined to characterize the scale of the heterogeneity
in the scene. For this managed forest landscape, proportional estimation error in land cover classification at the
coarsest resolution varied from−1.0 to+0.6 depending on the initial representation and the spatial distribution of
the age class. The overall accuracy of the 1000 m resolution map was 42% with respect to the 25 m map. Analysis
of local variance in NIR digital number suggested a patch size on the order of 100–500 m on a side. Total estimated
NPP was 12% lower and total estimated NEP was 4% lower at 1000 m compared to 25 m. Carbon flux estimates
based on quantifying differences in total biomass stored on the landscape at two points in time might be affected
more strongly by a coarse resolution analysis because the differences among classes in biomass are more extreme
than the differences in C flux and because the additional steps in the flux algorithm would contribute to error
propagation. Scaling exercises involving reclassification of fine scale imagery over a range of grain sizes may be a
useful screening tool for stratifying regions of the terrestrial surface relative to optimizing the spatial resolution for
C flux estimation purposes.

Introduction

Spatially-explicit analyses of ecosystem carbon flux
are required for understanding the current global car-
bon (C) cycle (Schimel 1995a). Because of its broad

spatial coverage, satellite remote sensing has been
used in a variety of approaches to estimate various
components of terrestrial C flux. In the ‘measure and
multiply’ approach (Schimel and Potter 1995) for net
primary production (NPP) and net ecosystem produc-
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tion (NEP), the area of each vegetation type derived
from remote sensing is multiplied by a representative
C flux for that vegetation type. In the ‘difference’
approach, remote sensing has been used to monitor
changes in land cover associated with deforestation
(Riley et al. 1997) or forest harvest (Cohen et al. 1996)
and C flux is estimated as the difference in total C
storage over the landscape at two points in time di-
vided by the interval between image acquisitions. A
more process-based approach involves application of
spatially-distributed biogeochemistry models for NPP
and NEP which are initialized with land cover type
and leaf area index from remote sensing (Hunt et al.
1996). Alternatively, a theoretical or empirical light
use efficiency factor can be used for estimation of NPP
over large areas when estimates of absorbed photo-
synthetically active radiation are derived from remote
sensing (Prince and Goward 1995). The spatial res-
olution or grain size in the studies employing these
approaches has largely been determined by the specifi-
cations of the particular sensor used in the study which
ranges from the 30 m resolution of the TM (Thematic
Mapper) sensor to the 8 km resolution of the global
AVHRR (Advanced Very High Resolution Radiome-
ter) Pathfinder data set. The degree to which sensor
resolution contributes to uncertainty in these studies
has generally not been addressed.

The Moderate Resolution Imaging Spectrometer
(MODIS) sensor, intended to be the primary instru-
ment for global observation of the terrestrial surface in
the Earth Observing System (EOS) era (Justice et al.
1998), will have a spatial resolution on the order of
250–1000 m depending on the spectral band. This
range of resolutions was a compromise between the
desire for daily global coverage, which has proved
useful in applications of AVHRR data to monitoring
of vegetation phenology (Justice et al. 1985) and clas-
sification of land cover (Loveland et al. 1991), and
the desire for high spatial resolution for monitoring of
land cover change. The compromise is forced by the
technical constraints related to processing and storing
the associated digital data. Significant spatial hetero-
geneity in land surface properties may nevertheless
occur at spatial resolutions finer than 250–1000 m
in many areas, and a number of studies have inves-
tigated how accuracy in characteristics such as land
cover classification is affected by the spatial resolution
of the analysis (Townsend and Justice 1988; Moody
and Woodcock 1995). As the EOS era efforts to moni-
tor terrestrial NPP globally based on satellite imagery
are implemented (Running et al. 1999), it will be im-

portant to investigate the role of spatial resolution on
accuracy at local validation sites (Reich et al. 1999).

The coniferous forests of the Pacific Northwest
(PNW) region are of particular interest with respect
to the C cycle. Accumulations of living and dead bio-
mass are among the highest in the world, thus logging
creates both a large C source from burning and de-
composition of logging residue and C sinks from long
lived forest products (Harmon et al. 1990; Cohen et al.
1996). Productivity rates are also relatively high in
many areas (Waring and Franklin 1979; Grier et al.
1989) which creates large C sinks when rates of log-
ging are moderated, as has been the case on public
lands recently (Haynes et al. 1995). Because much of
the forested land in the PNW region is public and was
managed under a system of small dispersed clearcuts
over the last several decades, there is a significant de-
gree of spatial heterogeneity in stand age class (Wallin
et al. 1996). The region is thus pertinent for a case
study of the interacting effects of landscape pattern
and sensor resolution in carbon flux estimation.

In this study, we examined a 96 km2 sample of a
managed forest landscape in the PNW at spatial res-
olutions from 25 m to 1000 m to evaluate potential
influences of spatial resolution on estimates of NPP,
NEP, and biomass C using a measure and multiply ap-
proach. The 96 km2 represents an area large enough to
provide a basis for comparison with the gridded annual
NPP product from MODIS (Running et al. 1999). The
scaling exercise performed here was intended as a step
towards development of screening tools for stratifying
the Earth’s surface in relation to the appropriate res-
olution for particular satellite-based C flux estimation
algorithms.

Methods

In the measure and multiply algorithm for scaling bio-
genic trace gas fluxes from points to landscapes or
regions, the land cover over the spatial domain of in-
terest is classified with respect to some factor which
strongly regulates biogenic trace gas flux and for
which a map is available. In this study our interest was
in estimating annual NPP and NEP over a 96 km2area
of predominantly coniferous forest. Biomass C was
also estimated because of its use in the difference ap-
proach flux algorithm. One factor strongly related to
C pools and flux in these forests is stand age class
(Turner et al. 1995) and a high spatial resolution
(25 m) digital map of stand age class derived from
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satellite remote sensing was available for the study
area (Cohen et al. 1995). NPP, NEP and biomass C
estimates for each stand age class were therefore mul-
tiplied by the respective areas of each age class at
each of five grain sizes (25 m, 100 m, 250 m, 500 m,
1000 m) to get totals for the study area.

A simple majority filter, here an analogue for im-
age classification at a coarser resolution, was used to
assign an age class to each grid cell at the coarser res-
olutions. In the majority rule aggregation algorithm,
the cover type with the greatest frequency of 25 m
subcells in the coarser resolution cell determines the
label for the coarse resolution cell. In the case of a
tie, a random selection is made among the subcells.
The aggregation procedure in this study was imple-
mented with the IDL programming language rather
than with a standard Geographic Information Systems
software package because the latter sometimes attempt
to preserve the initial proportional representation dur-
ing aggregation. Alternative aggregation algorithms,
such as selection of a random subcell to represent
the coarse resolution cell, may do a better job at pre-
serving the overall proportions and the representation
of cover classes having small areas (e.g., Milne and
Johnson 1993), but the focus here was primarily on
mimicking how a coarse resolution sensor would see
the landscape. To whatever degree spectral mixing
within a pixel is nonlinear, the misclassification with
a coarse resolution sensor could be greater than is
indicated by the majority filter analogue.

As a step towards evaluating the influence of the
abundance and distribution of particular cover classes
to the total error at each grain size, the proportional es-
timation error (Moody and Woodcock 1994) for each
cover class at each grain size was determined. To char-
acterize the scale of the heterogeneity in the study
area, a local variance analysis (Woodcock and Strahler
1987) was also run on near-infrared digital number
numbers across the range of grain sizes.

The study area

A 7 km × 14 km area centered on the H.J. An-
drews Experimental Forest in western Oregon (Van
Cleeve and Martin 1991) was studied. Approximately
80% of the study area is in the western hemlock
(Tsuga heterophylla)/Douglas-fir (Pseudotsuga men-
ziesii) zone and 20% in the silver fir (Abies amabalis)
zone (Franklin and Dyrness 1990). About half the
study area is native forest (Cohen et al. 1995) and the
remainder has been harvested over the last 50 years,

mostly in the form of small (< 40 ha) clearcuts (Cohen
et al. 1998). The landscape pattern in the study area is
representative of much of the nonwilderness National
Forest land in the PNW.

The forest age class distribution in 1988 was
mapped using Landsat Thematic Mapper imagery
(Cohen et al. 1995). In the mapping analysis, six vege-
tation cover classes and a water class were recognized
in the study area (Table 1). The classes approximated
the successional sequence expected in mid-elevation
forests in this region (Franklin and Spies 1991). The
closed-mixed class is known to contain areas of closed
canopy forest which are mixtures of conifer and hard-
wood trees (e.g., riparian area) as well as mixtures
of tall shrubs and young conifer trees in recovering
clearcuts. For the purposes of this scaling exercise,
however, this class was considered intermediate be-
tween the semi-open class and the young conifer class
in the successional sequence.

NPP, NEP and biomass by stand age class

The development of the representative NPP, NEP, and
biomass estimates for each stand age class (Table 1)
was based on studies of PNW Douglas-fir forests in
the literature and generalized trends expected in forest
stand development (Bormann and Likens 1979; Crop-
per and Ewel 1984; Sprugel 1985). Stand level carbon
budgets which treat the changes in biomass, wood
production, and NEP over the course of stand devel-
opment, had been prepared previously for all major
forest types in the U.S. (Turner et al. 1995). This study
used the C budget for medium productivity Douglas-
fir stands in the West Cascades. For each of the 6 stand
age classes, the biomass C and flux estimates for the
age at the middle of that class were used for repre-
sentative values. Foliar/fine litter production and fine
root production were then estimated from allometric
relationships (Turner and Long 1977; Grier and Logan
1977; Gholz et al. 1985; Vogt 1991).

In the decades after a clear-cut harvest, C uptake
via NPP is typically low in this region as vegeta-
tion recovers, whereas C emissions associated with
heterotrophic respiration are high because of decom-
position of logging residue. Thus NEP, the net effect of
photosynthesis and both autotrophic and heterotrophic
respiration, is negative (a source of carbon to the at-
mosphere) during this stage. About the time of canopy
closure, NPP is near its maximum and heterotrophic
respiration has decreased, hence, the NEP is also max-
imal. In late succession, NPP typically decreases and
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Table 1. Land cover classes in the study area distinguished by satellite remote sensing (Cohen et al. 1995) and represen-
tative values for net primary production (NPP), net ecosystem production (NEP), total biomass carbon, and total biomass
carbon range (Turner and Long 1975, Turner et al. 1995).

Class Cover Approximate Age NPP NEP Biomass Biomass Range

(%) (yrs) gC m−2 yr−1 gC m−2 yr−1 MgC ha−1 MgC ha−1

Water – – – – – –

Open < 30 0–10 283 −210 3.5 2.6–4.3

Semi-closed 30–85 10–20 511 −116 10.5 8–13

Closed-mixed > 85 20–30 698 159 42.5 24–44

Closed conifer

Young > 85 < 80 1036 473 106 42–117

Mature > 85 80–200 798 286 246 91–264

Old > 85 > 200 444 165 435 304–607

heterotrophic respiration increases, so NEP tends to
decrease.

NPP, NEP, and biomass certainly vary within an
age class depending on harvest-related factors such as
the degree of slash burning, climatic factors related
to elevation and aspect, and site factors such as soil
depth. However, that variation has not been well char-
acterized so only representative values for each cover
class were used in this study. Ranges of biomass for
each class, based primarily on the stand level carbon
budgets for low, medium and high productivity PNW
west-side Douglas-fir stands (Turner et al. 1995), are
indicated (Table 1).

Error assessment

The effects of coarsening the spatial resolution on
agreement in the land cover classification were as-
sessed overall as the percent of the coarse resolution
map which was the same as the 25 m resolution map.
Within each cover class the proportional estimation
error (Moody and Woodcock 1994) at each resolution
was determined as:

Eir = (Pir − Pio)/Pio, (1)

whereEir = Proportion estimation error of classi at
resolutionr; Pir = Proportion of classi within the total
scene at resolutionr; Pio =Proportion of classi within
the total scene at original resolution (25 m).

The effects of each coarser resolution on the C flux
and biomass estimates was assessed as the difference
between the totals for the whole study area at that
resolution and at the 25 m resolution.

The local variance analysis

Local variance analysis (Woodcock and Strahler 1987)
requires a continuous variable and was performed with
the digital number (DN) for the near-infrared band of
the Thematic Mapper sensor. The DN value for each
grid cell is a measure of the reflected radiation for that
cell as detected by the sensor. The image processing
procedure is described in Cohen et al. (1995). Near-
infrared reflectance is generally sensitive to leaf area
(Price and Bausch 1995) and is likely to indicate vari-
ation in land cover type. Local variance was based
on the standard deviation of DN for the 9 cells in a
3× 3 cell moving window which was framed around
each grid cell at the reference resolution in the image.
The mean of the standard deviations from all complete
3× 3 windows in the study area was then reported as
the indicator of local variance. This analysis was run at
resolutions of 25, 50, 100, 250, 500 and 1000 m. The
aggregation rule for generating the coarser resolution
surfaces was to take the mean value of the DNs in the
aggregated cells.

Results

Visual inspection of the classified image of the study
area at the 25 m resolution (Figure 1) indicates a pat-
tern of patches in early stages of succession within a
background of older forests. The water cells are in one
polygon, a portion of a reservoir at the south edge of
the study area. As the spatial resolution is coarsened
from 25 m to 250 m, fine-scale heterogeneity within
the polygons diminishes such that the fundamental
patch structure imposed by forest harvesting becomes
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Figure 1. Classified image of the study area at successively coarser spatial resolutions

more obvious. As the resolution is coarsened above
250 m, clearcut patches begin to merge and the pattern
imposed by harvesting is largely lost. Correspond-
ingly, the local variance increased as spatial resolution
was coarsened from 25 m to 250 m then decreased as
the resolution was further coarsened (Figure 2).

The overall agreement with respect to the 25 m
image rapidly decreased as the spatial resolution was
coarsened and agreement was only 42% at the 1000 m

resolution (Figure 3, Table 2). The rapid falloff in
percent agreement as the spatial resolution was coars-
ened, despite more modest changes in areal propor-
tions, reflects in part a speckling pattern at the finest
spatial resolution. Since the area estimates in Table 2
are not spatially explicit, they do not reveal the shifting
around induced by the aggregation.

The proportional estimation error ranged from
0.028 to−0.419 at 100 m (Figure 4) and the maxi-
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Figure 2. Local variance in near infra-red radiance at successively
coarser spatial resolutions

Figure 3. Percent agreement in land cover classification at succes-
sively coarser spatial resolutions. The percent refers to comparison
with the base 25 m land cover surface.

Table 2. Effects of spatial resolution on areas (∗ 106 m2) by cover
class.

Cover type Spatial resolution

25 m 100 m 250 m 500 m 1000 m

Water 0.769 0.810 0.875 1.000 1.000

Open 1.167 0.740 0.375 0.0 0.0

Semi-open 17.460 17.950 17.562 18.000 16.000

Closed-mixed 5.567 5.360 4.000 1.750 0.0

Young 20.092 20.880 22.062 20.250 19.000

Mature 17.019 9.880 6.062 3.500 2.000

Old-growth 35.925 42.380 47.062 53.50 60.000

Figure 4. Trend in prportional estimation error as a function of
spatial resolution of the land cover surface.

mum error increased to−0.679 at 250 m. At 500 m,
the open class had been lost and at 1000 m the
closed-mixed class was likewise no longer repre-
sented. Though least in areal extent at 25 m, the water
class was retained at 1000 m because of the contiguous
arrangement of its cells. The classes which were lost at
1000 m were the next two least represented land cover
classes. The largest shifts in classification with coars-
ening of the resolution were the loss of the mature
class and the gain of the old-growth class.

The estimates of NPP and NEP for the 96 km2 area
were 6.35×1010 g and 1.89×1010 g respectively at the
25 m resolution (Table 3). For NPP, the flux estimate
consistently decreased with coarsening of the spatial
resolution and was 12% lower at 1000 m than at 25 m.
The decrease was primarily because the old-growth
class has a lower representative NPP than the mature
class and much of the loss of the mature conifer class
was associated with a gain in area for the old-growth
conifer class. The change in NEP with coarsening
of the resolution was smaller than was the case with
NPP because (1) the NEP of the old-growth and ma-
ture classes was more similar than their NPPs and (2)
the smaller area of negative NEP classes (open and
semi-open) at 1000 m tended to compensate for the
error associated with shifts from mature to old-growth
conifer.

The estimate for total tree biomass over the study
area increased as the spatial resolution was coarsened
(Table 3), and the estimate at 1000 m was 29% higher
than that at 25 m. This change was primarily asso-
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Table 3. Effects of spatial resolution on estimates of net primary production (NPP), net ecosystem production
(NEP), and tree biomass carbon over the study area. Differences are relative to the area wide estimates at the
25 m resolution.

Resolution (m) NPP NEP Tree biomass

Flux Difference Flux Difference Pool Difference

(×1010 gC) (%) (×1010 gC) (%) (×1012 gC) (%)

25 6.35 – 1.89 – 2.24 –

100 6.15 −3 1.83 −3 2.35 5

250 6.05 −5 1.85 −2 2.47 10

500 5.79 −9 1.76 −7 2.66 19

1000 5.61 −12 1.76 −7 2.88 29

ciated with an increase in the area of the old-growth
conifer class with its relatively high biomass.

Discussion

Scale dependence in land cover mapping

A variety of studies have examined the effects of em-
ploying alternative spatial resolutions on land cover
assessments and estimates of terrestrial carbon flux.
The objective is often to identify the optimal resolu-
tion for a particular application. Evaluations of land
cover change in the Amazon Basin using the coarse
resolution Global Area Coverage data products from
the AVHRR sensor were shown to poorly estimate de-
forestation relative to higher resolution analyses based
on the Landsat Multispectral Scanner (MSS) (Nelson
and Holben 1986). Artificially degrading the resolu-
tion of MSS imagery from 250 m to 4000 m similarly
led to greatly compromised ability to detect land cover
changes in several locations studied by Townshend
and Justice (1988). In the boreal region, intercompari-
son of land cover maps derived from AVHRR and TM
indicated that AVHRR pixels were clearly mixtures of
TM classes (Steyaert et al. 1997). One of the classes
with greatest disagreement between the sensors was
the regenerating forest class, which is particularly
important for the purposes of C flux estimation. Infor-
mation loss from aggregation of fine resolution data
to coarser resolutions has also been investigated in the
context of efficiently accumulating multitemporal data
(Pax-Lenney and Woodcock 1997). As was evident
from those studies and this study in PNW conifer-
ous forests, the scale of human disturbance is often
considerably less than 1 km and for the purposes of
assessing land use change effects on the carbon cycle,

resolutions down to 30 m will continue to be essential
(Schimel 1995b).

In remote sensing analyses, one criteria for select-
ing spatial resolution is that it should be significantly
smaller than the scale of the relevant heterogeneity
over the domain of interest (Quattrochi and Pelletier
1991). The effect of following this maxim is that rela-
tively few cells are mixtures of classes, and that edges
may be distinguished as changes from dominance by
one cell type to dominance by another. There is, how-
ever, likely to be a limit below which a new scale of
heterogeneity becomes evident, as in a patch of conifer
forest which appears homogeneous at 25 m resolution
but heterogeneous at 1 m when individual tree crowns
begin to be resolved (Cohen et al. 1998). Likewise,
in a coarsening of the resolution, homogeneity may
emerge as grid cells begin to incorporate uniform mix-
tures of patch types. Thus, there is no privileged spatial
resolution, and the issue of scale dependence must of-
ten be addressed in mapping of land cover (Davis et al.
1991; Cao and Lam 1997).

The evaluation of proportional estimation error and
local variance at multiple spatial resolutions provides a
means of characterizing the scale of the heterogeneity
in a remotely-sensed scene. In the PNW landscape ex-
amined here, there is a clear patch structure associated
with the human-dominated disturbance regime. The
local variance analysis indicated a maximum variance
at about the 250 m resolution. Earlier studies have
suggested that local variance peaks at a cell size some-
what smaller than the objects in the scene (Woodcock
and Strahler 1987). Thus, the result in the PNW scene
indicated patches on the order of 20 ha (400 m on a
side) which approximates the size of clearcuts under
the dispersed cutting scheme formerly favored by the
U.S. Forest Service. The finest resolution (25 m) was
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still too large to resolve individual tree canopies, so
each cell contained many trees and each window of
9 cells tended to be within one patch type resulting
in low variance. At the 1000 m resolution, each cell
tended to include a mixture of patches from different
successional stages and again there was relatively low
variance within the 9-cell windows.

The observation here that the classes with the
smallest proportion of the stand area were lost as
the resolution was coarsened is consistent with earlier
studies of scale dependence in land cover mapping
(Turner et al. 1989, 1996; Moody and Woodcock
1994, 1995). This trend is especially conspicuous
when the patch sizes are relatively small and they are
well dispersed, as was the case in this study. The cells
classed as water were all in one patch and the effect
of coarsening resolution was different from the other
relatively small classes in that it was retained and grew
as resolution was coarsened. This result indicates that
the spatial distribution of a class is as important in its
sensitivity to spatial resolution as is its absolute area.

Scale dependence in estimating C flux

Because the measure and multiply approach to C flux
estimation relies on land cover mapping, the effects of
proportional estimation error carry over into the asso-
ciated C flux estimates. However, the correspondence
in the magnitude of the error in terms of land areas
and in terms of C flux will vary. Scale-dependent er-
rors in C flux estimates would not be large where land
cover types detectable by remote sensing had simi-
lar representative NPP or NEP. The annual NPP of
a corn field and a soybean field may be similar, in
which case mixtures of those land cover classes within
a grid cell would not need to be resolved into sepa-
rate classes for an accurate landscape-level estimate of
NPP. As the range of the class-specific C flux values
widens though, the potential for error in flux estimates
at coarser resolutions increases. As noted, the larger
error in this study at 1000 m in the NPP estimate com-
pared to the NEP estimate reflected in part the greater
difference in the range of NPP values between mature
conifer and old-growth conifer classes compared to the
range of NEP values. Differences between land cover
types in the flux of trace gases such as methane (Asel-
mann and Crutzen 1989) and nitrous oxide (Bouwman
et al. 1995) are also large, so issues related to spatial
resolution will similarly be important in mapping of
fluxes for those trace gases based on land cover type.

Scale dependent errors in C flux estimates simi-
lar to those found in the PNW would be less likely
where land cover classification is less scale depen-
dent. Large areas of the Amazon Basin are still intact
moist tropical forest (Stone et al. 1994) and a coarse
resolution sensor would be appropriate for a C flux
estimate (Schroeder and Winjum 1995). Likewise, if
mixtures of classes recognizable at a fine scale were
generally repeated across the landscape (e.g., the ar-
eas of arctic tundra characterized by regularly spaced
ice wedge polygons), then a coarse scale classification
which recognized the mixtures might be acceptable.
The most significant scale dependent errors could be
expected where the disturbance regime creates large
disparities in the C pools and flux across successional
stages and the resolution of the satellite sensor is close
to the scale of the disturbances. These observations
generally suggest that as human land use becomes
more intensive and extensive, the likelihood of scale
dependent errors in C flux estimation with coarse
resolution sensors may increase.

Although not within the scope of this study, quanti-
tative assessment of error in the remote sensing-based
measure and multiply approach could extend beyond
the analysis of spatial resolution. Notably, there is
always classification error in remote sensing-based
land cover maps and corresponding error in C flux
estimates (Riley et al. 1997). The magnitude of the
classification error was evaluated in the original stud-
ies associated with the high resolution land cover map
used in this study (Cohen et al. 1995). If a coarser res-
olution sensor were used over the same area, a similar
error could be determined and compared with the error
at high spatial resolution. Measurement error refers
to the uncertainty associated with the measurement
technique, e.g., the variability found in repeated mea-
surement of biomass in the same plot. Measurement
of carbon pools and flux, particularly in forests, is
fraught with difficulties (Gower et al. 1999) and mea-
surement error can be potentially large. Sampling error
is a third source of uncertainty. The representative C
flux values for the stand age classes were averages for
medium productivity Douglas-fir forest covering the
entire west side of the Cascade Range. That area of
36,000 km2 (Powell et al. 1993) is large relative to the
98 km2 subset examined in this study and the large
area would have a mean value different from the mean
value in any subarea. More generally, representative
C pool estimates for particular cover types such as
boreal forests may be biased towards high values be-
cause the plots on which the representative values are
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based are more likely to be robust examples (Botkin
and Simpson 1990).

These errors propagate to determine the overall un-
certainty of the C pool and flux estimates. When such
estimates involve a chain of calculations, with vari-
ances associated with each term, first order Taylor se-
ries approximations of total error are sometimes used
(Robinson 1989). However, correlation among error
terms, excessive component variances, and other prob-
lems may invalidate that approach (Robinson 1989)
and Monte Carlo simulation or other complex proce-
dures may be required to address error propagation.
In that regard, the difference approach for estimat-
ing carbon sequestration or loss (Kaupi 1992; Cohen
et al. 1996), may be more sensitive than the measure
and multiply approach to errors associated with coars-
ening of spatial resolution. The difference approach
involves compounding two errors for the estimate of
biomass. Each error would be on the order of 29% for
the managed forest landscape in this study.

Generally, systematic approaches to error analysis
in large area carbon flux estimates are only begin-
ning to be made (e.g., Ciezewski et al. 1996, Phillips
et al. in review) but issues associated with uncertainty
will likely become increasingly important as these es-
timates become more tightly linked to development
of policy related to climate change. The Kyoto Pro-
tocol (United Nations 1997) calls for generating and
periodically updating national-level C budgets which
indicate C flux associated with the land base. Re-
mote sensing is an attractive option for this application
because of its ability to do wall-to-wall coverage inde-
pendent of ownership. However, it will be important
to systematically assess associated errors, beginning
with classification error itself and running through the
additional considerations noted above.

Estimating C flux with spatially-distributed, process-
based biogeochemistry models will also be subject to
scale-dependent errors. Like the difference approach,
the biogeochemistry models depend on vegetation
cover maps to initialize carbon pools (e.g., McGuire
et al. 1992). In addition, vegetation cover or functional
type determines a set of physiological constants, such
as maximum stomatal conductance, which are inputs
to the model. As with the biomass values, there can be
large differences in the physiological constants such
that final errors associated with misclassification at
coarse spatial resolution could be different than ef-
fects related only to proportional estimation errors.
Effects of alternative spatial resolutions would also be
manifest via influences on other initialization variables

related to soil properties (Farajalla and Vieux 1995)
and climatic input variables such as air temperature
(White and Running 1994; Pierce and Running 1995;
Turner et al. 1996).

The light use efficiency approach (LUE) to NPP
estimation (Ruimy et al. 1994) may be somewhat less
sensitive to coarsening of spatial resolution than the
other NPP algorithms. In one variant of this approach
(Prince and Goward 1996), the reference efficiency
factor for gross primary production (gC MJ−1) is a
single value for all vegetation types. Thus, land cover
classification is not an issue. The fraction of photo-
synthetically active radiation which is absorbed by the
canopy (fAPAR), a critical component of the LUE al-
gorithm, is nearly linearly related to the Normalized
Difference Vegetation Index from satellite imagery
(Sellers 1987). Analyses with radiation transfer mod-
els suggests that thefAPAR-NDVI relationship is to
some degree independent of pixel heterogeneity (My-
neni and Williams 1993), thus minimizing the impact
of spatial resolution on NPP estimates. In other vari-
ants of the LUE approach, vegetation classification is
used to assign a biome-specific LUE (Ruimy et al.
1994), so a sensitivity to errors in land cover clas-
sification associated with coarse spatial resolution is
introduced.

Implications for validation of global C flux products

Continental to global scale maps of terrestrial NPP or
NEP have been produced by a variety of means, most
commonly by use of spatially-distributed biogeochem-
istry models (Potter et al. 1993; VEMAP 1996). These
analyses have typically been carried out on grids of
0.5◦ of longitude× 0.5◦ of latitude, which represents
cells about 50 km on a side in the temperate zone. As
noted, the satellite-based global NPP estimates will
also be at a coarse resolution relative to the scale of
heterogeneity in land cover in some landscapes. At
the hemisphere or global scale, there are prospects for
validating these C flux estimates by inversion of 3-D
atmospheric transport models coupled to observations
of spatial and temporal patterns in the concentration
of atmospheric CO2 (Hunt et al. 1996). However,
validation of flux estimates at the local level, as is
explored in this study, is also needed for understand-
ing of the mechanisms driving biospheric influences
on the global C cycle (Running et al. 1999).

A key issue related to the local validation of large
scale C flux maps has been the fundamental mismatch
in spatial scale between the plots used to measure
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NPP, e.g., 1 m2 plots for grasslands and 1 ha plots
for forests, and the dimensions of the grids used in
global modeling. High resolution remote sensing of-
fers a means of bridging that gap because the pixel
size more nearly matches the NPP measurement plot
size and the domain can extend to the size of a coarse
resolution grid cell (Reich et al. 1999). Specific on-
going applications of high resolution remote sensing
for validation purposes include the Global Primary
Production Data Initiative (GPPDI) and the BigFoot
project.

GPPDI is using the measure and multiply approach
among other approaches for characterizing NPP over
selected half degree by half degree cells in several bio-
mes (Olson and Prince 1996). The BigFoot project
is mapping land cover and NPP over 25 km2 areas
associated with eddy covariance flux towers for use
in validating NPP surfaces from EOS/MODIS (Re-
ich et al. 1999). These validation applications, in
which high resolution remote sensing are an essen-
tial component of the C flux scaling algorithm, offer
the opportunity to develop and test tools for screening
samples of the Earth’s surface with respect to their sen-
sitivity to coarse resolution analysis. Metrics from the
discipline of landscape ecology, such as the trends in
proportional estimation error and local variance with
coarsening of spatial resolution, could ultimately be
used to stratify the Earth’s surface in terms of the
optimal spatial resolution for C flux monitoring.

Conclusions

Mapping of land cover using satellite remote sens-
ing is a critical component of several approaches to
scaling NPP and NEP to the landscape, regional, and
global domains. A variety of current and planned
satellite-borne sensors are potentially useful in these
approaches, however, the differences among them in
spatial resolution is an important consideration. For
a managed forest landscape in the PNW region, a
spatial resolution≤ 250 m may be needed to cap-
ture the heterogeneity in land cover imposed by the
human-dominated disturbance regime. This situation
may become increasingly common globally as the im-
pacts of human land use become more intensive and
extensive. The various approaches to C flux estima-
tion which depend on land cover maps differ in their
sensitivity to scale-dependent mapping errors.
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