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Diagnostic carbon cycle models depend on parameterization to establish model sensitivity to climate
variables and site factors. Here we acquiredmeteorological and carbon flux data from a diverse set (N=18) of
eddy covariance (EC) flux towers, along with MODIS data on FPAR (the fraction of incident photosynthetically
active radiation that is absorbed by the plant canopy) at the sites, and used the data to develop a parameter set
for the application of a diagnostic carbon cycle model over North America. The parameter optimization
approach relied on goodness of fit between model simulations and tower estimates of gross primary
production and net ecosystem production (NEP). Parameters such as light use efficiency (LUE) and base rate
of heterotrophic respiration varied widely between sites representing different plant functional types (PFTs),
thus supporting the value of stratification by PFT when parameterizing the model. Where multiple EC sites
were available within a PFT, overall prediction error and bias in mean NEP was reduced by cross-site
optimization as opposed to reliance on a single site. Optimization with the MODIS Enhanced Vegetation Index
(EVI) instead of MODIS FPAR resulted in a similar goodness of fit, however, LUE values were pushed to levels
that were not physiologically realistic when using EVI. The increasing availability of gap-filled EC tower data is
rapidly improving the opportunities for direct coupling of satellite and ground observational data for
parameterizing of diagnostic carbon flux models.
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1. Introduction

The combination of satellite imagery, distributed climate data, and
diagnostic process-based carbon cycle models offers the opportunity
for indirect estimation of terrestrial carbon flux over large areas in a
spatially-explicit manner (Running et al., 1999; Turner et al., 2004).
Critical model inputs may include vegetation cover type (Friedl et al.,
2010), disturbance history (Kennedy et al., 2007), FPAR (the fraction
of incident photosynthetically active radiation that is absorbed by the
plant canopy, Myneni et al., 2002), and leaf phenology (Zhang et al.,
2006). Model application generally requires that various parameters
be specified. Thus, observations in addition to the remote sensing data
can be introduced in the parameterization process to constrain carbon
flux estimates.

Eddy covariance (EC) flux towers (Baldocchi et al., 2001) make
measurements of net ecosystem exchange (NEE) of CO2, with
partitioning into its gross primary production (GPP) and ecosystem
respiration (Re) components, which are particularly relevant to
diagnostic model parameterization. Most directly, tower estimates of
GPP and PAR (photosynthetically active radiation) absorbed by the
canopy are used to estimate light use efficiency (LUE), a key variable in
many diagnostic models (McCallum et al., 2009). Surveys of vegetation
LUE over a range of biome types and plant functional types have
revealed significant variation depending on vegetation type (Garbulsky
et al., 2010; Gower et al., 1999; Turner et al., 2003). EC tower
observations of GPP can also be the basis for optimizing model
parameters that control the influence of environmental drivers like
temperature and vapor pressure deficit (VPD) on LUE.

Optimization of parameters in algorithms for simulating heterotro-
phic respiration (Rh) can likewise be accomplished with tower data. In
so called “data driven” approaches (e.g. Mahadevan et al., 2008), the Rh

algorithm relies on a base rate that is modified by environmental
variables suchas temperature and soilmoisture. Thesemodels aremuch
faster to run than diagnostic models that account for carbon stocks, i.e.
the C stock models may require “spin-up” of hundreds to thousands of
years to bring soil C pools into near equilibrium with local climate
(Potter et al., 1993). Becauseof their relative simplicity and fast run time,
the data driven models are amenable to comprehensive parameter
optimization (Turner et al., 2006; Wang et al., 2009).

Relatively simple diagnostic flux models also make it possible to
optimize model parameters within an inversion modeling framework
(Göckede et al., 2010a, 2010b). In that case, spatially and temporally
distributed observations of CO2 concentration are brought to bear on
the process of surface flux estimation. In combination, observations of
FPAR, NEE, and CO2 concentration are potentially a powerful
constraint on simulated surface carbon flux.

http://dx.doi.org/10.1016/j.rse.2011.02.024
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Research issues associated with diagnostic model development
include designing effective model algorithms, parameterizing the
models, assessing their sensitivity to spatial variation in the inputs,
evaluating the effectiveness of various remote sensing inputs, and
validating model-based flux estimates. Of special concern when
optimizing with tower data is the sensitivity of these models to
environmental variation away from the reference tower sites. In this
study, we acquired meteorological and carbon flux observations from
a diverse set of EC flux towers, along with MODIS data for these sites,
and performed a parameter optimizing exercise for an existing
diagnostic model (CFLUX, Turner et al., 2006). For plant functional
types (PFTs) with multiple EC sites within a climate zone, we
evaluated multi-site vs. single site optimizations. Follow-up analyses
included evaluating the effectiveness of the MODIS Enhanced
Vegetation Index (EVI) compared to the effectiveness of the standard
MODIS FPAR product across this wide range of sites. EVI was
developed to reduce the degree of saturation found in other
vegetation indices (Huete et al., 2002) and has been used in several
net ecosystem production (NEP) scaling approaches (Mahadevan
et al., 2008;Matross et al., 2006; Xiao et al., 2010).We have previously
used this modeling framework to assess alternative sources of FPAR
data (Turner et al., 2009). Our motivation for these new analyses was
to develop a PFT/climate zone-specific parameter set for projecting
NEP across North America.

2. Methods

2.1. Overview

The CFLUX model calculates daily GPP as the product of absorbed
photosynthetically active radiation and LUE, where the latter is
influenced by site factors, meteorological variables, and soil water
content. Autotrophic respiration (Ra) is a fixed proportion of GPP. Rh is
dependent on site, stand age (for forests), soil temperature and water
content, and FPAR. Eight adjustable parameters (5 for GPP and 3 for
NEP) were optimized by minimizing root mean square error (subject
to parameter constraints) to fit daily GPP and NEP using 18 EC flux
tower sites, chosen to include themajor PFTs and climate zones across
Fig. 1. Climate zones and Plant Functional Types (PFTs) over North America. a) Climate zone
covariance sites used in the study are indicated by triangles. Site numbers are the same as
North America. Tower-based GPP was derived from daytime NEE and
estimates of daytime Re based on daytime temperatures and the
relationship of nighttime NEE to temperature (Turner et al., 2005).
The optimized parameters specify maximum light use efficiency and
the effects of temperature and VPD on GPP as well as the base rate and
temperature dependence of Rh. As we assume that NPP/GPP is a
constant fraction for each site, Rh is related to the flux tower estimates
of daily GPP and NEP by Rh=NEP−NPP. The locations of the sites in
relation to the PFTs (based on Friedl et al., 2010), and the climate
zones (based on Omernik, 1987) are shown in Fig. 1. Subsequent to
parameter optimization, we examined the model error and parameter
uncertainty, and the sensitivity of the predicted annual fluxes to
altered climate and soil water holding capacity. We also compared
cross-site model parameterizations to single site fits and use of EVI
instead of FPAR. The central algorithms of CFLUX are presented here,
emphasizing the role of the optimized parameters. A complete
description of the model is given in Turner et al. (2006).

2.2. Model description

CFLUX simulates daily GPP, Ra, Rh, and NEP from meteorological
inputs, satellite estimates of vegetation greenness, and a daily soil
water balance. Daily meteorological inputs are total precipitation,
average temperature (Tavg), minimum temperature (Tmin), soil
temperature (Tsoil), photosynthetically active radiation (PAR), and
daytime mean vapor pressure deficit (VPD). Site variables include
plant functional type and plant available water at field capacity, i.e.,
soil water holding capacity (WHC), as well as stand age and original
disturbance type (fire or harvest) in the case of forests. All of the daily
carbon fluxes are given in units of gC m−2 d−1. Annual fluxes are the
sums of daily fluxes.

Light use efficiency, as affected by environment, is central to
estimating GPP and is specified as

GPP = LUEf⁎PAR⁎FPAR ð1Þ

where GPP is gross primary production (gC m−2 d−1), LUEf is the final
light use efficiency (gC MJ−1), PAR is incident photosynthetically
s based on ecozones of Omernik (1987), b) PFTs from MODIS (Friedl et al., 2010). Eddy
in Table 1.
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active radiation (MJ m−2 d−1), and FPAR is the fraction of PAR
absorbed by the canopy. CFLUX calculates an initial daily light use
efficiency that varies with fractional cloud cover, which is estimated
from the ratio of PAR to POTPAR (potential clear sky PAR) for each day
of the year. This initial LUE varies linearly from a minimum clear sky
value to a maximum for completely overcast days. To calculate the
final light use efficiency of Eq. (1), the initial LUE is reduced by
multipliers that incorporate limitations on photosynthesis due to low
night temperatures, soil moisture deficits, high VPD, and in the case of
forests, stand age.

That is,

LUEf = LUEbase⁎STmin⁎SSWg=VPD⁎SSag ð2Þ

where

STmin minimum temperature scalar
SSWg/VPD the smaller of the soil water scalar for GPP (SSWg) or the VPD

scalar (SVPD)
SSAg stand age scalar for GPP, which reduces LUE as stand age

increases above a certain minimum age, depending on
forest type.

LUEbase initial LUE as influenced by cloudiness, i.e.

LUEbase = LUEmax−LUEcsð Þ⁎SCI + LUEcs ð3Þ

where

SCI cloudiness index scalar that varies from 0 on clear days to 1
on fully overcast days and is inferred from the PAR/POTPAR
ratio (Turner et al., 2006).

LUEcs initial LUE for clear sky days.
LUEmax initial LUE for overcast days.

All scalars take on values≤1, depending on environmental
conditions.

Regarding Eq. (2), STmin has a value of 0 when Tmin≤Tminmin and
increases linearly to 1 at temperature Tminmax. Similarly, the VPD
scalar (SVPD) has a value of 1 when VPD≤VPDmin and declines linearly
to zero as VPD increases to VPDmax (Running et al., 2000). The soil
water scalar (SSWg) depends on SW, the ratio of current plant available
water to plant available water at field capacity. SSWg=1 when this
ratio is N0.5 and declines linearly to 0.2, as SW declines from 0.5 to 0.1,
Fig. 2. Light use efficiency (LUE) under low stress conditions illustrated for representative ye
daily clear sky PAR, uncorrected for humidity effects (Fu & Rich, 1999; Turner et al., 2006).
soybean, 2005 corn, as listed by site number in Table 1.
at which value it remains for SWb0.1. To track SW, the model
performs a simple water balance by estimating daily evapotranspi-
ration based on the site-specific inverse of water use efficiency. The
age scalar, (SSag) is equal to 1 for non-forest vegetation types and
very young forests. Above a specified minimum age, SSag declines
asymptotically to a value of 0.66–0.82, depending on forest type
(Turner et al., 2006).

The clear sky LUE (LUEcs) of Eq. (3) is specified for each site or
climate zone by PFT combination based on observations of LUE at
eddy covariance flux towers. LUE under low stress conditions is
plotted (e.g. Fig. 2) as a function of PAR/POTPAR (decreasing cloud
cover) and clear sky LUE is based on the value when PAR/POTPAR
approximates 1.0.

Total respiration (Re) is the sum of Ra and Rh. In CFLUX, Ra can be
calculated as either the sum of growth plus maintenance respiration
or from the assumption of a constant NPP/GPP ratio. We have chosen
the latter approach, based on observations that the ratio of annual
NPP/GPP tends to be stable within plant functional types and climate
zones (De Lucia et al., 2007). Also, the Q10 of 2 often used to model the
temperature dependence of maintenance respiration at a given site
does not apply across sites of varying climate (Atkin & Tjoelker, 2003).
Hence, for a continent-wide assessment based on a sparse network of
flux towers, the constant NPP/GPP assumption is likely to produce less
error.

Aswith LUE, Rh is calculated in termsof a base rate andmultiplicative
scalars related to soil temperature, soil moisture and stand age. FPAR is
also included as amultiplier in calculating Rh, given the observation that
soil respiration is correlated with recent photosynthetic production,
which is coupled with FPAR (Hogberg et al., 2001). That is,

Rh = Rh base⁎SSTh⁎SSWh⁎SSAh⁎FPARh ð4Þ

where

SSTh scalar for soil temperature.
SSWh scalar for the effects of plant available soil water on

heterotrophic respiration.
SSAh stand age scalar for heterotrophic respiration.
FPARh the smaller of FPAR or FPARmin, the latter specified to permit

soil respiration outside the growing season for vegetation
types with a leafless dormant period.

Rh_base rate of heterotrophic respiration at a temperature of 0 °C,
when the soil water is at field capacity and both FPARh and
SSAh=1, the latter being the case for non-forest vegetation.
ars for six of the PFTs. PAR = daily photosynthetically active radiation, Potential PAR =
Sites and years are a) 3/2002, b) 4/2002, c) 9/2005, d) 11/2005, e) 15/2003, f) 18/2002

http://gis.esri.com/library/userconf/proc99/proceed/papers/pap867/p867.htm
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All respiration associated scalars have a value≤1, depending on
environmental conditions, with the exception of S, which varies
exponentially with soil temperature and has a value of 1 at 0 °C. That
is,

SSTh = exp Rh coef a⁎Tsoilð Þ ð5Þ

where Rh_coef_a is an optimized parameter. The heterotrophic soil
water scalar is given by

SSWh = 1–b⁎e −c⁎SW
� �� �

= d ð6Þ

where SW=(plant available water)/(plant available water at field
capacity), b=0.86, c=−1.26 and d=0.7486 for all vegetation types
(Turner et al., 2006). Thus, heterotrophic respiration declines with
decreasing soil water, but in a different fashion than does LUE, which
is unaffected for SWN0.5. The heterotrophic age scalar for forests is
given by

SSAh = a 0:5 + b⁎e c⁎age
� �

+ 0:5 1–dage
� �� �

ð7Þ

where a=0.379, b=2.14, d=0.9824, and c=−0.158 for stands
originating after logging or c=−0.07 for fire regenerated stands. This
function yields the higher respiration expected in young stands due to
decomposing debris following disturbance, particularly in fire
regenerated stands, where fire-killed trees remain on site. The latter
difference is mediated by the altered value of c. The parameter values
defining SSAh are based on those of Turner et al. (2006) for interior
western conifers, with a minor adjustment to insure that fire and
logging originated stands converge to the same heterotrophic
respiration in old age.

2.3. Parameter optimization

CFLUX has two sets of parameters that may be optimized; five
parameters that affect GPP and three affecting Rh. The optimized GPP
parameters are LUEmax and those determining the responses to Tmin
(Tminmin and Tminmax) and VPD (VPDmin and VPDmax). The
optimization also checks the case of omitting each of the scalars
from the algorithm. The optimized Rh parameters are Rh_base, Rh_coef_a

and FPARmin. We used the parameter ranges and increments of Turner
et al. (2006), with the exception of LUEmax, which had been limited to
4 gC MJ−1, the approximate maximum efficiency of photosynthesis
(Haxeltine & Prentice, 1996). We removed this upper bound because
the EVI input (see below) was oftenmuch lower than the actual FPAR,
thus requiring a higher LUE to match observed GPPs. For purposes of
consistent comparison we also removed the upper bound for the
MODIS FPAR optimizations, though the resulting LUEmax values
seldom exceeded 4 gC MJ−1.

The parameter sets minimizing the annual root mean square error
(RMSE) in daily GPP and NEPwere determined by first running CFLUX
with a 5-dimensional grid of GPP parameters and then a 3
dimensional grid of Rh parameters—using the optimal set of GPP
parameters for the latter runs. This computationally intensive
approach is feasible with simple diagnostic models and allows for
visual inspection of the associated errors. In optimizing the para-
meters we incremented LUE by 0.1 gC MJ−1, Tminmin and Tminmax by
2 °C, VPDmin and VPDmax by 500 Pa, Rh_base by 0.1 gC m−2 d−1,
Rh_coef_a by 0.01 and FPARmin by 0.1 (the latter two are both
dimensionless). We used these rather coarse increments, given the
5 dimensional grid for GPP and our observation that the RMSE was
generally insensitive to the parameters close to the optimum.
2.4. FPAR and EVI data

We obtained MODIS (Collection 5) FPAR (1 km) and EVI (250 m)
for each tower site from Oak Ridge National Laboratory (2010).
Temporal gaps of low quality data were filled using the algorithm in
Zhao et al. (2005). Following Wu et al. (2010), values for each 8 day
period were averaged over the 3 km×3 km cell area centered on each
tower.

2.5. Site level initialization and reference flux data

The tower sites and characteristics of the associated vegetation are
shown in Table 1. In the cases of the deciduous needleleaf forest PFT in
the temperate zone and the cereal PFT in the temperate zone, wewere
unable to locate usable EC tower carbon flux data. Thus in these cases,
the Biome-BGC model (Thornton et al., 2002) was run at a location
within the temperate climate zone supporting the relevant PFT, and
outputs of GPP and NEP were used for reference data (as in Turner
et al., 2006). Site measurements of daily Tavg, Tmin, Tsoil, precipita-
tion, PAR and daytime mean vapor pressure deficit (VPD) were used
as model inputs. Tower data was directly from tower operators in 9
cases and from AmeriFlux (2011) in 7 cases (Level 4).

The clear sky LUE varied substantially among sites, being low for
high elevation conifers of the Rocky Mountains (site 3) and the dry
California chaparral (site 11). At one of the crop sites, LUE was higher
during the year that corn was grown than when soybean was grown
(Fig. 2). This pattern is expected, as the beans of soybean are ~20% oil
and oil has a lower carbon content and twice the energy content of
carbohydrate.

The NPP to GPP ratio was based on the comprehensive review of
measured values by De Lucia et al. (2007) except for the old-growth
temperate maritime coniferous forest (site 5), which used Harmon
et al. (2004). The inverse water use efficiency (1/WUE) denotes ET
(measured as depth of water used) per unit of GPP. Average annual
values of 1/WUE were estimated from the compilation of Law et al.
(2002) for a range of PFTs and from measurements of ET at some of
the sites (Garbulsky et al., 2010; Thomas et al., 2009). 1/WUE was
typically about 0.3 mm H2O gC−1 m−2 (=0.3 kg H2O gC−1) for tem-
perate deciduous broadleaf forests and crops and substantially higher
for dry chaparral (site 11) and arid grasslands (site 14), where high
VPDs and a higher fraction of water lost to surface evaporation result
in higher ET per unit of carbon fixed (Law et al., 2002).

Soil water holding capacity (WHC)was determined primarily from
reported soil properties at the sites (cited in Table 1). The high value
of 800 mm for the Amazonian tropical forest (site 6) is supported by
evidence of deep rooting here (da Rocha et al., 2004; Nepstad et al.,
1994) and the fact that observed GPP did not decline as modeled soil
moisture deficits approached 400 mm. The second highest value of
400 mm for the Pacific Northwest temperate evergreen needleleaf
forest (site 2) is associated with the high drought tolerance and deep
rooting habit of Pinus ponderosa (Licata et al., 2008; Oliver & Ryker,
1990), the canopy species of this site.

3. Results

3.1. Site-level optimizations with MODIS FPAR

The optimized parameters for each site are based on optimizations
across 1–4 years of observations (Table 2). The LUEmax values defining
the base LUE for overcast days were commonly 2–3 times the
corresponding clear sky LUE values (Tables 1 and 2), consistent with
the patterns of Fig. 2 and the general observation of higher LUE's
under low intensity, diffuse light than during bright clear days that
saturate sunlit leaves (Choudbury, 2001; Hollinger et al., 1994). Note
that this shift in LUE may be due mainly to differences in light
intensity rather than light quality at a given intensity (Alton et al.,



Table 1
Eddy-covariance flux tower sites used in this study. Site locations shown in Fig. 1. PFT = Plant Functional Type. 1/WUE = inverse of water use efficiency, WHC = Water holding
Capacity. ENF = Evergreen Needleleaf Forest, DNF = Deciduous Needleleaf Forest, DBF = Deciduous Broadleaf Forest. NA = Not Applicable.

Site
no.

Site
code

Climatea

zone
PFTa Site variables Reference

LUEcs (gC MJ−1) NPP/GPP 1/WUE (mm H2O gC−1 m−2) WHC (mm) Stand age (y)

1 NOBS Boreal ENF 1.0 0.3 0.33 200 160 Dunn et al. (2007)
2 METI Temperate ENF 0.9 0.4 0.3 400 80 Thomas et al. (2009)
3 NIWO Temperate ENF 0.55 0.5 0.4 200 100 Monson et al. (2002)
4 CRIV Maritime ENF 1.35 0.5 0.25 300 60 Krishnan et al. (2009)
5 WRIV Maritime ENF 1.1 0.3 0.25 200 450 Falk et al. (2008)
6 TAPA Tropical EBF 1.5 0.5 0.4 800 200 Saleska et al. (2003)
7 ORL1 Temperate DNF 0.8 0.5 0.4 200 100 This study
8 HARV Temperate DBF 1.3 0.5 0.29 150 90 Urbanski et al. (2007)
9 MORG Temperate DBF 1.1 0.5 0.29 150 70 Schmid et al. (2000)
10 UMBS Temperatea DBF 1.3 0.5 0.29 200 80 Schmid et al. (2003)
11 SKON Temperate SHRUB 0.4 0.5 0.6 120 NA Luo et al. (2007)
12 BARO Arctic GRASS 0.45 0.5 0.4 100 NA Kwon et al. (2006)
13 PECK Temperate GRASS 0.9 0.5 0.6 50 NA Gilmanov et al. (2005)
14 SEVI Temperate GRASS 0.6 0.5 0.8 40 NA Kurc & Small (2007)
15 VAIR Temperate GRASS 1.4 0.5 0.4 100 NA Ma et al. (2007)
16 ORW1 Temperate CEREAL 0.55 0.6 0.4 120 NA This study
17 BOND Temperate CROP 1.4 0.6 0.3 200 NA Meyers & Hollinger (2004)
18 MEDR Temperate CROP 1.9 0.6 0.3 200 NA Verma et al. (2005)

a Climate zone and plant functional type based on Omernik (1987) and Friedl et al. (2010), respectively, with the exception of the University ofMichigan Biological Station (UMBS)
site, which is in the transition zone betweenmixed hardwood and boreal forests (Schmid et al., 2003). As this site is now dominated by hardwoods, we classified it as Temperate DBF.

1657D.A. King et al. / Remote Sensing of Environment 115 (2011) 1653–1664
2007). The base respiration rate (Rh_base) had a wide range among
sites, depending in part on site productivity and the value of the
temperature exponent (Rh_coef_a). The base rate tended to be lower for
sites with a high temperature dependence of Rh, as a low base rate is
needed to produce a given Rh during the warm growing season if the
temperature response is large. For PFT/climate zones with multiple
sites, the parameters defining the response to minimum temperature
tended to be similar across sites (Table 2).

The variation in daily RMSE in GPP and NEP as a function of pairs of
the optimized parameters is illustrated in Fig. 3. Typically there
appeared to be only one minimum over the examined parameter
space and little variation in error about the optimum. That is, small
departures from the optimum had little effect on the error, justifying
our use of a rather coarse grid of input values. In some cases, the
optimum lay at the edge of the examined parameter space (Fig. 3b). For
the Rh parameters, the contour plots of RMSE vs. the base respiration
rate and the temperature dependence parameter (Rh_coef_a) showed an
elongate diagonal depression, indicating strong covariance in the
Table 2
Parameter values for base case of MODIS FPAR, site level, and cross year. Sites as defined in T
lower RMSE without using the related scalar. Sites are defined in Table 1.

Site
no.

PFT/climate No. y GPP parameters

Tminmin Tminmax VPDmin

(°C) (°C) (Pa)

1 ENF/Boreal 2 −10 8 1000
2 ENF/Temp 4 −12 4 1000
3 ENF/Temp 4 −8 4 500
4 ENF/Mar 4 −12 14 1000
5 ENF/Mar 4 NO NO 0
6 EBF/Trop 2 NO NO 500
7 DNF/Temp 1 −10 4 2500
8 DBF/Temp 2 −2 14 1000
9 DBF/Temp 2 −2 14 1000
10 DBF/Temp 2 −2 14 500
11 SHRUB/Temp 2 −6 4 1000
12 GRASS/Arctic 1 −12 4 0
13 GRASS/Temp 1 −12 4 2000
14 GRASS/Temp 2 −12 4 NO
15 GRASS/Temp 4 −12 6 1000
16 CEREAL/Temp 1 NO NO 2500
17 CROP/Temp 2 −2 14 1000
18 CROP/Temp 2 −2 14 500
effects of these parameters (Fig. 3d). At a given above-zero tempera-
ture, the same predicted respiration rate can be achieved by increasing
the base rate while decreasing the temperature dependence, so this
covariance is expected.

The optimized model tended to track the seasonal patterns and
fluctuations in observed NEP at each site, although the day-to-day
fluctuations projected by CFLUX were sometimes noticeably smaller
than observed (Fig. 4). The daily RMSE of the optimized model was
correlated with site productivity (r=0.47 and r=0.48, pb0.05 in
both cases for the RMSE in GPP and NEP, respectively), as
proportionally greater errors are expected with greater daily fluxes
(Table 3). The greatest RMSE values were observed at the CROP sites
which showed high GPP (and hence high daily RMSE) during a rather
short growing season and involved optimizations for alternative corn
and soybean years. As the annual GPP for the corn year was 1.7–2.0
times that for the soybean year, a common optimization will under-
predict corn GPP and over-predict soybean GPP. However, the average
projected GPP across the corn and soybean years was close to the
able 1. NO (Not Optimized) refers to the case where the optimization yielded as low or

Rh parameters

VPDmax LUEmax Rh_base Rh_coef_a MinFPAR
(Pa) (gC MJ−1) (gC m−2 d−1)

4000 2.7 1.5 0.04 0.7
4000 2.4 0.1 0.24 0.5
3000 1.4 3.0 0.02 0.8
4000 4.0 0.8 0.24 0.7
3500 3.3 0.5 0.17 0.7
3500 4.9 12.2 0.01 0.5
4000 1.3 4.1 0.01 1.0
1500 4.7 1.8 0.01 1.0
4000 2.8 2.9 0.01 1.0
4000 2.6 3.9 0.01 1.0
4000 1.0 0.1 0.03 0.5
1500 0.7 0.4 0.01 1.0
3500 2.1 0.2 0.11 1.0
NO 0.9 0.1 0.01 0.7
2500 3.5 2.2 0.03 1.0
4000 1.6 0.1 0.20 0.8
2000 1.9 0.3 0.07 1.0
4000 1.9 2.0 0.02 1.0



Fig. 3. Cross-year RMSE contours for Temperate ENF (site 3) plotted as functions of the illustrated pairs of optimized parameters. Panels a)–c) show the RMSEs associated with GPP;
panel d, the RMSE associated with NEP, following the GPP optimization. Dotted lines show the inner contour containing the optimum parameter set.
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observed average at both CROP sites (Table 3), so this parameterization
may be unbiased for regions with a patchwork of equal proportions of
corn and soybean.

3.2. Model sensitivity to soil properties and climate

The influence of soil properties and climate on the model
predictions are illustrated by figures showing the full response of
annual GPP, Re and NEP to soil water and climate variables for selected
sites and a table showing the change of these carbon fluxes due to
small increments of the soil and climate inputs.
Fig. 4. Time series plots of observed and modeled NEP, indicated by black and red line
The soil water scalars affecting predicted GPP and heterotrophic
respiration are functions of proportional soil water (SW), defined as
the ratio of plant available soil water to plant available water at field
capacity (WHC). The latter varies with soil texture, depth and
vegetation type and its variation across the landscape may thus be
difficult to estimate. The effect of changingWHC is illustrated in Fig. 5,
based on our standard assumption that soils are at field capacity on
January 1, due to recharge of soil moisture during the winter, when
rates of evapotranspiration are low. Annual GPP declines curvilinearly
as WHC is reduced below a threshold that depends on precipitation
and site productivity—as evapotranspiration is directly linked to GPP
s, respectively. Sites and years are the same as in Fig. 2 (soybean year for panel f).



Table 3
Observed (Tower) and simulated (CFLUX) annual fluxes and RMSEs for gross primary production (GPP) and net ecosystem production (NEP) in the base case simulations. Flux values
are means across years in the cases of multi-year simulations. NA = Not Applicable (at these sites only growing season fluxes were measured). Sites are defined in Table 1.

Site no. Tower GPPannual
(gC m−2 y−1)

CFLUX GPPannual
(gC m−2 y−1)

RMSEGPP
(gC m−2 d−1)

Tower NEPannual
(gC m−2 y−1)

CFLUX NEPannual
(gC m−2 y−1)

RMSENEP
(gC m−2 d−1)

No. of
years

1 650 616 0.67 40 45 0.70 2
2 1492 1421 1.13 397 427 1.02 4
3 619 614 0.64 53 54 0.56 4
4 2064 1875 1.42 279 251 1.25 4
5 1345 1314 1.21 16 37 1.40 4
6 3178 3127 1.61 −36 −40 1.35 2
7 677 771 1.15 74 69 0.85 1
8 1537 1478 2.60 501 517 2.19 2
9 1469 1472 1.48 383 385 1.45 2
10 1177 1196 1.31 168 163 1.23 2
11 329 407 0.66 180 186 0.57 2
12 NA 86 0.32 NA −16 0.29 1
13 421 377 0.56 41 49 0.74 1
14 NA 168 0.44 NA 115 0.37 2
15 938 928 1.30 −42 −10 1.24 4
16 517 534 0.76 133 143 0.57 1
17 1191 1085 3.35 478 435 3.07 2
18 1205 1228 3.29 228 215 2.40 2
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in CFLUX. Total respiration (Re) shows a rather similar relation to
WHC (Fig. 5), due to the assumption that autotrophic respiration is a
constant fraction of GPP and the assumption that heterotrophic
respiration declines as available soil moisture declines—albeit in a
somewhat different fashion than does GPP. Across the 6 temperate
PFDs of Table 4, GPP is insensitive to WHC, due to offsetting effects of
soil moisture on GPP and Re.

To illustrate the effects of shifts in temperature we added constant
temperature increments to the minimum daily temperature, the
average daily temperature and the soil temperature, as location-
related shifts in climate are likely to affect all three temperature
inputs. For evergreen forests subject to cold winters, such as the Rocky
Mountains site, GPP increased substantially with increasing temper-
ature, as there was less limitation of production by low night
temperatures (Fig. 6). Re also increased, as both of its two components
(autotrophic and heterotrophic respiration) increase with tempera-
ture. Autotrophic respiration is assumed to be proportional to GPP
(which increases with Tmin on cold evergreen sites), whereas
heterotrophic respiration increases with soil temperature. Annual
NEP showed a considerably smaller shift with temperature, as the
increases in GPP and Re offset each other (Fig. 6).

For deciduous forests subject to cold winters, the effect of
moderating cold night temperatures was mostly confined to the
leafless season when the satellite FPAR driving GPP was low. Hence
GPP was less sensitive to temperature than for evergreen forests and
the resultant effect on NEP was also small (Table 4). In the case of the
California annual grassland, annual GPP is largely limited by the
depletion of soil water stores in mid spring, so temperature has a
Fig. 5. Sensitivity of simulated fluxes to variation in soil WHC at site 15 (Temperate
GRASS). Re curve shown as negative in value for clarity. Estimated actualWHC=100 mm
at this site.
small effect. A strong temperature effect on NEP was observed for the
temperate maritime site of Table 4, due to high GPP and respiratory
fluxes at this productive site and a strong temperature response of
heterotrophic respiration here.

To illustrate the effects of shifts in VPD we multiplied the average
VPD for each day by a constant factor ranging from 0.5 to 1.5. This
approach prevents the negative VPDs that would occur with the
subtraction of only a small increment of VPD on cool wet winter days.
Also, themaximumVPDs are likely to show the greatest shifts inmoving
from wet to dry sites. Effects were small for the illustrated DBF site
(Fig. 7), where VPDs are relatively low onmost days and the VPD effect
ramps up gradually from a VPD of 500 to 4000. An interaction with soil
water limitation appeared to mute the effects of changing VPD for the
California grassland, as reducing early springGPPvia higher VPDsdelays
the onset of soil water effects that depress GPP later in the season.
Increasing VPD generally decreased modeled GPP more than it
decreased Re, resulting in moderate declines in predicted NEP (Table 4).

3.3. Comparison of cross site vs. single site optimizations

For the five PFT/climate zone combinations with multiple tower
sites, the RMSE was generally lower at each site for site-specific
parameter optimizations than when the site was run with parameters
derived from a cross-site optimization (data not shown). However,
across all sites within a PFT/climate zone combination, the RMSE was
generally higher when a single site optimization was used at all sites
than when this was done with the cross site optimization (Table 5).

Annual flux values derived from single site fits were likewise
usually closer to reported values for the home sites than were those
derived from multisite optimizations. When sites of differing
productivities were involved there was a tendency for the cross site
fit to under- and over-predict GPP at the more and less productive
sites, respectively. However, the overall average values across years
and sites derived from the cross site fits were substantially closer to
the corresponding flux tower averages. (Mean predicted GPP per PFT
ranged from −11 to +11% of the corresponding observed mean
across the 5 PFTs with cross site fits.) That is, there was less systematic
bias in the overall averaged estimates.

3.4. Comparison of fits to MODIS FPAR vs. EVI

The MODIS FPAR is consistently higher than the MODIS EVI for the
evergreen sites (coniferous forests and chaparral). A comparison of



Table 4
Sensitivity of the model to temperature, soil water holding capacity and VPD for the 6 temperate PFTs and site-year runs of Fig. 2 (2005 corn year for CROP). Sensitivities are the
changes in annual GPP, Re and NEP due to a 10% increase in soil water holding capacity (WHC), a 1° increase in daily minimum temperature, daily average temperature and daily soil
temperature (labeled T), and a 10% increase in daily VPD. Annual GPP, Re and NEP are shown for comparison to the incremental changes. All values are in gC m−2 y−1.

Annual Sensitivity of GPP to Annual Sensitivity of Re to Annual Sensitivity of NEP to

PFT GPP WHC T VPD Re WHC T VPD NEP WHC T VPD

ENF 606 0 0 −30.6 562 0.5 20.8 −14.5 44 −0.5 10.7 −16.1
Maritime 1840 33.1 50.6 −4.9 1575 34.4 184.8 0.2 265 −1.3 −134.2 −5.1
DBF 1553 0.3 29.0 −26.8 1131 1.9 17.9 −12.6 422 −1.6 11.1 −14.2
SHRUB 441 0.3 5.9 −18.6 239 0.4 3.4 −9.1 202 −0.1 2.4 −9.5
GRASS 1026 11.0 6.8 −17.1 966 9.1 10.0 2.1 60 2.0 −3.2 −19.2
CROP 1409 29.7 32.0 −16.8 909 15.6 14.5 −2.8 −501 −5.6 17.5 −13.9
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mean growing season MODIS FPAR and EVI with FPAR inferred from
measurements of canopy leaf area for the BigFoot project (Turner
et al., 2005) shows that the overall average EVI value was 37% lower
than the measurement based estimates (Table 6). The MODIS FPAR
was on average close to the Bigfoot values, though these two differed
substantially at several sites.

Examples of MODIS FPAR and EVI (Fig. 8) show that the former
averages 1–2 times higher than the latter. The two are quite similar for
the illustrated crop site and show parallel increases during the
growing season for the sites dominated by deciduous plants (crops,
deciduous broadleaf forests and most grasslands). The seasonal
dynamics in both FPAR sources are somewhat muted compared to
the expected patterns for deciduous vegetation, although they do
capture most of the seasonal variation. However a value close to zero
is expected during the dormant season (dry season for California
annual grasslands andwinter for annual crops and deciduous forests).

The parameters determining the base light use efficiency (LUEcs
and LUEmax) were substantially higher when CFLUX was fit with EVI
than with FPAR (Fig. 9). This pattern is expected, as the lower
modeled light interception associated with EVI requires higher LUEs
to achieve a given GPP. The base rate of heterotrophic respiration
(Rh_base) was also higher for the EVI optimization (Fig. 9) because
heterotrophic respiration is scaled to leaf area index, which is inferred
from the FPAR or EVI input. The parameters defining the effect of low
temperatures and VPD on LUE were generally similar for the EVI and
FPAR optimizations.

The RMSE's associated with the EVI vs. MODIS FPAR optimizations
were quite similar, despite the substantial differences in the resultant
LUE parameters, both for single and multiple site optimizations
(Table 7). The predicted annual values of GPP, Re and NEP for EVI vs.
MODIS FPAR were quite similar to each other—and to the observed
flux tower values (Fig. 10). The deviations from the observed values
for annual GPP and Re were correlated with each other, resulting in
smaller deviations in annual NEP. Thus, the two FPAR sources
performed equally well. However, as the EVI values are often much
lower than the actual FPAR values, the EVI-associated light use
Fig. 6. Sensitivity of simulated fluxes to variation in temperature at site 9 (Temperate
DBF). Tmin, Tavg and Tsoil were all varied by the amount on shown on the x-axis for
each day of a representative year. Re curve shown as negative in value for clarity.
efficiency parameters are biased upwards in comparison to true light
use efficiencies calculated as GPP/(actual absorbed PAR).

4. Discussion

4.1. Site-level parameterization

The model parameter sets derived for the 18 sites varied
substantially, most notably LUEcs and LUEmax, which specify the
base LUE under unstressed conditions. These parameters were
correlated with annual GPP, particularly for the evergreen needleleaf
forest sites (Tables 1–3). Mäkelä et al. (2008) also reported variation
in base LUE for coniferous forest flux tower sites, and found that it
correlated with foliar nitrogen concentration. The latter relation is in
agreement with observed relations between photosynthetic capacity
and leaf nitrogen concentration (Evans, 1989; Reich et al., 1997). The
LUE parameters were quite low for the low-productivity SHRUB and
Arctic GRASS sites.

The base rate of heterotrophic respiration (Rh_base) also varied
greatly among sites and tended to increase with annual GPP (Tables 2
and 3). However, the high temperature dependence of Rh for the three
evergreen conifer sites of the Pacific Northwest resulted in the model
fitting high summertime respiration rates with modest values of
Rh_base.

The RMSE errors in daily GPP and NEP showed moderate
sensitivity to variation in the optimized parameters about their
optimal values (Fig. 3). In cases where the optima lay at the boundary
of the searched parameter space, the RMSE decreased to varying
extents in crossing the boundary at the point of the optimum.
However, the predicted annual values of GPP, Re and NEP were quite
close to the observed values for most sites (Fig. 10).

CFLUX is a relatively simple diagnostic model, designed for rapid
simulations when run in the spatial mode. Consequently, the model
mechanisms fitting the tower data aren't the full component of
environmental factors that may affect carbon fluxes across all sites.
For example, the model includes the effects of cold nights on LUE, but
Fig. 7. Sensitivity of simulated fluxes to variation in VPD at site 3 (Temperate ENF).
Observed VPD was multiplied by the indicated factor for each day of a representative
year. Re curve shown as negative in value for clarity.



Table 5
Simulated annual fluxes, associated biases, and daily RMSEs for the temperate deciduous broadleaf PFT, as derived from parameterizations for each site and across all sites. GPP bias is
mean annual simulated GPP over all sites and years (Column 2) minus the mean annual observed GPP across all sites and years. RMSEGPP refers to the RMSE for daily GPP across all
sites and years. The same information is given for NEP. Sites are defined in Table 1.

Parameterization site All site mean annual GPP GPP bias All site RMSEGPP All site mean annual NEP NEP bias All site RMSENEP
(gC m−2 y−1) (gC−2 y−1) (gC m−2 d−1) (gC m−2 y−1) (gC m−2 y−1) (gC m−2 d−1)

8 1483 89 2.46 530 179 1.95
9 1234 −160 2.16 271 −80 1.92
10 1275 −119 2.13 174 −177 1.95
Cross site 1386 −8 2.04 363 12 1.81

Table 6
Comparison of mid growing season FPAR (as estimated from BigFoot LAI observations,
Turner et al., 2005) with MODIS FPAR and MODIS EVI. Values are means across years
(where relevant) and over multiple 1 km grid cells at each site. Sites are defined in
Table 1.

Site number/years BigFoot MODIS FPAR MODIS EVI

8/2001–2003 0.86 0.81 0.55
2/2002 0.47 0.67 0.30
1/2001 0.89 0.66 0.29
6/2002 0.95 0.76 0.53
14/2002–2003 0.11 0.15 0.12
12/2002 0.30 0.35 0.25
17/2000 0.67 0.70 0.63
Average 0.61 0.59 0.42
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no effects of daytime temperatures. Some other production models
employ a quadratic function that reduces LUE when daytime
temperatures are either above or below an optimal value (Sands,
1995; Yuan et al., 2007). However, VPD also tends to be high on hot
days and daily minimum temperatures are low on cold days. Thus, the
fitted VPD and Tmin effects may also serve as surrogates for additional
daytime temperature effects on LUE.

Probably the greatest simplification within CFLUX is with respect
to Rh. In forests, rates of Rh are undoubtedly different in litter, coarse
woody debris, and soil organic matter on any given day. The
contribution of coarse woody debris to Rh will also vary with stand
development (Bond-Lamberty & Gower, 2008). For the old-growth
evergreen needleleaf forest in the Cascade Mountains of Washington
(site 5), respiration from large downed logs is also a significant CO2

source (Harmon et al., 2004), which shows a different dependence on
moisture content than do soils and small woody debris (Carpenter
et al., 1988). Unlike the latter, logs show arrested respiration when
Fig. 8. Comparison of FPAR and EVI time series, indicated by red and blue lines, respectively (
same as in Fig. 4.
saturated with water and increased respiration in late summer, as
they dry out in the Pacific Northwest. This additional source of warm
season respiration may be captured by the high temperature
dependence of Rh at this site, as fit by CFLUX.
4.2. Cross-site parameterization

Within each PFT, the parameter sets derived from cross-site
optimizations performed substantially better at predicting the annual
NEP, as averaged across all sites and years than did the individual site
parameter sets (Table 5). However, the individual site optimizations
generally had lower RMSE's for their respective home sites than did
the cross site optimization, as expected. Possible reasons for biases in
the predictions of site optimized parameter sets when applied to
different sites within a PFT include:

1. Intersite differences not included in CFLUX, such as soil fertility and
species composition, which may affect LUE (Kirschbaum et al.,
1994). The difference between the LUE of corn and soybean (Fig. 2),
due to differences in photosynthetic pathway (C4 vs. C3), and the
carbon and energy content of the biomass of these two crops is
perhaps an extreme example, but variation in LUE among other
crop species has also been reported (Choudbury, 2001). Likewise,
the photosynthetic capacity of trees varies substantially among
genotypes and species, although the relation between leaf
photosynthetic capacity and whole-stand productivity is complex
(Pallardy & Kozlowski, 2008).

2. Error in the estimates of fluxes derived from eddy flux correlations,
associated with differences in topography and tower footprints
among sites (Aubinet, 2008; Baldocchi, 2003).

3. Error in satellite-based FPAR due to cloud contamination and other
factors (Nagai et al., 2010), which may vary among sites.
for all panels the EVI trace is below the FPAR trace in midseason). Site and years are the



Fig. 9. Comparison of EVI and FPAR parameters. LUEcs is light use efficiency under
unstressed clear sky conditions, LUEmax is maximum light use efficiency, Rh_base is the
base rate of heterotrophic respiration.

Fig. 10. Comparison of predicted annual fluxes with EVI and FPAR inputs after
optimization of the model parameters to these respective inputs for each site.
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4.3. Comparison of FPAR and EVI

Despite substantive differences between the MODIS FPAR and EVI
inputs, CFLUX showed similar errors in fitting the parameters to these
two inputs and quite similar projections of annual fluxes (Fig. 10). The
optimization of the parameters may also correct for deficiencies in the
input data for both FPAR and EVI inputs. For example, the optimized
FPARmin, the minimum FPAR driving heterotrophic respiration, was
always≥0.5 and often=1, whichwould negate spuriously low values
in the satellite FPAR estimates, due to clouds, snow cover and other
causes. This capacity to implicitly handle additional processes and
environmental effects and adjust to differences in input data is a
strength of diagnostic models.
Table 7
Comparison of RMSEs for cross site optimizations with MODIS FPAR and MODIS EVI.
ENF = Evergreen Needleleaf Forest, DBF = Deciduous Broadleaf Forest.

RMSEGPP
(gC m−2 d−1)

RMSENEP
(gC m−2 d−1)

No.
sites

Years
per site

FPAR EVI FPAR EVI

PFT
Maritime ENF 1.55 1.50 1.69 1.64 2 4
Temperate ENF 1.44 1.27 1.09 1.04 2 4
Temperate DBF 2.04 2.01 1.81 1.79 3 2
Temperate GRASS 0.91 0.99 0.98 1.00 3 1
Temperate CROP 3.44 3.45 2.79 2.91 2 2
4.4. Towards continental scale model application

The performance of CFLUX when fit to disparate FPAR inputs and
its response to varying meteorological inputs and soil water holding
capacity show it to be a robust and flexible model which produces
relatively stable estimates of annual NEP. Using a level of disaggre-
gation characterized by 3 climate zones and 6 plant functional types,
we were able to find one or more representative tower sites in almost
all the climate zone×PFT classes. We have applied the model in the
spatial mode over western Oregon (Turner et al., 2006) and produced
NEP flux estimates that compared well to those produced by a more
process-based model (Biome-BGC). Notably, the diagnostic model is
able to account to some degree for the effects of recent large scale
forest fires, sub-regional patterns in stand age, and interannual
variation in climate on NEP. Application at the continental scale will
rely on distributed climate data and recently available input datasets
such as the stand age coverage of Pan et al. (2011). Opportunities for
validation at broad spatial scales include additional model intercom-
parison studies (e.g. Cramer et al., 1999) and input of simulated NEP
to inversion schemes that evaluate predicted and measured CO2

concentration data (Ahmadov et al., 2009). Our analysis suggests that
the cross site parameter fits for PFD/climate zones with multiple sites
should produce less bias in overall annual carbon fluxes than fits to
individual sites.
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