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[1] We present an inverse modeling framework designed to constrain CO2 budgets at
regional scales. The approach captures atmospheric transport processes in high
spatiotemporal resolution by coupling a mesoscale model with Lagrangian Stochastic
backward trajectories. Terrestrial biosphere CO2 emissions are generated through a simple
diagnostic flux model that splits the net ecosystem exchange into its major components of
gross primary productivity and autotrophic and heterotrophic respirations. The modeling
framework assimilates state‐of‐the‐art data sets for advected background CO2 and
anthropogenic fossil fuel emissions as well as highly resolved remote sensing products.
We introduce a Bayesian inversion setup, optimizing a posteriori flux base rates for surface
types that are defined through remote sensing information. This strategy significantly
reduces the number of parameters to be optimized compared with solving fluxes for each
individual grid cell, thus permitting description of the surface in a very high resolution.
The model is tested using CO2 concentrations measured in the fall and winter of 2006 at
two AmeriFlux sites in Oregon. Because this database does not cover a full seasonal cycle,
we focus on conducting model sensitivity tests rather than producing quantitative CO2

flux estimates. Sensitivity tests on the influence of spatial and temporal resolution indicate
that optimum results can be obtained using 4 h time steps and grid sizes of 6 km or less.
Further tests demonstrate the importance of dividing biome types by ecoregions to
capture their different biogeochemical responses to external forcings across climatic
gradients. Detailed stand age information was shown to have a positive effect on model
performance.

Citation: Göckede, M., A. M. Michalak, D. Vickers, D. P. Turner, and B. E. Law (2010), Atmospheric inverse modeling to
constrain regional‐scale CO2 budgets at high spatial and temporal resolution, J. Geophys. Res., 115, D15113,
doi:10.1029/2009JD012257.

1. Introduction

[2] The capability of the terrestrial biosphere to act as a
source or sink for carbon has a significant effect on the
assessment of carbon budgets on scales ranging from global
to local [e.g., Baldocchi, 2008; Potter et al., 2003; Stephens
et al., 2007]. Understanding the mechanisms that drive
current biosphere carbon fluxes and pools plays a vital role
in predicting future ecosystem functionality and atmospheric
composition in the context of global change and thus in
projecting the potential anthropogenic influence on global

climate [Intergovernmental Panel on Climate Change, 2007].
Common approaches to analyzing terrestrial biosphere‐
atmosphere exchange processes comprise eddy‐covariance
flux measurement networks [e.g., Baldocchi et al., 2001;
Law, 2005; Valentini et al., 2000] and bottom‐up biogeo-
chemistry modeling frameworks that ingest multiple data
sources including atmospheric observations, ecosystem
inventories, and remote sensing data [Krinner et al., 2005;
Potter, 1999; Thornton et al., 2002]. Eddy‐covariance mea-
surements have provided detailed insight into the flux
mechanisms between the surface and the atmosphere [e.g.,
Law et al., 2002; Reichstein et al., 2007], but the informa-
tion is representative only at local scales [e.g., Rannik et al.,
2000; Schmid, 1997; Schuepp et al., 1990]. Bottom‐up
modeling has delivered valuable insight into spatially vari-
able flux processes on different scales, but validation of the
models is usually restricted to single, well‐instrumented
observation sites, and evaluation of the spatial products
remains challenging.
[3] Atmospheric inverse modeling [e.g., Bousquet et al.,

2000; Enting, 2005; Rayner et al., 1999] holds the poten-
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tial to overcome the shortcomings listed above. The tech-
nique allows one to extract information from atmospheric
CO2 observation networks to either directly constrain carbon
budget estimates on various scales [e.g., Gurney et al., 2002;
Michalak et al., 2004] or provide independent reference data
to evaluate and optimize biosphere carbon flux models [e.g.,
Gerbig et al., 2003; Matross et al., 2006]. CO2 concentra-
tion data may be representative of spatial scales ranging
from regional to continental [Gerbig et al., 2006; Gloor
et al., 2001], so the variability captured in the time series
integrates the influence of biospheric activity on atmo-
spheric composition over large areas. To date, most inverse
atmospheric modeling studies have addressed global [e.g.,
Gourdji et al., 2008; Gurney et al., 2002; Jacobson et al.,
2007; Mueller et al., 2008] to continental [e.g., Peters
et al., 2007; Peylin et al., 2005] domains, whereas others
used a pseudodata approach to evaluate the capabilities of
their inversion setups to constrain carbon budgets [e.g.,
Gourdji et al., 2009; Lokupitiya et al., 2008; Schuh et al.,
2009; Zupanski et al., 2007]. Concerning temporal resolu-
tion, inverse modeling approaches have been applied to
solve for time steps far smaller than annual, e.g., monthly to
daily varying fluxes [e.g., Baker et al., 2006; Gourdji et al.,
2008; Mueller et al., 2008]. These studies have successfully
demonstrated the potential of this technique to assess overall
carbon budgets and their distribution among subregions
including temporal dynamics and uncertainties. However,
because of the aggregation of fluxes over large regions,
these approaches are usually too coarse to capture vegeta-
tion and climate variability at small subgrid scales, and thus
these can provide little information on the mechanisms that
drive the underlying carbon processes.
[4] Application of atmospheric inverse modeling on

regional scales [e.g., Gerbig et al., 2003; Lauvaux et al.,
2008; Matross et al., 2006] permits a model setup that
defines surface processes in enough detail to investigate the
effect of climate anomalies (e.g., drought) or disturbance
history (e.g., wildfires) on carbon fluxes and pools. This
way, highly detailed prior information, e.g., from remote
sensing sources, can be assimilated into the modeling
framework, although the final resolution of information
gained through the inverse modeling approach also depends
on the setup of the atmospheric observation network.
Regional‐scale applications could potentially be used to
monitor compliance with greenhouse gas reduction goals in
the context of state‐level greenhouse gas targets or inter-
national treaties. However, the high spatial resolution in the
model domain setup requires an optimization strategy that
limits the degrees of freedom associated with the increased
number of grid cells [e.g., Gerbig et al., 2006]. Also,
improvements in aggregation error [Kaminski et al., 2001]
with high spatial resolution models may be canceled out by
increased uncertainties in transport simulations [Lin and
Gerbig, 2005] or vertical boundary layer mixing [Gerbig
et al., 2008]. To avoid underconstrained model setups,
regional‐scale inverse modeling needs to assimilate addi-
tional sources of information, such as a realistic description
of the model domain from remote sensing, and an accurate
definition of a prior flux model version that has been trained
on eddy‐covariance flux measurements.

[5] Here, we present a regional‐scale inverse modeling
approach developed to constrain CO2 budgets in the U.S.
West Coast region. This approach uses an optimization
strategy that has been customized to capture the fine‐scale
spatial heterogeneity in surface fluxes that may have an
important effect in regional‐scale inverse modeling studies.
One central element of this strategy is to separate the model
domain surface into so‐called surface types defined through
remote sensing data layers for ecoregion, land cover type,
and disturbance history. This strategy decouples the number
of parameters to be optimized, and thus the degrees of
freedom in the optimization process, from the number of
grid cells or regions in the model domain and therefore
makes possible a highly detailed description of the surface
domain that reduces potential representation errors. Other
characteristics of our inverse modeling approach include the
optimization of flux base rates instead of the fluxes them-
selves, with individual base rates assigned to each of the
major flux components of gross primary productivity (GPP),
autotrophic respiration (RA), and heterotrophic respiration
(RH). The modeling framework assimilates high‐resolution
(<1 km grid size) remote sensing data sets to characterize
the surface and is operated in subdaily time steps to capture
information from the observed diurnal cycle of atmospheric
CO2 concentration. Atmospheric transport modeling to link
receptor locations to spatially distributed sources is solved
in high spatiotemporal resolution by coupling the Weather
Research and Forecast (WRF) mesoscale model to the
Stochastic Time‐Inverted Lagrangian Transport (STILT)
model. The simple diagnostic carbon flux model splits total
carbon flux into its main components of GPP, RA, and RH
and takes into account important influence factors such as
drought stress, stand age, or disturbance history. A Bayesian
approach is applied to optimize the flux base rates. Because
the database of well‐calibrated atmospheric CO2 con-
centrations available for modeling does not yet cover a full
seasonal cycle, we refrain from computing annual CO2

budgets for the study region. Instead, this study focuses on
sensitivity studies of the influence of spatial and temporal
resolution as well as the role of complexity in the domain
surface setup.

2. Atmospheric Inverse Modeling Approach

[6] The atmospheric inverse modeling framework pre-
sented in this section follows the general concept proposed
by Gerbig et al. [2003]. Atmospheric transport modeling
(section 2.4) is used to develop an influence function that
links a receptor location to spatially distributed sources and
sinks. This influence function is coupled to modeled ter-
restrial biosphere fluxes of CO2 (section 2.3) to obtain the
effect of photosynthesis and respiration on the atmospheric
CO2 concentration time series. Also considering anthropo-
genic fossil fuel emissions and advected background con-
centrations (section 2.5), this approach allows one to simulate
the time series of CO2 concentration for any given location
and time frame within the model domain. The optimization
strategy (section 2.6) builds on Bayesian inversion to optimize
the correlation between modeled and observed (section 2.2)
CO2 concentration time series by improving flux base rates
for individual surface types in the biosphere flux model.
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2.1. Oregon Model Domain

[7] Our study focuses on the state of Oregon, located in the
Pacific Northwest Region of the United States (Figure 1).
This model domain is characterized by a significant small‐
scale to mesoscale variability in vegetation characteristics
that poses challenges to carbon cycle modeling. The crest of
the Cascade Mountains roughly splits the state into a mesic
western part dominated by dense, managed Douglas‐fir
forest and agricultural crops, and a semiarid eastern part
mainly consisting of open ponderosa pine forest and juniper‐

sagebrush‐grass communities. The whole state is subject to
drought during the summer growing season, primarily in the
central to eastern parts [e.g., Irvine et al., 2002; Law et al.,
2001; Schwarz et al., 2004]. Predominant clear‐cut manage-
ment practices in the western third of the state and frequent
wildfires in the East created a small‐scale mosaic of age
classes on forested lands [Cohen et al., 2003]. The Portland
metropolitan area in the northwest corner ofOregon is the only
major source of anthropogenic carbon emissions. Because
forests in the Pacific Northwest are among the most produc-
tive globally [Luysseart et al., 2008;Myneni et al., 2001], with
intensive ongoing research on the role of climate change or
management practices [Campbell et al., 2009; Donato et al.,
2006: 2009; Irvine et al., 2007], Oregon offers a highly rele-
vant domain for studies on regional carbon balances.
[8] On the basis of different remote sensing sources

(Table 1), we identify 10 ecoregions, 6 vegetation land
cover classes, and 2 disturbance regimes for the Oregon
domain. Hereafter, we use the term “surface type” to refer to
any combination of ecoregion, land cover class, and dis-
turbance regime. A stand age map was produced from
Landsat data [Cohen et al., 2002], where change detection
was used for forests less than 30 years old, and spectral
regression was used for forests older than 30 years. To
increase computation efficiency, the original pixel resolution
of 25 m was aggregated to a 1 km resolution, storing the five
dominant combinations of surface type and stand age and
their coverage percentage for each grid cell.

2.2. Atmospheric CO2 Concentration Data

[9] Continuous well‐calibrated atmospheric CO2 concen-
trationmeasurements from twomonitoring sites inOregon are
used as input for the inverse modeling approach (Figure 1).
The Metolius mature pine site [MP, 44.45°N, 121.56°W,
1310 m above sea level (asl)] is situated about 17 km north
of the town of Sisters, Oregon, in the semiarid East Cascades
ecoregion [Irvine et al., 2007; Law et al., 2004]. The inlet
height of the CO2 monitoring system is 33.5 m above

Table 1. Survey on Remote Sensing–Based Data Used to Describe Surface Characteristics in Oregon

Data Type
Number
of Classes Classes Data Source

Ecoregion 10 CR, Coastal Range EPA Level III Ecoregions
(http://www.epa.gov/wed/pages/
ecoregions.htm)

KM, Klamath Mountains
WV, Willamette Valley
WC, West Cascades
CC, Cascade Cresta

EC, East Cascades
CP, Columbia Plateau
BM, Blue Mountains
NB, Northern Basin and Range
SR, Snake River

Vegetation land
cover types

6 ENF/MF, evergreen needleleaf
forest/mixed forest

Forest types: Law et al. [2004]

DBF, deciduous broadleaf forest
WOOD, juniper woodland Nonforest types: U.S. Geological Survey’s

National Land Cover Database
(http://landcover.usgs.gov/nlcd.php).

SHRUB, shrubland

GRASS, grassland Compared with the original data, some
classes herein were combined and
reclassified.

CROP, cropland

Disturbance regime 2 FIRE, wildfire Law et al. [2004]
CUT, harvest/clear‐cut Cohen et al. [2002]

aEcoregion added for this study as transition zone between WC and EC.

Figure 1. Ecoregions and land cover types in the Oregon,
USA, model domain. Topography is indicated by hillshad-
ing underneath the landcover colors. Yellow dots mark the
locations of CO2 concentration monitoring sites (MF, Mary’s
River mature fir site; MP, Metolius mature pine site). Please
refer to Table 1 for the list of ecoregion abbreviations.
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ground level (agl). The Mary’s River mature Douglas‐fir site
(MF, 44.65°N, 123.55°W, 310 m asl) lies about 6 km north
of Blodgett, Oregon, in the Oregon Coast Range ecoregion.
The initial inlet height for the CO2 monitoring system of
46.6 m agl was relocated to 37.9 m agl on 26 September
2006. The two sites are equipped with custom‐built CO2

monitoring systems following the design by Stephens et al.
[2006], with major modifications to stabilize the output
against fluctuations in pressure, air temperatures, and water
vapor. The core of the system is a LiCor LI‐820 (MP site) or
LI‐840 (MF site) gas analyzer operating at a measurement
frequency of 1 Hz. Calibration and quality control of the raw
data are based on four standard gases sampled at regular
intervals. Final output data are hourly averaged atmospheric
CO2 mixing ratios.
[10] The CO2 monitoring systems were installed at both

sites in August 2006. The availability of ancillary data sets
required to run the atmospheric inversion (see below)
restricted the present study to the latter half of 2006. Quality
filters are applied to identify situations with insufficient
vertical mixing as well as the transition period from a
convective boundary layer in the late afternoon to the early
evening stable boundary layer. We applied a disjunct tall
tower concept (Appendix A) to identify situations where
capping inversions disconnected the short tower observa-
tions from the upper portions of the boundary layer. Data
gaps and the exclusion of the flagged data significantly
reduced both data sets (MF = 21% of data remaining and
MP = 24% of data remaining). Because wildfire emissions
cannot be quantified yet because of to their unknown source
strength, measurements downstream of actively burning
areas (http://geomac.usgs.gov/) were also excluded from the
analysis. Because this reduction of the data set only removes
the immediate effect wildfires have on the atmospheric
mixing ratios, the capability of our modeling framework to
evaluate the long‐term influence of fire disturbance on
subsequent terrestrial fluxes (photosynthesis and respiration)
is not influenced by this filter.

2.3. Terrestrial Biosphere CO2 Flux Model

[11] The terrestrial biosphere CO2 flux model (further on
referred to as BioFlux) assimilates information from remote
sensing platforms, interpolated surface meteorology data
sets, and eddy‐covariance flux sites to simulate net eco-
system exchange (NEE) between the vegetation and the
atmosphere. The model resolves CO2 fluxes in hourly time
steps into GPP, RA, and RH. BioFlux includes influences of
forest disturbance history and stand age as well as drought
stress on NEE.
2.3.1. Flux Algorithms
[12] The calculation of GPP is based on the product of

light use efficiency and absorbed photosynthetically active
radiation (APAR), with additional scaling factors simulating
the influence of temperature, vapor pressure deficit, cloud
cover, and stand age on photosynthesis:

GPP ¼ �GPPbase � APAR � Tsc � VPDsc � 1þ CLwgt � CLsc

� �
� AgeGPP; ð1Þ

where

GPP gross primary productivity (g C m−2 time
step−1);

GPPbase base rate for gross primary productivity
(g C MJ−1);

APAR absorbed photosynthetically active radiation
(MJ m−2 time step−1);

Tsc minimum temperature scaling factor (−);
VPDsc vapor pressure deficit scaling factor (−);
CLwgt cloudiness influence weight (−);
CLsc cloudiness scaling factor (−);

AgeGPP age scaling factor on GPP (−).

APAR is derived as the product of incident photosyntheti-
cally active radiation (PAR) and the fraction of available
radiation in the photosynthetically active wavelengths that a
canopy absorbs (fPAR), with a time step that may vary
between half‐hourly and daily. The functions for minimum
temperature (Tsc) and vapor pressure deficit (VPDsc) are
derived from sigmoid functions that can be adapted to biome
characteristics by fitting two parameters: inflection point
and influence width (Appendix B). The sigmoid functions,
ranging between 0 and 1, follow the ramp function approach
described, e.g., by Running et al. [2000], while keeping the
equations continuous and thus differentiable. The cloudiness
scaling factor (CLsc) is obtained from the ratio of actual to
potential incoming shortwave radiation, ranging between 0
for clear skies and 1 for complete overcast. It has been
included in the equation to simulate the effect of diffuse
radiation on photosynthesis. The influence of CLsc on GPP
can be adapted for each biome by optimizing the cloudiness
influence weight (CLwgt). The age scaling factor (AgeGPP) is
included to account for reduced net primary productivity in
older forest stands (Appendix B).
[13] RA is calculated as the sum of a temperature‐

dependent maintenance respiration and a growth respiration
component that reflects assimilated carbon available for
growth:

RA ¼ Rm þ Rg; ð2Þ

Rm ¼ Rm; base � Q½ðTair�20Þ=10�
10 � fPAR; and ð3Þ

Rg ¼ GPP� Rmð Þ � Rg;frac; ð4Þ
where

RA autotrophic respiration (g C m−2 time step−1);
Rm maintenance respiration (g C m−2 time step−1);
Rg growth respiration (g C m−2 time step−1);

Rm, base base rate for maintenance respiration (g C m−2

time step−1);
Q10 base rate for Q10 temperature influence function

(−);
Tair actual air temperature (°C);

fPAR fraction of PAR absorbed by the canopy (−);
Rg, frac fraction of assimilated carbon used in growth

respiration (−).
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[14] Maintenance respiration is the product of a biome‐
specific base rate (Rm, base) and the Q10 function that reflects
the influence of temperature on respiration processes. As an
additional scaling factor, fPAR is included as a proxy for
leaf area index to reflect the influence of live biomass on the
respiration fluxes. Growth respiration is set to a fixed ratio
(Rg, frac = 0.25) of assimilated carbon available after main-
tenance respiration has been deducted from GPP.
[15] RH is modeled using a biome‐specific base rate

scaled with actual soil temperature, soil moisture, stand age,
and fPAR:

RH ¼ RHbase � TSsc � SWsc � AgeRH � fPAR; ð5Þ

where

RH heterotrophic respiration (g C m−2 time step−1);
RHbase base rate for heterotrophic respiration (g C m−2

time step−1);
TSsc soil temperature scaling factor (−);
SWsc soil water scaling factor (−);

AgeRH age scaling factor on RH (−).

The scaling factors for soil temperature and soil moisture are
derived using exponential functions (Appendix B), forcing
higher RH fluxes with increasing temperatures and soil
water content (SWC). A specific age function was used to
capture increased decomposition of biomass in the years
after disturbance events such as clear‐cuts or fires. fPAR has
been included in the algorithm as an indicator for the effect
of recently assimilated carbon on RH. fPAR values smaller
than 0.2 are set to 0.2 to guarantee a minimum flux rate even
in sparsely vegetated areas.
2.3.2. Model Initialization
[16] The BioFlux model simulates carbon fluxes in regions

characterized by fine‐scale heterogeneity in surface types
(see also section 2.1). Model algorithms include eight para-
meters that can be adjusted to represent the response of each
surface type to environmental drivers: base rates of GPP, RA,
and RH (GPPbase, Rm, base, and RHbase), inflection point and
influence width for both the scaling parameters of Tmin and
VPDd (Tinf, Twid, VPDinf, and VPDwid), and the cloudiness
influence weight CLwgt. Initial values for all eight parameters
are derived by fitting BioFlux results to reference data sets
(see below), whereas only the three base rates will subse-
quently be modified based on results of the atmospheric
inversion approach (see section 2.6).
[17] The model is initialized in a two‐stage process, using

site‐level reference flux data of GPP, RA, and RH in daily
time steps. In the first stage, we use the Shuffled Complex
Evolution – University of Arizona (SCE‐UA) [Duan et al.,
1992, 1993] algorithm to identify the optimum parameter
values for each reference data set. SCE‐UA explores an
n‐dimensional solution space that is defined by upper and
lower limits for each parameter and does not require prior
knowledge on optima as a starting point. The Simplex
downhill search algorithm used by SCE‐UA effectively
evolves the population of solutions toward a single best
parameter set, mostly neglecting regions with lower poste-
rior density. Because these regions of lower posterior den-
sity are important to characterize the parameter distributions,

we added the Shuffled Complex Evolution Metropolis
(SCEM) algorithm [Vrugt et al., 2003] as a second initiali-
zation stage to derive the parameter uncertainties required
for the Bayesian inversion (see section 2.6). SCEM builds
on SCE‐UA but introduces a number of modifications, the
most important of which is the replacement of the Simplex
downhill search method with the Metropolis algorithm
[Metropolis et al., 1953]. The overall effect is that SCEM
efficiently explores lower posterior density regions of the
parameter space, calculating several tens of thousands of
parameter sets and their specific posterior densities. To
avoid bias introduced by the randomly chosen starting
population of solutions, we used only the final 50% of the
parameter sets to characterize parameter uncertainties. Only
the three flux base rates per surface type were optimized in
the Bayesian inversion (section 2.6); the remaining five
parameters were kept constant during SCEM runs.
[18] Two AmeriFlux eddy‐covariance sites were available

to provide reference data for the parameter initialization.
The first is the Metolius mature pine site (MP) (see also
section 2.2), providing 4 years of flux data to initialize
evergreen needleleaf and mixed forest (ENF/MF) biomes in
the Eastern Oregon ecoregions. The second site, Wind River
(45.82°N, 121.95°W, 371 m asl), is located in the humid
West Cascades ecoregion just north of the Oregon border
[Falk et al., 2008; Shaw et al., 2004]. Three years of Wind
River flux data were used to initialize ENF/MF biomes in
the Western Oregon ecoregions. NEE observations were
partitioned into GPP and ecosystem respiration (RE), with
RE further split into its two major components (RA and RH)
using a fixed GPP/RA ratio. The total coverage percentage
of ENF/MF biomes initialized by eddy‐flux data is 43.8% of
the Oregon domain.
[19] For the initialization of nonconifer biomes, GPP, RA,

and RH from the Biome‐BGC model [Thornton et al., 2002]
was used as reference data. These reference model runs were
based on extensive previous measurement and modeling
studies in the Oregon region [e.g., Law et al., 2004, 2006;
Turner et al., 2003, 2004] and considered the same infor-
mation to describe the model domain as in this study (see
Turner et al. [2007] for details). We conducted Biome‐BGC
runs for 14 selected locations distributed throughout Ore-
gon, each of which represented a single nonforest surface
type with significant coverage in the model domain. These
14 surface types cover another 48.0% of the Oregon
domain, and results were extrapolated into the remaining
8.2% for which no reference data were available.
2.3.3. Biosphere Flux Model Input Data
[20] The main source of spatial surface meteorology data

to drive BioFlux in this study is the Surface Observations
Gridded System (SOGS) [Jolly et al., 2005], which inter-
polates site‐level surface meteorology from various sources
on the basis of topography. SOGS provides daily minimum
and maximum temperatures, average incoming shortwave
radiation, average VPD, and precipitation in continuous
grids with 1 km resolution. SOGS precipitation data were
improved on the basis of comparison to monthly time series
data from the Parameter‐elevation Regressions on Inde-
pendent Slopes Model (PRISM) [e.g., Daly et al., 2008]
climate mapping system, creating a hybrid product that
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combines the high spatial and temporal resolution of SOGS
with the knowledge‐based high‐quality PRISM data. Day-
Met [Thornton and Running, 1999; Thornton et al., 1997]
was used as an additional data source to provide the daytime
length between sunrise and sunset.
[21] Daily SOGS data must be interpolated into subdaily

time steps to allow computation of surface CO2 fluxes with
a time step of 1 h. Appendix C describes our solution to
approximate daily courses of incoming PAR and tempera-
ture using average daily radiation, daily maximum and
minimum temperatures, geographic position, as well as time
and date. Additional information on input data preparation
for use in BioFlux is given in Appendix B.
[22] Gridded Moderate Resolution Imaging Spectro-

radiometer (MODIS) fPAR data (1 km spatial resolution and
8 day temporal resolution) were downloaded from NASA
archives (https://wist.echo.nasa.gov/api/). A temporal inter-
polation routine [Zhao et al., 2005] was applied to fill
missing data or data flagged as low quality by the quality
assurance protocol.

2.4. Atmospheric Transport Modeling

[23] Atmospheric transport modeling is required to solve
for the influence of a changing “field of view” or source area
[e.g., Gash, 1986; Pasquill, 1972] on atmospheric mea-
surements in heterogeneous terrain. This spatial context of a
measurement, commonly defined as the footprint [e.g.,
Schmid, 2002; Schmid and Oke, 1990; Schuepp et al.,
1990], is described by a transfer function that links site‐
level observations to the surrounding terrain, helping to

explain fluctuations in the observed signal caused by a
varying composition of sources and sinks within the source
area. The atmospheric transport module couples the meso-
scale atmospheric model WRF (http://www.wrf‐model.org)
with the receptor‐oriented atmospheric transport model
STILT [Lin et al., 2003].
[24] WRF is a mesoscale atmospheric model that can be

used for both operational forecasting and atmospheric
research. It has been set up here to generate refined three‐
dimensional transport fields as offline input for the STILT
model, stored in 20 min intervals, with a spatial resolution
corresponding to the specific WRF grid resolution (see
below). Adding WRF as a component to the atmospheric
transport module allows computation of customized high‐
resolution meteorological fields that conserve mass,
momentum, entropy, and scalars and include parameterized
convective mass fluxes. We use the Advanced Research
WRF Version 2.0 (described, e.g., in Skamarock et al.
[2005] and Wang et al. [2005]) in a software package cus-
tomized for coupling with STILT. Details on the physics
schemes used in our WRF setup are given in Table 2. Initial
and boundary conditions were taken from the National
Centers for Environmental Prediction (NCEP) final global
analyses (http://dss.ucar.edu/datasets/ds083.2), which is avail-
able in 1° × 1° resolution on 26 pressure levels 4 times daily.
We selected a nested design with two domains (Figure 2): an
outer grid covering all of Oregon in 12 km resolution (70 ×
60 cells, 60 s time step) and an inner grid focusing on the
central Western part of the state with a resolution of 4 km
(73 × 55 cells, 20 s time step). The number of vertical levels
is 27 for both domains, and feedback between the grids is
activated. A continuous model run covered the entire
observation period (August to December 2006), with Four‐
Dimensional Data Assimilation [e.g., Stauffer and Seaman,
1994; Stauffer et al., 1991] grid nudging activated above
the planetary boundary layer for the outer grid simulations to
align the model to the NCEP reference data 4 times daily.
Nudging coefficients were set to 1 × 10−4 s−1 for wind and
temperature and 1 × 10−5 s−1 for moisture, as recommended
by Deng and Stauffer [2006].
[25] STILT computes the field of view of atmospheric

CO2 concentration measurements by releasing an ensemble
of particles at the receptor point and following their trajec-
tories backward in time. Integrating the positions of these
particles specifies the relative influence of each surface pixel
on the concentration measurements. These source weight
functions can then be combined with spatially and tempo-
rally explicit estimates of terrestrial carbon fluxes to simu-

Figure 2. Spatial coverage of (black boxes) two nested
Weather Research and Forecast domains used as input data
for the STILT model in this study.

Table 2. Physics Schemes Used in WRF Model Setup

Category Selected Options

Microphysics WRF single‐moment three‐class
scheme

Long‐wave radiation Rapid radiative transfer model
Short‐wave radiation Dudhia scheme
Surface layer Monin‐Obukhov (Janjic Eta) scheme
Land surface NOAH land‐surface model (unified

NCEP/NCAR/AFWA scheme)
Boundary layer Mellow‐Yamada‐Janjic (Eta) TKE

scheme
Cumulus parameterization Grell‐Devenyi ensemble scheme
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late atmospheric CO2 concentration changes. In our study,
these surface flux fields consisted of biosphere CO2 fluxes
computed by the BioFlux model and anthropogenic CO2

emissions provided by fossil fuel inventories (see section 2.5).
The magnitude of the simulated CO2 concentration change
is dependent on local source/sink strength, the size of the
target volume, and the particle residence time within this
target volume. The spatial integral over the source weight
function gives the total concentration change the ensemble
experiences as it passes through the model domain. Provided
the initial CO2 concentration of each air parcel is known (see
also section 2.5), this approach allows simulating atmo-
spheric CO2 concentrations for any location and time step
within the model domain.
[26] STILT requires three‐dimensional transport fields as

input, generated in our study using the WRF model. A total
of 250 particles were released at the receptor height in
hourly intervals and followed backward in time for 72 h or
until they reached the boundary of the outer WRF model
domain (Figure 2). For footprint computation, the particle
positions were projected on a map with a resolution of
0.01° × 0.01°; however, the horizontal size of the grid cells
in the footprint area was dynamically adjusted with increas-
ing distance from the receptor location (see Gerbig et al.
[2003] for details), so that the highest resolution was only
applied in close vicinity to the tower, whereas in the outer
areas of the footprint, grid cells could reach a maximum size
of 0.25° × 0.25°. The column height of the target volume
was set to be 0.5 times the boundary layer height. Whenever
the vertical position of a particle was smaller than this col-
umn height at its specific location, the particle was assumed
to be affected by surface fluxes. The use of convective mass
fluxes provided by WRF was activated such that STILT
sampled the vertical profiles of mass fluxes within the
updrafts and downdrafts computed by WRF, and the STILT
particles followed these updrafts or downdrafts with prob-
abilities proportional to the WRF mass fluxes.

2.5. Fossil Fuel Emission Data and CO2 Boundary
Conditions

[27] The anthropogenic CO2 emissions are taken from a
gridded data set provided in a spatial resolution of 10 × 10 km
by the Vulcan project [Gurney et al., 2008]. Vulcan analyses
are based on data from the Clearinghouse for Inventories
and Emission Factors (http//www.epa.gov/ttn/chief/index.
html) provided by the U.S. Environmental Protection
Agency (EPA) and include additional information on mobile
sources, power plants, and U.S. census data [Gurney, 2008].
All data are interpolated to a 10 km grid resolution with
emissions in hourly time steps for the year 2002, which is
the year of the Vulcan spatial analysis. To allow extrapo-
lation into different years in the context of this study, we
aggregated the data into hourly averages for weekdays,
Saturdays, and Sundays of each month. State‐level emission
inventories, which can be used to compute scaling factors
for this temporal extrapolation, are currently only available
through 2005; however, because United States‐wide inven-
tories, which are available through 2006 [Environmental
Protection Agency, 2008], indicate rather stable emission
rates during the years 2000–2006 (total CO2 emissions

increased by 1.3% between 2002 and 2006), we assumed no
significant changes in emissions between 2002 and 2006.
[28] To simulate absolute CO2 concentrations at a given

receptor location, initial concentrations need to be added to
the concentration changes that the ensemble of particles
experiences within the model domain (section 2.4). These
initial concentrations are assigned in the same way for par-
ticle trajectory starting locations inside or outside the model
domain, respectively. CO2 concentration boundary condi-
tions are taken from the high‐resolution North American
grid of the 2007B release of CarbonTracker [Peters et al.,
2005, 2007]. Built by the National Oceanic and Atmo-
spheric Administration’s Earth System Research Laboratory,
CarbonTracker generates continuous CO2mole fraction grids
by coupling surface CO2 exchange models to atmospheric
transport modeling and optimizing results against atmo-
spheric CO2 observations using an ensemble Kalman filter.
The CarbonTracker output used for this study provides four‐
dimensional grids of CO2 mole fractions in 1° × 1° hori-
zontal resolution, 34 vertical levels, and six‐hourly temporal
resolution.

2.6. Parameter Optimization

2.6.1. Classical Bayesian Approach
[29] We apply a classical Bayesian approach [e.g., Enting,

2005; Tarantola, 1987] to find an optimum base rate set for
the BioFlux model using information extracted from the
observed atmospheric CO2 concentrations. The optimization
strategy has the following basic characteristics: First, we
optimize flux base rates, which can be interpreted as sen-
sitivities to external drivers such as radiation and tempera-
ture, so we train a flux model instead of adjusting the fluxes
themselves. Second, NEE is divided into its major compo-
nents GPP, RA, and RH in the optimization process,
assigning individual scaling factors to the base rate of each
of these. A similar concept was applied previously by, e.g.,
Bousquet et al. [1999] and Zupanski et al. [2007], who
decomposed NEE into photosynthesis and RE in their
optimization strategy. Third, all optimized flux base rates
are assumed to be constant over time. This strategy is based
on the hypothesis that seasonal trends and phenological
states are well captured through the meteorological drivers
and the MODIS fPAR product, leaving a flux base rate that
is uniform in time. Fourth, the model domain is classified
into surface types, each with a uniform set of base rates.
This feature of our approach decouples the number of
parameters to be optimized from the horizontal resolution of
the surface grid (see also section 3.3), thus enabling fine‐
scale variability in the setup of the model domain. Struc-
turing the model domain into surface types is thus an
important piece of prior information we feed into the opti-
mization routine to maximize the use of information pro-
vided by the atmospheric observations. The setup of surface
types, however, needs to be chosen carefully to avoid
aggregation errors caused by inhomogeneous flux mechan-
isms within assigned surface types. To fully exploit the
benefits provided by the highly detailed surface description
in the optimization; that is, to be able to optimize the surface
types in remote regions of the domain, a higher density of
sites would be required than used in this study.
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[30] Flux base rates (one each for the fluxes of GPP, RA,
and RH for every surface type; see also section 2.3.2) were
optimized on the basis of information extracted from
atmospheric observations and prior flux estimates, by find-
ing a minimum of the Bayesian cost function Ls [e.g.,
Enting, 2005; Michalak et al., 2004]:

Ls ¼ 1

2
z�Hsð ÞTR�1 z�Hsð Þ þ 1

2
s� sp
� �T

Q�1 s� sp
� �

; ð6Þ
where

z atmospheric observations (vector of dimension n × 1);
s base rates to be optimized (vector of dimensionm × 1);
H Jacobian transfer function linking base rates to con-

centrations (n × m matrix);
R model-data mismatch covariance (n × n matrix);
sp a priori base rates (vector of dimension m × 1);
Q covariance matrix of errors in sp (m × m matrix);
m number of parameters to optimized;
n number of observations.

In this study, the number of parameters to be optimized, m,
equals the number of surface types in the domain setup (e.g.,
120 in the base case scenario) multiplied by 3 (one base rate
each for GPP, RA, and RH). The Jacobian transfer function,
H, reflects the influence of the spatially distributed bio-
spheric flux base rates on atmospheric CO2 concentrations
as computed by the coupled STILT‐BioFlux models,
aggregated by surface type (m columns) and time step (n rows).
To create the atmospheric observation vector, z, modeled
results for advected background concentration and the
influence of fossil fuel emissions on atmospheric CO2 are
presubtracted from the measurements of absolute CO2

concentration. So both z and the product Hs represent the
change in atmospheric CO2 concentration induced by bio-
spheric CO2 fluxes.
[31] The cost function in equation (6) can be minimized

using the following solution [Enting, 2005; Tarantola, 1987]:

ŝ ¼ sp þQHT HQHT þ R
� ��1

z�Hsp
� �

and ð7Þ

Vŝ ¼ Q�QHT HQHT þ R
� ��1

HQ; ð8Þ

where

ŝ posterior optimized set of base rates;
Vŝ covariance of the posterior uncertainties for the

estimated base rates.

2.6.2. Definition of the Error Covariance Matrices
[32] The diagonal elements of the prior uncertainty

covariance matrix Q are filled with values derived from the
SCEM optimization runs (see section 2.3.2). In this study,
we neglected cross correlations between uncertainties for
different surface types and flux components (i.e., GPP, RA,
and RH), so only the diagonal elements of Q were filled.
Variances ranges for the base rates of GPP, RA, and RH
were 0.65–1.42, 8.48–9.75, and 1.16–1.58, respectively (see
also the normalized spatial distributions in Figure 6).

[33] The diagonal elements of the model‐data mismatch
matrix, Ri, are calculated as the sum of six individual error
sources in the form of variances, following the concept
suggested by Gerbig et al. [2003]. No potential temporal
correlations were considered for any of the errors comprised
in S", so all off‐diagonal elements in the model‐data mis-
match matrix R remained 0.

Ri ¼ Sveg þ Spart þ Seddy þ Stransp þ Saggr þ Socean: ð9Þ

Sveg is the vegetation signal uncertainty, combining mea-
surement uncertainties of the observations and uncertainties
in advected background concentrations and fossil fuel fluxes
(see also section 2.5). Measurement root mean square error
(RMSE) was determined on the basis of measurements of a
reference gas with known CO2 concentration that was
sampled at regular intervals and found to be 0.11 ppm (MF site)
and 0.12 ppm (MP site), respectively. The background con-
centration uncertainty is set to 2.35 ppm, which is the standard
deviation given on the CarbonTracker website (http://www.
esrl.noaa.gov/gmd/ccgg/carbontracker) for residuals between
modeled and measured CO2 concentrations for shipboard
measurements on the Pacific Ocean. We adopted 30% of the
total simulated atmospheric CO2 concentration change
attributed to anthropogenic emissions as a conservative esti-
mate of the uncertainty for fossil fuel emissions (range =
0.00–1.24 ppm). No influence of wildfires is considered here
because time windows with wildfire emission influences on
atmospheric observations were filtered out (see section 2.2).
All individual standard deviations listed previously were
squared to get the variances before summing up to Sveg, as
was done for those standard deviations listed in the next
paragraphs.
[34] Spart represents the uncertainty introduced by simu-

lating atmospheric transport processes at a given location
with a limited number of trajectories based on a stochastic
model. We repeated 200 model runs with the same STILT
settings as described in section 2.4 for three selected trans-
port situations at each of the two monitoring sites to derive
this statistical uncertainty. The average RMSE over all cases
was 0.47% of the total modeled CO2 concentration (sum of
biosphere and fossil fuel fluxes and advected background)
and was set to 0.5% for the calculation of the model‐data
mismatch covariance (range = 1.79–2.13 ppm).
[35] Seddy describes the error due to unresolved eddies;

that is, the variance of CO2 concentration within the mixing
layer profile that is created by turbulence scales not captured
by the modeling approach. To accurately describe this
uncertainty, upper air information is required, e.g., provided
by aircraft campaigns. Because no such information is
available for the spatial domain and time frame of this study,
we adopted the results of Gerbig et al. [2003] and set Seddy
to a fixed value of 2 ppm. This value is the upper limit of
their indicated error range and should be regarded as a
conservative estimate for our study because the quality fil-
tering of the CO2 observation already excludes weak mixing
conditions.
[36] The uncertainty introduced into the inverse modeling

approach by uncertainties in the transport simulations,
Stransp, is computed as the sum of two components: The first
represents the uncertainties in the transport fields and can be
calculated by an approach described by Lin and Gerbig
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[2005]. We adopted some of their settings (correlation time
scale = 240 min, horizontal correlation scale = 120 km, and
vertical correlation scale = 900 m) and derived a wind speed
standard deviation of 2.5 m s−1 by comparing WRF wind
fields with data from two Oregonian radiosonde stations
(Salem and Medford). This approach yielded an average
transport field uncertainty of 2.4 ppm. The second compo-
nent of Stransp represents the influence of boundary layer
height uncertainties on the computed fluxes. Because the
available radiosonde data have too coarse a vertical reso-
lution to serve as a reference data source and no further data
source for upper air information are available in the model
domain, we multiply the vegetation signal by a fixed factor
to obtain the influence of the boundary layer height uncer-
tainty on the modeled CO2 concentration signal. Following
Gerbig et al. [2003, 2008], we set that factor to 0.3, which is
a rough guideline translated into an average error of 3.5 ppm.
Overall, the uncertainty in our high‐resolution WRF fields
should be reduced compared with the 35 km resolution
ECMWF fields that Gerbig et al. [2008] based their findings
on. So although parts of this accuracy gain might be offset
because of the complex terrain in the Oregon model domain,
the chosen factor of 0.3 is assumed to provide conservative
estimates of boundary layer height uncertainty.
[37] Using the “classic” definition of the aggregation

error, Saggr, it would be negligible for our modeling setup
because the biosphere fluxes are calculated on a 1 km res-
olution grid and even include subgrid‐scale variability (see
also section 2.1). However, for the presented inverse mod-
eling setup, it seems more appropriate to interpret the
aggregation error as the uncertainty introduced by flux base
rate variability within a given surface type. The flux base
rates to be optimized reflect the sensitivity of the biosphere
CO2 fluxes to external drivers, with each surface type con-
sisting of only one plant functional type, affected by a single
disturbance regime, and situated in an ecoregion with rela-
tively uniform ecological characteristics. Because this defi-
nition of surface types creates largely homogeneous units,
and the major part of the remaining internal heterogeneity is
captured by spatially variable definitions of stand age,
fPAR, and climate, we assume the aggregation error to be of
minor importance here. The error introduced by neglecting
ocean fluxes, Socean, is almost negligible as well because
particle trajectories can only cover a short fetch over the
ocean until they reach the western boundary of the outer
WRF meteorology domain (Figure 2), where the air parcels
are initialized with starting concentrations from Carbon-
Tracker that include ocean fluxes. Both Saggr and Socean are
therefore set to a fixed value of 0.1 ppm.

3. Results and Discussion

[38] The inverse modeling approach described in detail in
section 2 was first applied on a “base case” scenario (time

step = 1 h, spatial resolution <1 km, number of surface types =
120) to demonstrate the overall performance of the model-
ing framework in the Oregon domain. Results include sur-
face CO2 fluxes, but because the currently available
database does not cover a full annual cycle, these findings
are not assumed to be representative beyond the observation
period. We therefore restrict the discussion on qualitative
aspects and overall plausibility. Using these results as a
reference, we further analyzed the influence of temporal
averaging (section 3.2) and spatial resolution of the regular
surface grid (section 3.3) on the model performance. Finally,
in section 3.4, we explored the influence of the definition of
ecoregions, land cover classes, disturbance regime, and stand
age on the quality of the model output. The model setup for
each sensitivity test is summarized in Table 3.

3.1. Measured Versus Modeled CO2 Concentrations
for a Base Case Scenario

[39] The base case scenario presented in this section uses
the highest spatial (1 km grid size, including up to five
subgrid classes per pixel) and temporal (1 h time steps)
resolution settings available for our model setup and assim-
ilates all available classes for ecoregion, land cover type,
and disturbance regime to form the highest number of
potential surface types (120; see also section 2.1 and Table 1).
Figure 3 gives an example of hourly measured versus
modeled CO2 concentrations time series for a 12 day period
at the MP site. The given time window was chosen because
it includes relatively high vegetation flux activity, a high
number of observations passing the quality filter, and sig-
nificant shifts between prior and posterior model results.
The correlation between measured and modeled results is of
comparable quality for the times and sites not shown. Ver-
tical blue lines give the total data uncertainty, the square root
of the model‐data mismatch S" (see also section 2.6.2), for
each time step, which summarized elements such as trans-
port error, background uncertainty, and so on. Both prior
and posterior modeled time series closely follow the mea-
sured daily and synoptic trends in most of the periods.
Differences between prior and posterior model versions are
most obvious during the night, where differences between
simulated CO2 concentrations can exceed 10 ppm, whereas
afternoon minima are relatively close in most cases, with
absolute differences mostly less than 1 ppm. For the opti-
mized fluxes, nighttime maxima were considerably lower
compared with the prior version, with a significantly
improved correspondence to those nighttime measurements
that passed the quality screening.
[40] To demonstrate the performance of the modeling

framework at longer time scales, mean afternoon (2–5 P.M.)
CO2 concentrations are plotted in daily time steps in Figure 4.
The overall positive trend in the measurement data due to
the transition in atmospheric CO2 from summertime mini-
mum to wintertime maximum is evident in the simulated

Table 3. Model Setup for the Sensitivity Tests Presented in Sections 3.1 to 3.4.

Section Test Time Step Spatial Resolution Surface Types

3.1 Base case scenario 1 h <1 km 120
3.2 Temporal averaging Variable, four classes <1 km 120
3.3 Spatial averaging 4 h Variable, 14 classes 120
3.4 Model domain setup 4 h <1 km Variable, five scenarios
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background concentration signal. Patterns in the deviations
of actual CO2 concentration from that background signal,
which may be caused by either regional‐scale transport
processes or spatiotemporal variations in surface fluxes, are
generally followed closely by the model. As already shown
in Figure 3, prior and posterior model versions follow
similar trends around the peak of daytime concentration
drawdowns, with the differences in afternoon averaged CO2

concentrations rarely exceeding 1 ppm (Figure 4). However,
we emphasize that such small differences in the atmospheric
concentrations may be associated with changes in the sur-
face flux fields that can accumulate to significantly different
flux budgets when integrated during a year.
[41] Figure 5 shows the normalized distribution of the

residuals between observed CO2 concentrations and model
results on the basis of a posteriori parameters. All values
were normalized with the model‐data mismatch uncertainties
as described in section 2.6.2. For both sites, the distributions
are centered at 0, indicating no overall bias in how the
inverse modeling framework reproduces the observational
data set. Compared with a standard normal distribution (i.e.,
0 mean and variance of 1) the spread in the normalized
residuals is lower at both sites. The mean squared normal-
ized residual values are 0.64 for the MF site and 0.21 for the
MP site, indicating that the model‐data mismatch used in
the inversion is conservative as intended. Particularly for the
MP site, results show that the model‐data mismatch variance
prescribed in the inversion might be reduced to further
improve the use of information contained in the atmospheric
observations. For future studies, we are anticipating the
availability of new Sonic Detection and Ranging data sets
on boundary layer structure to better constrain the boundary
layer height uncertainty and of detailed information on

uncertainty in advected boundary conditions from Carbon-
Tracker that will be customized for our model domain.
[42] For the base case scenario discussed, Figure 6 dis-

plays the spatial distribution of prior and posterior base
rates, the relative change of base rates after optimization, the
spatial distribution of normalized prior uncertainties, and the
uncertainty reduction for the parameters. In all panels, only
the dominating surface type for each 1 × 1 km pixel was
considered. Note that base rates are sensitive to the spatial

Figure 3. Hourly time series of measured versus modeled CO2 concentrations for a 12 day period at the
Metolius mature pine site. Blue diamonds give the time steps that passed the quality filtering and were
used as input for the optimization. Vertical blue lines give the model‐data mismatch uncertainty, the
square root of S" (see also section 2.6.2). Solid lines give modeled CO2 concentration (red) before and
(black) after optimization and (gray) background CO2 concentration.

Figure 4. Afternoon averages (2–5 P.M.) of measured ver-
sus modeled CO2 concentrations in daily time step for the
MP site. Total model‐data‐mismatch uncertainty for the
observations is indicated by vertical blue bars. Modeled
results are given (red) before (prior fluxes) and (black) after
(posterior fluxes) optimization. The advected background is
included as a gray line.
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patterns of fPAR, hence the relatively high RA base rates in
Eastern Oregon, which compensate for the low fPAR there.
Another diagnostic modeling approach to simulate bio-
sphere CO2 fluxes [Turner et al., 2006] used a Beer’s law
transformation of fPAR to biomass. This does not guarantee
more accurate representation of biosphere processes, but it
resulted in a more stable RA base rate across vegetation
types and ecoregions. However, field observations indicate
that base rates change markedly across ecoregions and
vegetation types [Campbell and Law, 2005]. At this time,
the linear transformation from fPAR to biomass adopted in
the BioFlux model has been chosen to stabilize the model
against uncertainty in fPAR data.
[43] The shifts in base rate values after optimization are

expressed by the ratio of posterior to prior base rates, with
warm colors (yellow to red) indicating that base rates have
been increased by the optimization process and cold colors
(blue to cyan) indicating reduced base rates. GPP base rates
only experienced minor changes through the optimization,
with slightly reduced base rates for most of the state.
Changes in respiration base rates were more pronounced,
particularly for the RH, indicating biases in prior knowledge
on the spatial distribution of respiration. However, the
atmospheric data available for inverse modeling do not
cover a full seasonal cycle yet, and the shifts observed in
base rates in this study may be influenced by the focus on
fall and wintertime. In particular, the significant increase in
RA in the KM and WV ecoregions seems implausible and
needs to be reevaluated with more data in future studies.
[44] The uncertainty reduction is computed as 1 minus the

ratio of posterior uncertainty (see section 2.6.1) to prior
uncertainty (section 2.3.2). Because uniform base rates are
assigned for each surface type, the spatial patterns in the
uncertainty reduction shown in Figure 6 are decoupled from
the shape of the concentration footprints. If each grid cell
would be optimized separately, the uncertainty reduction
would peak at the receptor locations of the two observations
sites used for this study and gradually decline with
increasing distance. In this study, the high amount of
information that is available for areas close to the tower

positions is projected on the entire surface type. Accord-
ingly, the highest uncertainty reduction was found for the
surface types “Coast Range/evergreen needleleaf forest/cut”
that contains the MF site and “East Cascades/evergreen
needleleaf forest/fire” that surrounds the MP site. Both
surface types appear as dark red bands in the uncertainty
reduction maps. Besides these two surface types, significant
uncertainty reductions for all three flux components were
only observed in the western ecoregions (WV and WC),
both of which are covered by a significant portion of the
observation footprint. Overall, the spatial maps of uncer-
tainty reduction indicate that the available information is
focused on the surface types surrounding the towers, indi-
cating that more sites and longer observation periods are
needed to obtain significant uncertainty reductions in rep-
resentative parameter estimates for the entire state.
[45] Figure 7 presents the combined effect of the base rate

changes shown in Figure 6 on the modeled NEE for the state
of Oregon for the examined period. Note that the given daily
averaged values are based on results from only 4 months of
simulations (September–December 2006) and thus are not
assumed to be representative beyond the observation period.
The flux maps indicate considerable regional shifts between
prior (Figure 7, left) and posterior (Figure 7, right) fluxes,
with higher CO2 uptake in the forested regions (particularly
CR, WC, and EC) after optimization and stronger sources in
agricultural regions (WV). The posteriori flux gradient
between the KM ecoregion and the adjacent forested ecor-
egions seems to be unrealistic, so results for this part of the
domain have to be considered preliminary. We expect such
gradients to smooth out with the addition of new observa-
tion sites, and more site years from the two sites used for
this study. The range of averaged values is comparable for
both prior and posterior fluxes, with high absolute values
(>4 g C m−2 d−1) found only in small areas in the WC and
KM ecoregions that have recently been burned and thus are
dominated by increased decomposition fluxes from dead
biomass.
[46] Because many of the nighttime measurement data are

excluded through the quality filtering because of inadequate

Figure 5. Empirical distribution of the residuals [(left) Mature Fir site and (right) Mature Pine site]
between observed CO2 concentrations and predicted observations on the basis of the a posteriori esti-
mates, normalized by the model‐data mismatch uncertainty. Residuals were binned into classes of
0.25. The black line shows a standard normal distribution (i.e., mean of 0 and variance of 1).
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Figure 6. Maps of prior base rates, posterior base rates, the change in posterior base rates as expressed
through the ratio of prior to posterior values, the prior uncertainty estimates normalized by the prior flux
base rates, and uncertainty reduction after optimization for the three fluxes of (left) GPP, (middle) RA,
and (right) RH. Both the ratio of posterior to prior base rates and the normalized prior uncertainties were
truncated, with maximum values set to 2 and 4, respectively, to improve visualization of spatial patterns.
Tower positions are given by the black dot (MF site) and black triangle (MP site).
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vertical mixing, the capability of the modeling framework to
simulate complete daily cycles cannot be thoroughly eval-
uated on the basis of the currently available data. Vertical
mixing processes, which also determine the height of the
mixing layer, are a significant source of error in atmospheric
inverse modeling [Gerbig et al., 2008], particularly during
weak turbulence situations at night. However, Figure 3
demonstrates the strength of the quality filtering to iden-
tify error‐prone time frames and exclude them from the
optimization process. Moreover, because of the output of
convective mass fluxes from WRF, the influence of vertical
mixing errors during daytime could be reduced compared
with the use of less sophisticated meteorological drivers
such as Eta Data Assimilation System.

3.2. Sensitivity Test on Temporal Averaging

3.2.1. Test Setup and Rationale
[47] The choice of the temporal averaging scale for CO2

concentrations affects the performance of the inverse mod-
eling framework in several respects. On one hand, the
diurnal cycle of atmospheric CO2 concentrations can be
described most accurately with the highest temporal reso-
lution, and generally speaking, more input time steps mean
more available information for the Bayesian optimization
approach to improve the flux base rates. On the other hand,
high temporal resolution may include more scatter in the
data that cannot be resolved by both the terrestrial CO2 flux
model and the transport model, reducing accuracy or even
causing artifacts in the output. The ideal temporal averaging
interval will smooth out the scatter that is not resolvable by
the model while keeping the time steps as short as possible
for a minimum loss of information content.
[48] To find the optimum temporal averaging scale, we

aggregated hourly measurements and simulation output into
bins of 3, 4, and 6 h before running the Bayesian optimi-
zation. Aggregated time steps for which less than half of the
original 1 h data were available after quality filtering were
discarded. For each aggregation version, the measurement
error used in the model‐data mismatch matrix R was
adjusted by the factor n0.5, with n being the averaging

interval (in h). The other components of R remained con-
stant, adding to the conservative nature of our model‐data
mismatch definitions. For all simulations, we compute the
RMSE between measured and modeled CO2 concentrations
before and after optimization and calculate the relative
reduction in RMSE obtained through the optimization
(Figure 8). Besides this relative measure of information gain
through the inverse optimization, we used the coefficient of
determination (R2) between measurements and optimized
model results as a second statistical measure to evaluate
model performance.
3.2.2. Temporal Averaging Test Results
[49] Figure 8 indicates that the effects of temporal aver-

aging on the quality of the optimized results are small as
long as the time step is 6 h or less. For the RMSE reduction,
trends at both sites are anticorrelated, with the best result for
the MF site and the worst for the MP site both obtained with
4 h of averaged data. The net effect averaged for both sites

Figure 7. Daily averaged net ecosystem exchange (NEE) for the period September to December 2006.
(left) Prior fluxes. (right) Posterior fluxes after optimization. All values are given in grams of carbon per
squared meter per day (g C m−2 d−1), with positive values indicating a net source to the atmosphere and
negative values a net sink.

Figure 8. (left) Reduction (%) in the root mean square
error (RMSE) after optimizing the results and (right) the
absolute coefficient of determination (R2) for the optimized
results, both obtained for five different temporal averaging
intervals. Results are given for each of the sites separately
[(black dashed line) MF and (gray dashed line) MP] and
(black solid line) as a composite of both.
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still peaks for 4 h of averaging, however. The coefficient of
determination has a maximum for 4 h of averaging for both
sites. We conclude that for averaging intervals of 4 h, the
accuracy gain due to the removal of scatter that is not
resolvable by the model outweighs the information loss due
to the reduction of the available data set and oversimplifi-
cation of the diurnal cycle.
[50] The sensitivity of the inverse modeling approach to

the temporal averaging is influenced by the quality of the
observation data, i.e., the scatter introduced by measurement
uncertainty, and by the effectiveness of the data quality
filtering. Also, the capability of the modeling framework to
simulate the natural short‐term dynamics in CO2 concen-
tration time series plays a major role. A previous study with
a comparable model setup [Matross et al., 2006] demon-
strated that coupling STILT transport fields to highly
resolved surface flux fields can reproduce observed CO2

concentration changes in hourly time steps when using tall
tower or aircraft data. Our finding that the best optimization
results can be obtained for time series smoothed into 4 h
bins may be associated with our lower measurement heights
that increase the potential effect of transport errors in the
near field. Also, for short towers, the measurement uncer-
tainty because of the heterogeneity in source/sink strength in
the footprint is higher compared with observations in the
higher boundary layer. Results may vary with different
setups in the modeling framework, e.g., the spatial resolu-
tion of the model domain, and the temporal resolution of
surface flux fields or advected background signal.

3.3. Sensitivity Tests on Spatial Averaging

3.3.1. Test Setup and Rationale
[51] A common strategy in inverse modeling approaches

is to split the domain into independent grid cells and opti-
mize the fluxes or the flux base rates (i.e., sensitivities to
external drivers such as radiation or temperature) for each
cell separately. For this setup, the choice of the size of the
grid cells is critical because, with a high‐grid resolution,
more parameters need to be optimized, and the problem may
become underconstrained, whereas with a low‐grid resolu-
tion, additional uncertainty is introduced when aggregating
nonlinear processes or averaging out subgrid‐scale vari-
ability. Because in the modeling framework described
herein flux base rates are optimized for specific surface
types, the number of parameters to be optimized does not
depend on the spatial resolution of the model domain but
depend only on the number of surface types defined (see
also section 3.4). Therefore, in our study, the spatial reso-
lution setup influences only the level of detail in the surface
domain description through the representation of small‐scale
variability in surface types. The sensitivity tests described in
the next paragraphs were conducted to investigate how a
highly detailed surface domain description influences the
performance of the modeling framework and whether the
correlation between the observed and modeled CO2 con-
centrations can be improved.
[52] Using the base case surface map (see section 2.1) as a

reference, we aggregated the surface domain into 14 dif-
ferent map versions, with grid resolutions ranging from 1 ×
1 km to 40 × 40 km. For these 14 maps, each grid cell
contained only a single majority surface type, and all sub-
grid‐scale information was discarded. Aggregating into

coarser grids did not significantly change proportions
between the 10 ecoregions in the Oregon domain. However,
for the coarser maps (resolution >20 km), the spatial vari-
ability between map versions increased, particularly around
the Cascades where the position of ecoregions shifted sig-
nificantly (see also next paragraphs). For land cover,
aggregation generally shifted the proportions from the minor
classes to the dominating ones, increasing evergreen nee-
dleleaf forest and shrubland while reducing all other land
cover classes. The same holds true for the disturbance types;
where in each ecoregion, the dominating disturbance type
was strengthened with coarser grid size, whereas the minor
class was reduced in coverage area.
[53] The choice of the surface map resolution did not have

an effect on the computation of the STILT footprints (see
section 2.4), which were projected on the same 0.01° ×
0.01° grid for all cases, including the dynamic adaptation of
grid cell size with increasing distance from the receptor
location. For the larger grid cells in the far field of the
footprint, surface fluxes were averaged over larger areas for
all setups (a grid cell of 0.25° × 0.25° covers an area of
approximately 20 × 30 km). Consequently, the resolution of
the surface maps in the far field is not expected to have a
significant effect on the inverse modeling output, as long as
the proportions of surface types are not significantly biased,
which is the case in our model domain. However, smoothing
out the fine‐scale variability in surface maps in the near field
close to the receptor may have a large effect on the model’s
performance, particularly if shifts occur between land cover
types with significant differences in flux signals (e.g.,
grassland to evergreen needleleaf forest).
3.3.2. Spatial Averaging Test Results
[54] Concerning the quality of the modeled CO2 time

series, using the same statistical measures as described in
section 3.2, we found no significant trend in the influence of
spatial averaging on the model output. For both the RMSE
reduction and the R2 results, trends were only subtle and of
opposing sign between the two sites for model runs on
the basis of the higher resolution maps (<16 km). For the
coarser maps, the scatter in the results increased with the
grid resolution. Also, good fits between observed and
modeled CO2 concentration time series often could only be
obtained because of the assignment of increasingly unreal-
istic flux base rates; that is, net fluxes tended toward very
high or very low values, with extreme and implausible
gradients between surface types on local to subregional
scales.
[55] The limited effect of horizontal resolution in the

model setup can be explained in part by the rather sparse
observational network available for this study; that is, the
high amount of information provided by a detailed surface
map would be more effective with a larger number of sites.
In addition, the near field of the footprint area is dominated
by forests at both sites, so aggregation did not cause sig-
nificant shifts in the surface types. In the far field, STILT
eliminates fine‐scale variability using larger grid sizes in the
footprint with increasing distance from the receptor.
Because the potential information from spatial patterns in
subgrid‐scale heterogeneity is supposed to be negligible
over such transport distances, while larger grid cells reduce
the effect of systematic bias in the transport patterns, this
dynamic adjustment helps to strengthen the model. With
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changes in surface‐type composition negligible (<2%) for
aggregated grids with horizontal resolutions <8 km, aggre-
gation to grid sizes of 4–6 km would provide a good
compromise between obtaining an accurate description of the
surface characteristics and computational efficiency. These
shifts in coverage proportions in the maps of ecoregion/land
cover/disturbance are dependent on the average length scale
of variability in the model domain and thus vary from region
to region.

3.4. Influence of Flux Model Domain Setup

3.4.1. Test Setup and Rationale
[56] The computation of biosphere CO2 fluxes uses highly

resolved spatial information on ecoregions, land cover
types, and disturbance regimes to differentiate the model
domain into surface types. In addition, stand age information
is provided for forested ecosystems. The base case scenario
described in section 2.1 (results shown in section 3.1) used
all available remote sensing information, enabling definition
of 120 potential surface types (number of parameters to be
optimized,m = 360) in the Oregon domain (see also Table 1).
Here, we conduct a sensitivity study to investigate how the
setup of the surface domain influences the model output,
and what level of complexity is required to arrive at plau-
sible results for flux base rates.
[57] For the sensitivity test, we gradually simplified the

definition of surface types by discarding or simplifying parts
of the remote sensing information, regarding the base case
scenario (section 3.1) as scenario 0. In scenario 1 (OneDis),
we neglected the differentiation of disturbance types into
“clear‐cut” and “fire,” reducing the number of potential
surface types to 60 (m = 180). Disturbance is still considered
here through the definition of forest stand age, but the dif-
fering recovery characteristics of burned and cut areas after
the disturbance event are lost. For scenario 2 (medAge), all
forests are assigned a uniform stand age of 70 years, which
is the median age for Oregon forests derived from federal
inventory data [Hudiburg et al., 2009]. Using these maps,
the disturbance effect is completely neglected (m = 180).
Scenario 3 (2zones) makes use of the detailed age infor-
mation again but simplifies the 10 original ecoregions to
only 2, reducing the number of potential surface types to

12 (m = 36). The domain is separated into a humid western
part (formerly ecoregions CR, WV, WC, and KM) and a
semiarid eastern part (formerly EC, BM, CP, NB, SR, and
CC) in the simplest attempt to capture the climatic gradient
from the Pacific coast to the high desert in Oregon. For
scenario 4 (noEco), the ecoregion information is dropped
completely, leaving only the land cover classes to form six
potential surface types (m = 18). In all cases, no adjustments
were made to the model‐data mismatch matrix R to facilitate
scenario comparisons. This neglects a potential increase in
aggregation error with decreasing numbers of surface types,
but because we defined very conservative values for R in the
first place, we do not expect this to have affected the model
results.
3.4.2. Model Domain Setup Results
[58] We again used the RMSE reduction and the R2

between the measured and optimized CO2 concentrations as
measures of model performance (Figure 9). Results indicate
that the consideration of disturbance regimes has negligible
influence on the quality of the optimized CO2 concentration
time series because both statistical measures were stable
when simplifying the base case to only one disturbance
regime (oneDis). Further simplification to scenario 2 with a
uniform stand age (medAge), however, has a significant
effect on model performance, particularly on RMSE
reduction at the MP site. This finding may reflect the highly
variable age structure in the ecoregions dominating the MP
observations (EC and WC), which are characterized by a
fine‐scale mosaic of disturbance with ages ranging from 0 to
400+ years. Additional tests using median ages of 30 and
120 years, respectively (results not shown), produced simi-
lar output as the medAge scenario, showing that the
approach is even insensitive to the absolute value of the
assigned stand age. However, for the latter comparison, a
closer look at the optimized base rates revealed that changes
in the age functions influencing GPP and RH (Appendix B)
when using a different median age were compensated by
shifts in the base rates. For example, with a lower median
age, which produces higher age scaling factors for GPP, the
GPP base rates tended to decrease, and vice versa. This
implies that bias in assigned stand ages can be corrected for
by offsets in the base rates without loss of accuracy, and
because individual base rates are assigned per surface type,
the only information lost when assigning uniform stand ages
is due to the smoothing out variability within surface types.
Concerning the comparison of the base case results versus
the oneDis and medAge scenarios, variations in the assigned
base rates were only moderate, and none of the model runs
tended toward unrealistic surface fluxes.
[59] Reducing the original 10 ecoregions to only 2 climate

zones (2zones scenario) reduced both RMSE and R2 only
slightly compared with the OneDis scenario, whereas results
were better than those found for the noAge simulations.
However, a significant loss in output accuracy was found for
the noEco scenario that completely neglects ecoregions.
Assigning just two climate zones, humid and semiarid, still
roughly captures the major differences in plant functional
types that reflect the vastly different water availability
between Western and Eastern Oregon (section 2.1). Because
the transition between both regions follows a gradient
extending East from the Cascade crest, even the simplifica-
tion into just two zones has an effect on the flux simulations

Figure 9. As in Figure 8 but for different levels of com-
plexity in surface flux model setup. Classes S0 through S4
stand for the five scenarios tested (0, base Case; 1, OneDis;
2, medAge; 3, 2zones; 4, noEco). See text for definition of
the scenarios.
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in the Cascades area, as reflected by the moderate decline in
the quality of the optimized results for the MP site.
Neglecting ecoregions altogether forces the model to find,
e.g., a set of base rates averaged for Western fir forests and
Eastern pine stands, which cannot be justified from the
ecological standpoint.
[60] The results presented in Figure 9 emphasize the major

role of ecoregions when defining the model domain surface
through surface types. Simplifying the domain setup from
the base case down to scenario 3 (2zones), which implies
combining more and more biomes with potentially different
flux characteristics, only had a moderate effect on the
model’s performance. At the same time, this simplification
reduced the number of surface types by an order of mag-
nitude, from 120 in the base case to just 12 for the 2zones
scenario, which limits the number of parameters to be
optimized, m, from 360 to 36 (three base rates per sur-
face type). Further simplifying the setup from scenario 3
(2zones) to scenario 4 (noEco) significantly reduces the
correlation between simulated and observed CO2 con-
centrations compared with the base case. This simplification
has a serious ecological effect, i.e., the elimination of the
climate gradient between humid Western Oregon and
semiarid Eastern Oregon in the model, while the reduction
of degrees of freedom is only small (from 36 to 18) com-
pared with the changes that came with the previous sim-
plification steps. We conclude that the reduction in model
performance that comes with scenario 4 can be attributed to
the oversimplification in the description of the model
domain, or, in other words, the loss of ecoregions, and is not
a consequence of statistical properties such as the lower
degrees of freedom in the optimization process.
[61] For all model runs, the optimized flux base rates were

assumed to be constant over time (section 2.6.2). We
acknowledge that better agreement between the observed
and optimized CO2 concentrations can potentially be
obtained through the assignment of parameter sets in
monthly or seasonal time steps. The complex mechanisms
driving biosphere CO2 fluxes can only be approximated by
simple diagnostic models such as BioFlux, so it cannot be
ruled out that some processes or feedbacks that vary on
seasonal time scales are not accurately simulated. Using
base rates that are stable over time, the optimization is
forced to find a parameter set that represents the mean of
those seasonal trends. Such systematic bias would be
improved through the assignment of monthly base rates
because it can be assumed that processes not captured by the
BioFlux model are more stable on short time frames com-
pared with longer ones. However, variations in monthly
base rates may also be caused by model‐data mismatch and
not be related to a poorly constrained process, so any
accuracy gain due to shorter optimization time steps could
as well be a statistical artifact based on the extended degrees
of freedom.

4. Conclusion

[62] We presented a regional‐scale atmospheric modeling
approach to constrain terrestrial biosphere CO2 budgets. The
modeling framework is built on a prior domain setup that
ingests several remote sensing data sets to differentiate the
domain into so‐called “surface types.” Optimizing flux base

rates for each of these surface types effectively decouples
the number of degrees of freedom in the optimization pro-
cess from the horizontal resolution of the regular biosphere
model surface grid and, therefore, permits describing the
model surface in high level of detail as required for regional
analyses.
[63] Modeled CO2 concentration time series showed good

agreement with observational data at the two examined
monitoring sites in the Oregon domain, indicating that both
transport processes and spatial and temporal variability in
surface CO2 fluxes are well captured by the modeling
framework. The simulated a posteriori surface flux maps
showed plausible absolute values and spatial patterns. Sen-
sitivity tests on the temporal resolution revealed that best
results were obtained with an aggregation of atmospheric
data to time intervals of 4 h. The inverse modeling frame-
work proved to be rather insensitive to the spatial resolution
settings as long as horizontal aggregation is 16 km or
smaller, although the sensitivity to small‐scale variability in
the near field could potentially be increased through denser
observation networks. For larger grid sizes, horizontal shifts
in ecoregion and land cover assignment in the near field
could lead to significant additional scatter. For the Oregon
domain, loss of information due to averaging of fine‐scale
heterogeneity was insignificant for grid sizes of 6 km or
smaller. Sensitivity tests on the definition of surface types
indicated that dividing disturbance into fire versus harvest
regimes played a minor role in this model setup as long as
the regional‐scale characteristics are captured through the
ecoregions. In contrast, the definition of ecoregions to
describe major ecophysiological differences along climatic
gradients is shown to be of paramount importance for the
performance of the model. Model performance was
improved by the use of highly resolved age information,
which resulted in a better fit of simulated CO2 concentra-
tions to their observed references. The correlation between
the observed and modeled time series may have been further
improved by allowing temporal variability in flux base rates,
but this strategy carries the risk of contaminating flux results
with potential model‐data mismatch effects.
[64] Our future studies will aim to further reduce param-

eter uncertainties by including more observation sites and
longer data time series with multiple years of observations.
An extended observational database will ultimately increase
the resolution in the information gain across the state and
result in a more effective use of the rich prior information
assimilated through the proposed inversion framework. The
addition of new sites, ideally located in remote parts of the
state to fill in areas currently rarely covered by the footprints
of the existing towers, will reduce flux uncertainties linked
to the reliance on a few observation sites and their
corresponding transport or measurement biases.

Appendix A: Disjunct Tall Tower Concept

[65] Vertical gradients of atmospheric CO2 concentrations
within the planetary boundary layer (PBL) can be used to
characterize the PBL vertical mixing processes. Small dif-
ferences between the surface and upper layers indicate well‐
mixed conditions, with surface layer measurements being
representative for the boundary layer. Given the limitations
of upper air observations in our modeling domain, we used
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CO2 concentration time series from a mountaintop site on
Mary’s Peak in the Oregon Coast Range (MPk, 44.40°N,
123.55°W, 1248 m asl) to serve as the upper measurement
height of a “disjunct” tall tower, with the lower levels
composed of the observations at the mature fir (MF) and
mature pine (MP) sites. The MPk site is instrumented with a
monitoring system for CO2 concentrations nearly identical
to the ones installed at the MF and MP sites and has been
operating since October 2006. Because of its isolated loca-
tion as the highest point in the Coast Range, the MPk site
can be assumed to represent the upper part of the PBL well.
The horizontal distance to the MF site is about 16 km to the
north, whereas the MP site is situated about 160 km to the
east; accordingly, a bias due to the horizontal advection can
be neglected when using the MPk time series as an upper
level for the MF disjunct tall tower, whereas it needs to be
taken into account for the MP site.
[66] To evaluate the vertical gradient of CO2 concentra-

tions for the MF and MP disjunct tall towers, we used 3 h
averaged data from the period October 2006 to November
2007. For the MF site, afternoon minimum CO2 con-
centrations correlated well between the lower levels (MF
observations) and the upper level (MPk observation) for
most of the days in the observation period, indicating small
vertical gradients and thus a well‐mixed boundary layer.
However, results differed for two general seasons, namely, a
“warm” season (March–September) and a “cold” season
(October–February). In the entire warm season, afternoon
minimum concentrations for both surface layer sites were
closely correlated with the upper air observations, with an
example shown for a 16 day period in Figure A1 (right).
During the cold season, periods could be identified when
afternoon minimum concentrations at the lower levels were
decoupled from the upper air observations at the MPk site,
leading to a ramp‐like slow buildup of atmospheric CO2

over time [example shown in Figure A1 (left), highlighted
by black dashed line]. Under these conditions, the observa-
tions at the MF site are not representative for the PBL any-
more, and simulation with the inverse modeling framework
fails.

[67] Scatter plots between afternoon minimum CO2 con-
centration measured near the surface (MF and MP data)
and in the upper boundary layer (MPk data) are shown in
Figure A2. This analysis confirms that vertical gradients
of CO2 concentration are small at both sites during the
warm season, with results clustering around the 1:1 lines
(Figures A2, right). During the cold season, however, part of
the data set systematically breaks away from the 1:1 rela-
tionship, with clearly higher concentrations in the surface
layer (Figures A2, left, encircled areas). Compared with the
MF disjunct tall tower, results at the MP site are slightly
biased by the horizontal distance between MP and MPk site
locations, so the scatter around the 1:1 line in Figure A2
(bottom) is increased. Still, the ramplike patterns of
increasing CO2 concentrations while at the same time
increasing the offset from the upper air observations at the
MPk site were clearly distinguishable also at this site.
[68] A correlation analysis with additional meteorological

observations revealed that the capping inversion events that
decoupled the surface layer observations from the upper air
observations were characterized by cold temperatures, weak
turbulence (as indicated by a low friction velocity), and calm
winds from easterly directions. These ancillary information
can be used to filter data sets not representative of the PBL
in case no upper air observations from MPk are available,
e.g., because of a data gap.

Appendix B: Biosphere Carbon Flux Model
Algorithms

[69] The sigmoid ramplike functions to calculate the
influence of minimum temperature and daytime VPD are
given in equations (B1) and (B2). Tmin and VPDd are taken
from and derived from the SOGS interpolated surface
meteorology, respectively. Inflection points and influence
widths are optimized for each surface type (see section 2.3.2).
See Table B1 for parameter definitions.

Tsc ¼ 1

1þ exp
� Tmin � Tinfð Þ

Twid

� � and ðB1Þ

Figure A1. Comparison of 3 h averaged CO2 concentrations at the (black) MF and (gray) MPk sites
for two 16 day periods in (left) fall 2006 and (right) summer 2007. The black dashed line on the left
was included to highlight the ramplike buildup of surface layer CO2 concentrations during a capping
inversion.
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VPDsc ¼ 1� 1

1þ exp
� VPDd � VPDinfð Þ

VPDwid

� � : ðB2Þ

For all forest land cover types, functions were parameterized
on the basis of the model output of Biome‐BGC [Thornton
et al., 2002] to simulate the effect of stand age on GPP (B3)
and RH (B4).

AgeGPP ¼ min 1; gp1 þ gp2 � exp gp3 � ageð Þ½ � and ðB3Þ

AgeRH ¼ rp1 0:5þ rp2 � exp rp3 � ageð Þ þ 0:5 1� rpage4

� �� �
; ðB4Þ

where

age median stand age (years);
gpx, rpx scaling parameters (see Table B2).

The exponential functions to assess the influence of soil
temperature (TSsc) and soil water content (SWsc) on RH

include the weighting factors TSwgt and SWwgt, which could
be optimized by surface type. For this study, we used pre-
scribed values (see Table B1). Again, the parameterization
of these functions is based on output of the Biome‐BGC
model (see Turner et al. [2007] for details).

TSsc ¼ exp TSwgt � TS
� �

and ðB5Þ

SWsc ¼
1� 0:86 � exp SWwgt � SWC

� �
0:7486

; ðB6Þ

where

TSwgt weighting factor for soil temperature influence
on RH;

SWwgt weighting factor for soil water content influence
on RH.

For input data preparation, daytime and daily average tem-
peratures are approximated as weighted means of daily
minimum and maximum temperature [e.g., Thornton et al.,

Figure A2. Comparison of afternoon minimum CO2 concentrations between surface layer (MF and MP
data) and upper boundary layer (Mary’s Peak data). (left) Results [(top) MF and (bottom) MP sites] for the
“cold” season (October–February). (right) Results [(top) MF and (bottom) MP sites] for the “warm” sea-
son (March–September). The thin black line indicates the 1:1 line, and the black circles mark the data
points influenced by capping inversions.
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1997]. Both temperatures serve as input to convert the 24 h
average VPD provided by SOGS to a daytime averaged
value that is required for the BioFlux model. The incoming
shortwave radiation (Srad) is converted to PAR using a fixed
PAR/Srad ratio of 0.45 and the daytime length provided by
DayMet. The cloudiness scalar CLsc is the ratio of actual
incoming PAR derived from SOGS data and potential PAR
(PARpot), which is computed using the algorithm of Fu and
Rich [1999].

CLsc ¼ 1� PAR
.
PARpot

� 	
: ðB7Þ

For the computation of RH, soil temperature is derived as
the running mean of daily air temperature during the pre-
vious 25 days. Soil water is simulated by a simple water
mass balance approach at a daily time step, with water loss
taken from gridded MODIS evapotranspiration [Mu et al.,
2007] and SOGS precipitation data refilling the soil water
storage. The soil water content is then derived by normal-
izing the actual soil water with the soil water holding
capacity, here assumed to be 200 mm for the entire domain.

Appendix C: Computation of Subdaily Radiation
and Temperature

[70] Daily PAR values are split into subdaily time steps by
assigning weighting factors to each half‐hour time step.
These weighting factors follow a four‐parameter modified

Gaussian distribution to simulate the daily course of PAR
and sum up to 1 to give the relative contribution of each
half‐hour to the total incoming radiation:

PARhr ¼ PAR � PARwgt and ðC1Þ

PARwgt ¼ a � exp �0:5 � time� timemaxj j
b


 �c� �
; ðC2Þ

Table B1. Overview on Parameters Used in the Terrestrial Biosphere Carbon Flux Model

Parameter Description Unit Source

AgeGPP Age scaling function on GPP ‐ Turner et al. [2006]
AgeRH Age scaling function on RH ‐ Turner et al. [2006]
APAR Absorbed photosynthetically active radiation MJ m−2 time step−1 Product of fPAR and PAR
CLsc Cloudiness scaling factor ‐ Ratio of SWpot and SWact

CLwgt Cloudiness influence weight ‐ Optimized per biome type
ET Evapotranspiration mm d−1 MODIS product [Mu et al., 2007]
fPAR PAR fraction absorbed by the canopy ‐ MODIS product
GPP Gross primary productivity g C m−2 time step−1 Model output
GPPbase Base rate for gross primary productivity g C MJ−1 Optimized per biome type
P Precipitation mm d−1 Gridded surface meteorology
PAR Photosynthetically active radiation MJ m−2 time step−1 Gridded surface meteorology
Q10 Base rate for Rm temperature influence ‐ Prescribed value of 2
RA Autotrophic respiration g C m−2 time step−1 Model output
Rg Growth respiration g C m−2 time step−1 Model output
Rg, frac Fraction of carbon available for growth ‐ Prescribed value of 0.25
RH Heterotrophic respiration g C m−2 time step−1 Model output
RHbase Base rate for heterotrophic respiration g C m−2 time step−1 Optimized per biome type
Rm Maintenance respiration g C m−2 time step−1 Model output
Rm, base Base rate for maintenance respiration g C m−2 time step−1 Optimized per biome type
Sradpot Potential incoming shortwave radiation W m−2 Fu and Rich [1999]
Sradact Actual incoming shortwave radiation W m−2 Gridded surface meteorology
SWC Soil water content ‐ Simple water balance model
SWHC Soil water holding capacity mm Prescribed
SWsc Soil water content scaling factor ‐ Exponential function
Tair Mean air temperature °C Gridded surface meteorology
Tinf Tmin inflection point °C Optimized per biome type
Tmin Daily minimum temperature °C Gridded surface meteorology
Tsc Minimum temperature scaling factor ‐ Sigmoid function
TS Soil temperature °C Derived from gridded meteorology
TSsc Soil temperature scaling factor ‐ Exponential function
Twid Tmin influence width °C Optimized per biome type
VPDd Daytime VPD Pa Gridded surface meteorology
VPDinf VPD inflection point Pa Optimized per biome type
VPDsc VPD scaling factor ‐ Sigmoid function
VPDwid VPD influence width Pa Optimized per biome type
WUE Water use efficiency mm g C−1 Prescribed [Law et al., 2002]

Table B2. Factors for Age Influence Functions on GPP and RH

Biome Number

1 2 3 4 5

gp1 0.823 0.852 0.714 0.745 0.650
gp2 0.430 0.530 0.360 0.520 990.0
gp3 −0.011 −0.013 −0.008 −0.009 −0.440
rp1 0.372 0.386 0.318 0.264 0.74
rp2 2.190 2.090 2.640 3.300 0.840
rp3 −0.154 −0.073 −0.122 −0.064 −0.057
rp4 0.982 0.983 0.978 0.990 0.980

Biome settings: 1, cut conifer forest or shrub, dry climate; 2, burned
conifer forest or shrub, dry climate; 3, cut conifer forest or shrub, humid
climate; 4, burned conifer forest or shrub, humid climate; and 5,
deciduous broadleaf forest.
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where

PARhr hourly PAR (MJ m−2 30 min−1);
PAR daily PAR derived from SOGS (MJ m−2 d−1);

PARwgt relative contribution of half-hour time step to
daily PAR (−);

time time of day (h);
timemax time of maximum PAR (h);

a maximum PAR scaling factor;
b curve width parameter;
c curve shape parameter.

One year of half‐hourly PAR measurements from MP (see
also section 2.3.2) were used to train and test the algorithm.
Parameters were calibrated using 70 selected cloudless days,
whereas the performance test is based on the full year of
data, independent of cloud cover.
[71] Timemax, the time of day when incoming PAR peaks,

is taken as the average of sunrise and sunset times. The
maximum PAR scaling factor (a) can be approximated as a
function of day length (R2 = 0.99):

timemax ¼ sunriseþ sunset

2
and ðC3Þ

a ¼ �0:0001052 � DL3 þ 0:00442 � DL2 � 0:06573 � DLþ 0:4038;

ðC4Þ

where

sunrise time of sunrise (h);
sunset time of sunset (h);

DL day length (sunset - sunrise) (h).

Sunrise and sunset times required in both (C3) and (C4) are
computed using textbook equations for solar declination
angles on the basis of geographical position and date.

Values for the curve shape parameter (c) varied in the range
of 2.67–3.1, with an average value of 2.97, and had no
detectable trend during the year. It is therefore set to a fixed
value of 3. The curve width parameter (b) was found to be
linearly dependent on day length (b = 0.273 × DL, R2 =
0.97). In a final step, the sum of the half‐hourly weighting
factors needs to be normalized by the daily sum of
weighting factors to ensure their total sum adds up to exactly
1 (usually the sum of half‐hourly weights overestimates
daily PAR by 2%–5%).
[72] For the set of selected days used to train the model,

the correlation between measured and parameterized PAR
was very high (average daily R2 = 0.997). Application of the
algorithm on the full year of data increased the scatter but
still yielded very good agreement between model results and
reference (see Figure C1). The increased scatter can mainly
be attributed to the fact that the developed algorithms
assume a uniform cloud cover during each day; that is, it
distributes the incoming PAR taken from the SOGS data set
in an ideal modified Gauss curve during the day. This
approach will provide poor results when cloud cover
changes, e.g., from overcast in the morning to clear skies in
the afternoon, when PAR would be overestimated during the
first half of the day and underestimated in the second.
Although this may increase model uncertainty at certain
times, errors are not systematic but cancel over time.
[73] Temperature interpolation to subdaily temporal res-

olution assumes a “classic” temperature course during each
day, with the daytime minimum in the morning and the
maximum in the afternoon. Using the same reference data as
for the PAR interpolation described above, the specific
times for these temperature extremes were approximated
on the basis of the parameterized sunrise and sunset times:
tmin = sunrise (R2 = 0.98); tmax = sunrise + (sunset − sunrise) ×
0.716 (R2 = 0.94). Using these times, each day is split into
three sections: before the morning minimum, between
morning minimum and afternoon maximum, and after the
afternoon maximum. Temperatures to interpolate between

Figure C1. (left) Comparison of measured versus modeled PAR using 30 min averaged values for the
year 2004 at the Metolius mature pine site as reference data. (black line) The linear trend of the data
(slope = 0.92, intercept = 0.01, R2 = 0.94) closely follows the 1:1 line. (right) Empirical distribution
of the residuals between measured and predicted PARs, binned into classes of 0.025. Approximately
75% of the residuals have absolute values lower than 0.05 MJ m−2.
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are SOGS minimum and maximum temperatures for the
given day, the maximum temperature of the previous day, as
well as the minimum temperature of the following day. A
regular sine function was used for increasing temperatures in
equation (C6), whereas a squared sine function was found to
describe the decreasing temperatures in equations (C5) and
(C7) best:

t < tminðDOYÞ : T ¼ TminðDOYÞ

þ
�
0:5 � sin

1

2
�þ � � t � tmaxðDOY� 1Þ þ 24

tminðDOYÞ � tmaxðDOY� 1Þ þ 24


 �� �
þ 1

� �2

� TmaxðDOY� 1Þ � TminðDOYÞ½ �; ðC5Þ

tminðDOYÞ < t < tmaxðDOYÞ : T ¼ TminðDOYÞ þ 0:5

� sin
3

2
�þ � � t � tminðDOYÞ

tmaxðDOYÞ � tminðDOYÞ

 �� �

þ 1

� 

� TmaxðdÞ � TminðdÞ½ �; and ðC6Þ

t > tmaxðDOYÞ : T ¼ TminðDOYþ 1Þ

þ 0:5 � sin
1

2
�þ � � t � tmaxðDOYÞ

tminðDOYþ 1Þ � tmaxðDOYÞ þ 24


 �� �
þ 1

� �� 2

� TmaxðDOYÞ � TminðDOYþ 1Þ½ �; ðC7Þ

where
t actual time of day (h);

tmin time of daily minimum temperature (h);
tmax time of daily maximum temperature (h);

DOY actual day of year (−);
Tmin minimum temperature (°C);
Tmax maximum temperature (°C).

Applied during the full year of data, the plot comparing
measured and parameterized 30 min averaged temperatures
demonstrates a close 1:1 relationship (see Figure C2).
Deviations between individual values are in the range [−8, 8].

Absolute deviations fall below 1°C for approximately 73%
of the data, and for only 8% of the data, the deviations
exceed 2°C. With an average deviation of −0.04°C, no
systematic offset is introduced into the data by applying the
described algorithm.
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