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Abstract: Empirical models relating forest attributes to remotely sensed metrics are widespread in the literature
and underpin many of our efforts to map forest structure across complex landscapes. In this study we compared
empirical models relating Landsat reflectance to forest age across Oregon using two alternate sets of ground data:
one from a large (n � 1500) systematic forest inventory and another from a smaller set of plots (n � 50)
deliberately selected to represent pure conditions along predefined structural gradients. Models built with the
smaller set of targeted ground data resulted in lower plot-level mapping error (root mean square error) and higher
apparent explanatory power (R2) than those built with the larger, more widely distributed inventory data.
However, in two of the three ecoregions considered, predictions derived from models built with the smaller
ground data set displayed a bias relative to those built with the larger but noisier inventory data. A modeling
exercise, wherein mapped forest age was translated into carbon, demonstrated how nonlinear ecological models
can magnify these prediction biases over landscapes. From this study, it is clear that for mapping purposes,
inventory data are superior to project-specific data sets if those data sets are not representative of the full region
over which mapping is to be done. FOR. SCI. 56(4):405–416.

S PATIALLY EXPLICIT MAPS of forest biophysical vari-
ables derived from remotely sensed spectral indices
are required for modeling ecosystem processes

across large and heterogeneous spatial domains (Potter et al.
1993, Running and Hunt 1994, Cohen et al. 1996, Law et al.
2004, Running et al. 2004, Turner et al., 2004). When
developing algorithms that convert remotely sensed spectral
indices into meaningful biophysical variables, investigators
often seek relationships that are based on physical princi-
ples, because these are thought to be most applicable across
a range of conditions (Myneni et al. 2002). However, in
most cases, empirical relationships between spectral indices
and biophysical variables are developed, usually by regres-
sion analysis, from observations made at a sample of ground
plots (Cohen et al. 1995, Hall et al. 2006, Lefsky et al. 1999,
Means et al. 1999, Schlerf et al. 2005). The standard by
which these empirical relationships are evaluated is overall
goodness of fit, which is assumed to translate directly into
pixel- or plot-scale accuracy across the final map product
(Congalton and Green 1999). But, what if the plot samples
are not representative of the whole landscape or region
being mapped by spectral indices? Will there be a mean-
ingful effect on parameter coefficients for the empirical
relationships of interest? Will there be prediction biases in
the regional distributions of the mapped biophysical vari-
ables? More importantly, if there are nonlinear relationships
between the mapped variables (e.g., forest stand age) and an

ecological variable being modeled (e.g., biomass or carbon),
what is the effect on model output? The focus of this study
was to examine these questions using two separate field plot
data sets collected across the forests of Oregon, USA, and a
simple ecological model.

Consider a hypothetical exercise in which biological
variable Y is regressed on spectral index X to map Y across
a region, with the intent of using Y to drive a spatially
explicit ecological model across that region. Table 1 illus-
trates what the true, hypothetical relationship between X and
Y may look like (Equation 1) as well as two alternate
relationships approximated from samples at plots (Equa-
tions 2 and 3). Equation 2 represents characteristics of the
relationship derived from a relatively large number of plots
placed systematically across the landscape. A large sample
such as this should capture the range of variability and
might, in this context, be thought of as “representative” of
the mappable area. This large sample also means that Equa-
tion 2 has a poor fit (high root mean square error [RMSE]),
similar to the true equation, because it contains both the
error intrinsic to the relationship (as in Equation 1) and
additional variance stemming from imperfect measurement.
However, because the sample used to derive Equation 2 has
a relatively large size (200) and captures the range of
variability, estimates of the parameter coefficients (�0 and
�1) are close to their true values. In contrast, Equation 3 was
based on a small, select set of idealized ground plots chosen
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to express pure condition classes, with minimal influence of
confounding factors. Not surprisingly, this is commonly the
case when plots are selected by ecologists seeking to max-
imize hypothesis testing power and to understand ecological
processes or for ecosystem process model parameterization
(Schlerf et al. 2005, Law et al. 2006). A sample such as this
may be called “representative” of a predefined, select con-
dition in a region yet “nonrepresentative” of the region as a
whole because of deliberate exclusion of other condition
types deemed irrelevant to the ecological questions being
asked. As suggested by Equation 3, the use of idealized
ground plots can lead to better fits between X and Y, but
estimating the true parameter coefficients may be difficult,
given that the samples are not representative of the popu-
lation. We can presume that choosing Equation 3 over
Equation 2 to map biological variable Y would result in a
prediction bias across the mapped region. Moreover, when
that variable is used in a nonlinear ecological model, the
modeled output may have meaningful distributional biases
that lead not only to local inaccuracies but also to large-
scale biases in the modeled process over the mapped area.

Most studies relate forest biophysical variables to remote
sensing spectral data using restricted data sets (Equation 3).
However, examples of mapping biophysical variables with
data similar to Equation 2 above exist in the literature.
Large, systematically sampled data sets (as in Equation 2)
are usually those collected for national-level forest inven-
tories (Bechtold and Scott 2005). Most frequently, forest
inventory data are used in conjunction with Landsat image
data and nearest neighbor mapping techniques such as gra-
dient nearest neighbor (Ohmann and Gregory 2002), k-
nearest neighbor (Tomppo 1990, Tomppo and Halme 2004,
Huiyan et al. 2006), or most similar neighbor (Moeur and
Stage 1995) to produce multivariate maps of forest biophys-
ical characteristics associated with vegetation class and
stand age. Whereas most nearest neighbor mapping tech-
niques adequately represent the field-based distributions of
estimated variables across the mapped landscape, they com-
monly do so at the expense of pixel- or plot-level accuracy
(McRoberts and Tomppo 2007). Another example of use of
inventory data sets for mapping is the US Forest Service
biomass map (Blackard et al. 2008). In that study, classifi-
cation and regression trees were used to map biomass at a
national scale using MODIS imagery and several ancillary
data sets. The result was low local accuracy but relatively
high accuracy across whole states, regions, and the nation.

In contrast to inventory-based data sets (Equation 2),
most studies relate forest biophysical variables to remote
sensing spectral data using restricted data sets (Equation 3).
These are commonly collected for a given study and are
used either to examine the potential to map biophysical

variables of interest or understand ecological processes as
the primary goal, with mapping as a secondary goal. These
studies usually focus much attention on the strength of
empirical relationships between spectral properties and for-
est variables of interest, with the goal of reducing prediction
error (RMSE) and maximizing predictive power (R2). The
restricted data sets often do not represent populations of
interest.

The remote sensing literature is replete with Equation
3-type examples, even if we limit our review of the litera-
ture to those studies that primarily use Landsat imagery
(Cohen and Spies 1992, Kimes et al. 1996, Nelson et al.
2000, Wulder et al. 2004, Lefsky et al. 2005). Application of
these equations across a broad scale and examination of
regionwide distributions of the biophysical variables have
received only minimal attention (Lefsky et al. 1999, Schlerf
et al. 2005, Hall et al. 2006, Pflugmacher et al. 2008).
Moreover, even in studies in which biophysical variables
were ingested by ecosystem models (e.g., Cohen et al. 1996,
Running et al. 2004, Turner et al. 2007), errors in model
predictions associated with the mapped biophysical vari-
ables are rarely examined. In this article, we examine error
propagation when mapping equations are applied at a re-
gional scale and then used by an ecosystem process model
to predict an important biophysical variable.

We compare the outcomes of two different plot-level
data sets used to map forest stand age with Landsat imagery
in Oregon, USA. Furthermore, we examine the regional
effects of derived age maps for ecological modeling, using
a simple nonlinear function that describes the relationship
between age and carbon contained in aboveground live
biomass. The first data set comes from the US Forest
Service Forest Inventory and Analysis (FIA) program
(Bechtold and Scott 2005). FIA collects data at a large
number of ground plots (�4,000 in Oregon), systematically
placed to represent the full range of forest conditions in each
state of the United States.

The second data set was collected as part of a regional
carbon dynamics study in Oregon and northern California
(ORCA) (Hudiburg et al. 2009). The ORCA study collected
data at a smaller number of ground plots, deliberately strat-
ified across climatic space (which typically covaried with
forest composition) and a remotely sensed spectral index
that was known to covary with forest age and structure
across western Oregon (Cohen et al. 2001). Most impor-
tantly, the ORCA study plots had to meet minimum require-
ments of structural homogeneity and have no indications of
complex disturbance history. These selection criteria,
judged subjectively through expert field reconnaissance,

Table 1. Hypothetical equations describing the linear relationship between a measurable biological metric Y and a mapable
spectral index X where Y � �0 � �1X � e

Equation Derivation n �0 �1 RMSE

1 Truth NA 100 0.25 High
2 Modeled from large, representative sample 200 107 0.22 Higher
3 Modeled from small, idealized sample 20 185 0.12 Low

NA, not applicable.
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ensured that plots were appropriately representative of con-
ditions deemed a priori as ecologically important and or
management relevant.

In the study reported here, our objectives were to (1)
determine how well each field data set represented the
bioclimatic space over which an age map was to be pro-
duced, (2) determine how the two age data sets differed in
terms of their relationships with Landsat spectral indices
through comparison of regression statistics, (3) assess dif-
ferences in the distributions of predicted ages from appli-
cations of the regression models across our study site, and
(4) examine the implications of using the age predictions
derived from each data set to drive a simple, nonlinear
regional carbon model.

Methods
Study Area

Our study area consists of three distinct ecoregions
within the state of Oregon, USA: Blue Mountains, Coast
Range, and East Cascades (Figure 1). Ecoregion boundaries
are derived from the US Environmental Protection Agency
Level III Omernik classification scheme (Omernik 1987)
and delineate areas of similar biotic and abiotic character-
istics, land cover, climate, soils, and topography. These

three ecoregions are situated along an east-to-west cross-
section of Oregon’s forest conditions. The wet, maritime
Coast Range ecoregion is dominated by highly productive
Douglas-fir and western hemlock forests, which are inten-
sively managed (Franklin and Dyrness 1973). In the rain
shadow of the Cascade Mountains, open stands of pon-
derosa and lodgepole pine, more adapted to temperature and
moisture extremes, characterize the vegetation of the East
Cascades ecoregion (Franklin and Dyrness 1973). Further to
the east, the Blue Mountains ecoregion comprises several
smaller mountain ranges mostly volcanic in origin. Vegeta-
tion in the Blue Mountains varies from open stands of
ponderosa pine and Douglas-fir with dense understory at
lower elevations to moderately productive spruce and fir
located at higher elevations (Thorson et al. 2003).

Plot Data

The plot data we compared in this study came from two
different sources: the US Forest Service FIA program and
the supplemental ground data collected specifically for
ORCA-related projects (Figure 1). Both the FIA and ORCA
field data used in this study were collected between 2001
and 2005.

FIA conducts a systematic sample of all forestland in the

Figure 1. Distribution of plots in the Coast Range, East Cascade, and Blue Mountains ecoregions.
(Differences in plot symbol size are not indicative of plot sizes but are for illustrative purposes only.)
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U.S. with approximately one sample location every 2,428
ha. At each location, FIA records basic metrics necessary to
assess vegetation composition, density, biomass, and
growth increment over an area of 1 ha. Details regarding the
FIA vegetation sampling protocol are given in Bechtold and
Scott (2005). FIA assigns one or more condition classes to
each plot based on differences in ownership, forest type,
land use, stand size, density, or disturbance history. We
used all FIA plots within our study area (1,465 in total),
regardless of single or multiple conditions.

The ORCA field plots were established to augment FIA
plots (Van Tuyl et al. 2005, Law et al. 2006, Hudiburg et al.
2009). In addition to the standard vegetation measurements
collected at the FIA plots, the 1-ha ORCA plots received
measurements pertaining to foliage, soil, and fine roots to
facilitate a more comprehensive assessment of the carbon
stocks and fluxes. Details regarding the ORCA vegetation
sampling protocol are given in Law et al. (2006). Unlike the
systematically collected FIA plots, the ORCA plots were
selected to represent conditions deemed a priori as ecolog-
ically important, and logistical constraints required spatial
clustering within each ecoregion (Figure 1). A total of 49
ORCA plots were established in the ecoregions of interest,
all of which were used in this study. We recognize that the
number of ORCA plots amounts to a fraction of the FIA plot
sample size, but it was expected that they would be used
either independently or in conjunction with the FIA data to
map stand age.

For both data sets, wood increment data collected on live
trees were used to calculate stand age for each plot. Stand
age was estimated as the mean age of the oldest 10% of
measured trees as described by Van Tuyl et al. (2005).
Based on Spies and Franklin (1991), this method defines
stand age as time since the last stand replacing disturbance,
as required by ecosystem process models such as Biome-
BGC (Turner et al. 2007). If there were fewer than three
trees in the oldest 10%, a mean of all aged trees on the plot
was used.

Spatial Data

For our analyses, we assembled a suite of regression
predictor and ancillary variables, including land cover, dig-
ital elevation model, and Landsat data, all resampled to a
25-m resolution. Land cover, used to stratify forest and
nonforest (excluded from this study), was derived from two
sources. For western Oregon (which includes the Coast
Range and East Cascades ecoregions), we used a map first
produced using 1988 Landsat imagery by Cohen et al.
(2001) and updated to conditions in 2000 as detailed in Law
et al. (2006). For eastern Oregon (including the Blue Moun-
tains), land cover was derived solely from the 1992 National
Land Cover Data map (NLCD) (Vogelmann et al. 2001).
NLCD 2001 (Homer et al. 2007) was not available when
this study began.

A 30-m digital elevation model for the study area was
acquired from the US Geological Survey National Elevation
Dataset (US Geological Survey 2006). After resampling to
25 m, we calculated slope (degrees) and aspect (0–360°).
Slope, aspect, and elevation correlate to moisture and tem-

perature gradients and were used previously as proxies for
bioclimatic conditions of our study area (Ohmann and Greg-
ory 2002, Schroeder et al. 2007). In this study, these were
examined as possible predictor variables and for evaluation
purposes.

Peak growing season Landsat ETM� imagery from
2000 was acquired from the Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS) project
(Masek et al. 2008). All LEDAPS data were georectified
and atmospherically corrected. Within an ecoregion, inter-
scene radiometric normalization was performed (Cohen et
al. 2001), given our ecoregion-level (as opposed to scene-
level) focus and a desire to develop a single model for each
ecoregion. The Landsat reflectance data were transformed
into Tasseled Cap brightness, greenness, and wetness (Crist
1985, Cohen et al. 2003a) and a novel transformation called
distancebg, where distancebg � �(greenness2 � brightness2).
For each plot, we extracted the mean and SD from all spatial
data layers except land cover, for which the majority value
was used. To accomplish this, a 13-pixel mask centered on
the plot was used, as in related studies (Ohmann and Greg-
ory 2002, Schroeder et al. 2007).

Regression Modeling

Commonly, where the goal is to predict forest biophys-
ical variables using remote sensing, the best predictive
model is selected using established criteria (Kimes et al.
1996, Cohen et al. 2003a, Wulder et al. 2004, Parmenter et
al. 2003, Schroeder et al. 2007). In this study, we explored
a variety of model formulations for each ecoregion using
both data sets and found that, in most cases, multiple re-
gression models (including spectral variables and other spa-
tial data) did not substantively reduce prediction error rel-
ative to simple linear regression based on spectral data
alone. Moreover, our goal was not to derive the best pre-
dictive model; rather, it was to compare models based on
data sets derived from two different sampling designs. As
such, we decided to use the same, single predictor variable
for all models, based on an examination of scatter plots of
candidate predictors versus forest stand age (Figure 2). The
natural log (ln) transformation was applied to stand age to
achieve linearity. To be chosen, the predictor variable had to
be nearly the best predictor for both the ORCA and FIA data
sets. In this context, distancebg provided the best simple
linear model and was chosen for all models.

For the two field data sets, we examined whether strat-
ification by ecoregion and/or aspect was required. Based on
significance of differences between regression slopes we
determined that stratification by ecoregion was warranted,
but stratification by aspect was not. Six simple linear re-
gression models were developed: one for each field data set
for each of three ecoregions. To preserve the variance from
the observations in the predictions, an orthogonal regression
method called reduced major axis (RMA) was used (as
detailed in Cohen et al. 2003a).

RMA models were applied to the spectral data for each
ecoregion. For validation purposes, 20% of the FIA plots
were randomly chosen and withheld from model develop-
ment for use in model error assessment (for both FIA- and
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ORCA-derived models). Values for correlation (R), RMSE,
and normalized RMSE (RMSE as a percentage of the ob-
served range) were calculated from the validation data set,
as well as bias and variance ratio. Cohen et al. (2003a)
described bias as the mean of predicted values minus the
mean of observed values. Thus, a mean overprediction
would exhibit a positive bias and vice versa. Variance ratio
is calculated by dividing the SD of predicted values by the
SD of observed values (Cohen et al. 2003a). Ratios �1
indicate a prediction variance greater than the observed
variance and vice versa. Further comparison of model pre-
dictions was based on examination of cumulative frequency
histograms, by ecoregion.

Carbon Modeling

We assessed the potential consequences of using alter-
nate forest age maps (derived from alternate field data sets)
to drive ecological models by developing simple sigmoid
functions that predict carbon stored in aboveground live
biomass from forest age for each of the three ecoregions
(Equations 4–6 below). These functions were then applied
to each of the forest age maps to generate alternate carbon
mass maps from which we examined differences in fre-
quency distributions as well as total carbon predicted from
each field data set. Equations 4–6 were generated from the
process model Biome-BGC that, among other outputs, sim-
ulates aboveground carbon mass throughout forest develop-
ment based on inputs relating to forest type and edaphocli-

matic conditions. Equations 4–6 represent the best-fit,
three-parameter Chapman (sigmoid) functions fit to forest
growth simulated by Biome-BGC at 18 random forest lo-
cations in each ecoregion. The overall accuracy of these
simple equations is not especially important for the needs of
this study as long as they capture realistic nonlinearity
between age and biomass. For details regarding the param-
eterization of Biome-BGC see Turner et al. (2007).

Blue Mountains: y � 17.20(1 - e�0.0078x)1.1657 (4)

Coast range: y � 24.38(1 - e�0.0266x)2.9177 (5)

East Cascades: y � 9.40(1 - e�0.0192x)1.3276 (6)

where y is aboveground carbon (kg C/m2) and x is age
(years).

Results
Representativeness of Plot Data Sets

Age distributions for the two data sets differed widely
(Table 2), as expected, given the divergent sample designs
and sizes. The most obvious differences were the maximum
ages sampled in the Blue Mountains and Coast Range.
Compared with the FIA data set, which was expected to be
more representative of the true population, the ORCA data
set was more representative of younger stands in the Blue
Mountains and older stands in the Coast Range and East
Cascades.

Figure 2. Scatter plots used to examine the relationship of potential spectral predictor variables with
log-transformed stand age. Data from all three ecoregions are combined.

Table 2. Summary of plot-level data for age (in years), by ecoregion, for both field data sets

n Mean Median SD Minimum Maximum

Blue Mountains
FIA 644 100 80 72.2 0 511
ORCA 23 72 66 33.6 34 172

Coast Range
FIA 390 51 33 64.8 0 668
ORCA 14 66 37 65.9 8 184

East Cascades
FIA 422 86 71 60.5 1 325
ORCA 12 108 90 95.7 8 315
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The two data sets also varied in terms of their bioclimatic
representativeness (Figure 3). For slope and elevation, the
FIA data sets very closely matched the true distributions.
This finding is expected, given that FIA is a large sample
arrayed on a systematic grid. In contrast, the ORCA plots
were located almost exclusively in the lower elevations of
the East Cascades and in the middle elevations of the Blue
Mountains (and to a lesser extent in the Coast Range).
Similarly, the ORCA plots were almost exclusively on the
flattest terrain in the East Cascades and the Coast Range.

It is of primary importance to examine the extent to
which the spectral variable distancebg was sampled across
each ecoregion, given that this variable was used to model
age. For the ORCA data set, the high and low ends of
distancebg were not well represented in the Coast Range and
the low end was not sampled in the East Cascades. For the
Blue Mountains, the distancebg population is better sam-
pled. Again, as expected, the FIA data set was well repre-
sentative of distancebg.

Regression Models of Forest Age

Regression results between forest age (as determined
from ground sampling) and remotely sensed reflectance
(distancebg) reveal important differences between the FIA
and ORCA field plot data sets (Table 3). Given that ORCA
plots were selected to represent specific ideal conditions
along a set of chronosequences, it is not surprising that data
from these plots exhibit a stronger relationship of age to
distancebg. The differences among the regression equations

associated with the two data sets are most pronounced in the
R2 values. Regardless of data set, it is clear that age and
distancebg are not strongly related in the Blue Mountains,
whereas the strength of the ORCA age models for the Coast
Range and East Cascades is almost unprecedented in the
literature.

Validation statistics were calculated using the 20% of the
FIA plots withheld from model development (Table 3).
Values for R are very similar for both data sets in all three
ecoregions, as well as RMSE for the Blue Mountains and
Coast Range ecoregions. In the East Cascades, however, the
RMSE of the ORCA model is more than 3 times as large as
that of the FIA model. Bias values, a measure of the model’s
tendency toward over- or underprediction (positive and neg-
ative values respectively), varied greatly. The two Coast
Range models had very similar overall model prediction
bias, whereas bias was orders of magnitude larger for the
ORCA models in the Blue Mountains and East Cascades.

Variance ratios were the same for the two Coast Range
models and were approximately 1.0 (indicating that the
models’ prediction variances for age were nearly equal to
the observed variances). Variance ratios for the other two
FIA models were close to 1.0. For the Blue Mountains
ORCA model, the variance of predicted age was less than
one-half that of the observed values. The East Cascades
ORCA model resulted in predictions that had a variance
more than three times as large as observed values.

Normalized RMSE values were all less than 25% for the
three FIA models and for two of the ORCA models. For the

Figure 3. Cumulative frequency distributions for bioclimatic variables and the spectral variable distan-
cebg from the forested population as a whole, compared with the two sample data sets.
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East Cascades ORCA model, however, normalized RMSE
was more than 60%.

Forest Age Mapping

Expressions of the regression models through all forested
pixels of the Landsat image data afforded the most compre-
hensive assessment of the models in terms of their applica-
tion. Forest age maps derived from the FIA and ORCA data
sets revealed dramatic differences between the alternate
data sets, both in terms of the spatial distributions of age
(Figure 4) and the overall age distributions (Figure 5).
Recalling that the Blue Mountains had the lowest validation
R (Table 3), it is not surprising that both models for this
ecoregion produced maps that were not well matched to the
FIA plot distributions of age. According to the FIA plot
data, forests of the Blue Mountains are, on average, older
than those of the Coast Range, with approximately 10% of
the area being more than 200 years of age. Age maps
generated using FIA-derived models suggest that approxi-
mately 10% of these forests are more than 250 years old.
But this is considerably closer to the plot distribution of age
than is the distribution resulting from the ORCA model,
which suggests that only about 5% of these forests are more
than 150 years old, a significant underestimation relative to
the plot distributions.

For the Coast Range, where the FIA- and ORCA-derived

models had similar validation statistics, the maps resulted in
similar age distributions (Figure 5). With the FIA plot
distributions as a reference, we can see that the FIA model
predictions nearly matched the actual distributions of ages
for this ecoregion. Predictions from the ORCA model were
skewed somewhat to the high end of the FIA plot distribu-
tion, with approximately 20% of pixels mapped with ages in
excess of 100 years. For the FIA map and plots, only about
10% of the area was more than 100 years old.

The East Cascades age distributions are more similar to
those of the Coast Range than the Blue Mountains, in that
the FIA plot and model distributions are a near-perfect
match, and the ORCA model overpredicts age relative to
these two (Figure 5). The FIA data and model suggest that
approximately 90% of ages are less than 200 years old and
nearly 100% are less than 300 years old. The ORCA model,
in contrast, suggests that only 70 and 80% of forests are less
than 200 and 300 years old, respectively.

Application of Alternate Age Maps for
Modeling Carbon Stocks

The summary distributions of stocks of carbon contained
in aboveground live biomass reveal the implications of
using alternative age maps. The Blue Mountains age distri-
bution from the ORCA data set was skewed toward younger
ages relative to those of the FIA model (Figure 5). This

Table 3. Parameter coefficients and model and validation statistics for the relationship between ln(age) and distancebg for each
data set by ecoregion

Model statistics Validation statistics

�0 �1 R2 RMSE R RMSE Bias
Variance

ratio
Normalized
RMSE (%) n

Blue Mountains
FIA 7.57 �0.0012 0.11 0.65 0.18 88.88 2.53 1.11 24.86 117
ORCA 6.26 �0.0008 0.06 0.41 0.20 75.85 �36.02 0.47 21.22 117

Coast Range
FIA 7.27 �0.0011 0.23 0.75 0.33 59.07 0.20 0.96 16.08 91
ORCA 8.56 �0.0015 0.86 0.43 0.34 58.64 0.29 0.96 15.97 91

East Cascades
FIA 7.90 �0.0015 0.14 0.65 0.47 58.08 0.21 1.01 20.52 81
ORCA 10.71 �0.0025 0.92 0.33 0.45 179.54 67.81 3.28 63.44 81

Figure 4. Age estimates for FIA- and ORCA-derived models, all ecoregions.
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resulted in a rather dramatic shift toward lower carbon
values using the ORCA data set (Figure 6). About two-
thirds of all modeled values are less than 7 kg C/m2,
whereas about the same proportion are approximately 6 kg
C/m2 and greater, for the ORCA and FIA data sets, respec-
tively. Consequently, the total carbon stocks resulting from
each age map are very different: 164 Tg C for the ORCA
map versus 231 Tg C for the FIA-derived map.

The Coast Range, which had the most similar mapped
age distributions (Figure 5), also had the most similar sum-
mary carbon distributions, among the three ecoregions (Fig-
ure 6). Relative to the distributions from the FIA data set,
the ORCA-based distributions are skewed slightly to the
low (less than 1 kg C/m2) and high (more than 20 kg C/m2)
ends. For values between 1 and 20 kg C/m2, the ORCA data
set underpredicts carbon stocks relative to the FIA data set.

The result of both under- and overprediction is that the total
amount of carbon is quite similar for both data sets: 161 Tg
C versus 167 Tg C carbon.

For the East Cascades (Figure 6), the most dominant
effect on carbon distributions from modeled age is the spike
at the high end of the ORCA-based predictions: more than
550,000 ha are predicted to have aboveground carbon
greater than 9 kg C/m2, whereas FIA-based predictions have
only one-third as many hectares in that range. Again, be-
cause of compensating under- and overpredictions, total
carbon for the FIA- and ORCA-derived data sets is very
similar, with values of 114 and 118 Tg C, respectively.

Figure 5. Cumulative frequency distributions of age esti-
mates from FIA- and ORCA-derived models and FIA plot
observed values, all ecoregions. ——, FIA plot observed; � � � � �,
FIA model; – – –, ORCA model.

Figure 6. Distributions and totals of stocks of carbon con-
tained in aboveground live biomass from FIA- and ORCA-
derived maps, for all three ecoregions. f, derived from FIA
age map; u, derived from ORCA age map.

412 Forest Science 56(4) 2010



Discussion

This study highlights the importance of sample design
when forest plot data are collected to support ecological
research. Here, we demonstrate that two sets of plots, one
from a systematic forest inventory data set (FIA) and the
other from a focused carbon dynamics study (ORCA), can
yield meaningfully different results. We focused on map-
ping forest age and the use of derived age maps for mod-
eling carbon stocks.

In the remote sensing literature, plot data are often not
collected with specific regard to representativeness (Lefsky
et al. 1999, Cohen et al. 2003b, Schlerf et al. 2005, Hall et
al. 2006). Rather, a gradient of interest is sampled, and
empirical models are evaluated based on regression statis-
tics, cross-validation, or a relatively small set of indepen-
dent plots collected along the same gradient (Cohen and
Spies 1992, Means et al. 1999, Lefsky et al. 2002, Cohen et
al. 2003a, Law et al. 2006). This approach can be useful for
exploring potential relationships between spectral data and
ecological variables of interest. But as we found in our case
study, how those relationships are expressed over a region
when applied through a regression model is unknown and
unpredictable unless the data set used to parameterize the
model is representative of the region over which the model
will be applied.

For example, by the standards of traditional regression
statistics, the ORCA model for stand age from the East
Cascades exhibited a strong relationship (Table 3). How-
ever, application of this model across the ecoregion illus-
trates the shortcomings of parameter estimates derived from
a limited and unrepresentative sample and produces an
areawide stand age distribution that is inaccurate and unre-
alistic (Figures 4 and 5). This limitation is related to the fact
that the ORCA East Cascades plots were very limited in
geographic distribution (Figure 1) and were designed spe-
cifically to sample across an age, vegetation, and climatic
gradient (Law et al. 2006) rather than comprehensively
sample the range of variation within the ecoregion.

In contrast, the ORCA plots in the Blue Mountains and
Coast Range ecoregions, although still limited in number,
had a greater geographic distribution (Figure 1) and subse-
quently did a better job of sampling the biogeoclimatic
space across which the model was applied (Figure 3). Al-
though these two ecoregions have noisier models (Table 3),
distributions of age estimates are more realistic and match
more closely those of the FIA ground plots (Figure 5).

ORCA plots are more numerous and widely distributed
in the Blue Mountains (compared with the Coast Range),
but the age to distancebg relationship is not strong there.
This may be due more to forest stand conditions than to the
sampling design. Whereas the Coast Range is dominated by
even-aged, closed-canopy conifer forests where age map-
ping has been done previously with some success (Cohen et
al. 2001), the mixture of vegetation types and age classes in
the Blue Mountains (Thorson et al. 2003) makes age
mapping difficult, regardless of plot distribution and
representativeness.

Given an initial mapping error associated with unrepre-
sentative samples, this error will propagate when mapped

values are used in subsequent analyses. We examined one
such consequence by applying a nonlinear model to esti-
mate carbon from modeled age. In the Blue Mountains,
slight differences in age model parameters derived from the
two data sets (Table 3) resulted in slightly different distri-
butions and very different totals of aboveground carbon
(Figure 6). In contrast, East Cascade age models derived
from the two data sets were very different (Table 3), which
resulted in very different distributions of estimated carbon
(Figure 6). Despite these large differences in the distribu-
tions of carbon, totals for the region were very similar only
because of compensating errors.

Certainly, field sampling designs aimed to capture ide-
alized forest conditions over strata of ecological importance
are useful. Many, if not most, ecological investigations are
designed for hypotheses testing, model structuring, and
model validation. Inventory data can be used for these
purposes to great advantage (Turner et al. 1995, Moisen and
Frescino 2002, Van Tuyl et al. 2005, Law et al. 2006,
Hudiburg 2009, Pierce et al. 2009), but the noise displayed
by large unfiltered ground data, such as the FIA plot data
used in this study, can often obscure sought-after ecological
relationships or they may not contain the specific sets of
variables that are the focus of the study (e.g., belowground
carbon flux). Field data are expensive, and the costs of
collecting large data sets to support mapping, when map-
ping is only one of many objectives, may be prohibitive.
But, at the very least, in collection of field data multiple
objectives need to be taken into consideration.

For mapping purposes, inventory data may also be trou-
blesome when one is focused on minimizing plot-level
mapping error. The dominant theme in the literature is
maximizing plot-level predictive power (Congalton and
Green 1999). Those who use inventory data recognize that
relationships derived from those data are quite noisy but are
focused more on using those data because they are repre-
sentative of large areas over which maps are required for
stratification and estimation (Ohmann and Gregory 2002,
McRoberts and Tomppo 2007, Blackard et al. 2008, Pierce
et al. 2009). From this study, it is clear that for mapping
purposes, inventory data are superior to project-specific
data sets if those data sets are not representative of the full
region over which mapping is to be done. Rather than
minimizing plot-level mapping error (RMSE) and maximiz-
ing explanatory power (R2), it is much more important for
mapping studies to get the coefficients of the relationship
right so that prediction biases are minimized. This is par-
ticularly important when the maps are to be used for re-
gional modeling studies and especially when the regional
models incorporate mapped variables in a nonlinear fashion,
as demonstrated here.

Understanding and predicting forest processes associated
with biogeochemical cycling, stand dynamics, and disease
spread depend increasingly on our ability to distribute pro-
cess models across diverse landscapes using available map
products for model inputs. Advances in remote sensing and
increases in availability of derived products provide many
map choices to modelers. Understanding the accuracy of
these data sets is critical but rather than focus solely on
accuracy statistics, it will be important to consider more
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expressly how remotely sensed maps represent the region of
interest in terms of their prediction biases.

Stand age is an important variable for carbon modeling.
We only focused on summary distributions of carbon con-
tained in aboveground live biomass in this study, but there
are a host of other processes for which age is critical (e.g.,
decomposition of aboveground woody debris after distur-
bance and soil respiration). Because of the nonlinear nature
of the processes associated with age, even for summary
distributions, the effects of biased age mapping remain
unknown unless tested. Moreover, mapping the proper spa-
tial distributions of age can be as important as getting the
summary distributions right and is essential in situations for
which there are steep environmental gradients and interac-
tions between age and those gradients. Simply put, our
models of carbon dynamics may result in important biases if
the input map surfaces derived from remote sensing have
prediction biases themselves.

The novel spectral transformation distancebg is based on
an accumulated understanding of Tasseled Cap spectral
space by the authors. Cohen et al. (1995) first conceptual-
ized the temporal trajectory of conifer forest stands in
western Oregon through brightness-greenness space, reveal-
ing that as closed canopy conifer forests aged they moved
closer to the spectral origin. This occurs because of self-
thinning and structural complexity that increase as stands
age, both of which lead to increased shadow proportion in
Landsat pixels. As distancebg is a direct measure of distance
from the origin, we hypothesized that it would be strongly
correlated to conifer stand age. We examined that relation-
ship in this study and found our hypothesis to be true.

Summary and Conclusions

We tested the effects of two different field sample data
sets on mapping forest age with Landsat data. We then used
these maps with a simple ecosystem process model to
quantify aboveground carbon stocks in Oregon, USA. The
data sets represent diverse perspectives on sampling, given
their differing purposes and the fact that neither was de-
signed for a primary use with remote sensing. The most
important findings and conclusions from this study were the
following:

➤ Regression model statistics do not reveal the true power
of a relationship between spectral data and field-based
measures such as forest age. Although high R2 and low
RMSE may be valuable for determining what the best
set of predictor variables might be, it is only the first
step in a remote sensing application.

➤ We assert that for mapping applications in ecology,
obtaining the proper summary frequency distributions of
the mapped variable is far more important than achiev-
ing a strong relationship, as judged using regression
statistics. This is best assured by designing or using a
sample that is directed to capturing the variation in the
full population of interest.

➤ Nonlinear ecosystem process models that ingest remote
sensing products can have unknown and surprising re-
sults if the errors and prediction biases of these products

are not well understood. For example, we demonstrated
that products derived from nonrepresentative data sets,
when used with a carbon model, can result in strong
biases in summary carbon distributions.

➤ Obtaining reliable summary distributions can come at
the expense of local accuracy. The only way to under-
stand the quality of local map accuracy is to use an
independent sample that represents the full population
of interest. Simply using another nonrepresentative data
set sampled along a gradient of interest will not reveal
the true mapping errors.

➤ Ecosystem modelers using remote sensing products
must do so with caution and not simply accept reported
error rates as truth, given that these almost always focus
on local accuracy and not on summary distributions.

➤ Careful consideration should be given to how remote
sensing products propagate error through nonlinear eco-
system models. Local accuracy and regional represen-
tation are not mutually exclusive, but unless both are
explicitly considered and characterized, the true contri-
butions of remote sensing to the total error can never be
realized.
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