
www.elsevier.com/locate/rse

Remote Sensing of Environment 88 (2003) 233–255
Comparisons of land cover and LAI estimates derived from ETM+

and MODIS for four sites in North America: a quality assessment

of 2000/2001 provisional MODIS products

Warren B. Cohena,*, Thomas K. Maierspergerb, Zhiqiang Yangb, Stith T. Gowerc,
David P. Turnerb, William D. Rittsb, Mercedes Berterretcheb,1, Steven W. Runningd

aForestry Sciences Laboratory, Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
bForestry Sciences Laboratory 020, Department of Forest Science, Oregon State University, Richardson Hall, Corvallis, OR 97331-5752, USA

cDepartment of Forest Ecology and Management, 1630 Linden Dr., University of Wisconsin, Madison, WI 53706, USA
dSchool of Forestry, University of Montana, Missoula, MT 59812, USA
Received 12 February 2003; received in revised form 2 June 2003; accepted 6 June 2003
Abstract

The MODIS land science team produces a number of standard products, including land cover and leaf area index (LAI). Critical to the

success of MODIS and other sensor products is an independent evaluation of product quality. In that context, we describe a study using field

data and Landsat ETM+ to map land cover and LAI at four 49-km2 sites in North America containing agricultural cropland (AGRO), prairie

grassland (KONZ), boreal needleleaf forest, and temperate mixed forest. The purpose was to: (1) develop accurate maps of land cover, based

on the MODIS IGBP (International Geosphere–Biosphere Programme) land cover classification scheme; (2) derive continuous surfaces of

LAI that capture the mean and variability of the LAI field measurements; and (3) conduct initial MODIS validation exercises to assess the

quality of early (i.e., provisional) MODIS products. ETM+ land cover maps varied in overall accuracy from 81% to 95%. The boreal forest

was the most spatially complex, had the greatest number of classes, and the lowest accuracy. The intensive agricultural cropland had the

simplest spatial structure, the least number of classes, and the highest overall accuracy. At each site, mapped LAI patterns generally followed

patterns of land cover across the site. Predicted versus observed LAI indicated a high degree of correspondence between field-based measures

and ETM+ predictions of LAI. Direct comparisons of ETM+ land cover maps with Collection 3 MODIS cover maps revealed several

important distinctions and similarities. One obvious difference was associated with image/map resolution. ETM+ captured much of the

spatial complexity of land cover at the sites. In contrast, the relatively coarse resolution of MODIS did not allow for that level of spatial

detail. Over the extent of all sites, the greatest difference was an overprediction by MODIS of evergreen needleleaf forest cover at the boreal

forest site, which consisted largely of open shrubland, woody savanna, and savanna. At the agricultural, temperate mixed forest, and prairie

grassland sites, ETM+ and MODIS cover estimates were similar. Collection 3 MODIS-based LAI estimates were considerably higher (up to 4

m2 m� 2) than those based on ETM+ LAI at each site. There are numerous probable reasons for this, the most important being the algorithms’

sensitivity to MODIS reflectance calibration, its use of a prelaunch AVHRR-based land cover map, and its apparent reliance on mainly red

and near-IR reflectance. Samples of Collection 4 LAI products were examined and found to consist of significantly improved LAI predictions

for KONZ, and to some extent for AGRO, but not for the other two sites. In this study, we demonstrate that MODIS reflectance data are

highly correlated with LAI across three study sites, with relationships increasing in strength from 500 to 1000 m spatial resolution, when

shortwave-infrared bands are included.
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1. Introduction

Human impacts on the Earth system are considerable.

Losses of native vegetation cover, biodiversity, and coastal

ecosystems all threaten the functioning of the integrated

processes that sustain life on Earth (Wilson & Peter, 1988).

Burning of fossil fuels and large-scale conversion of prima-
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ry forest to other uses and states are contributing to an

increasing CO2 concentration and probable accelerated

changes in climate (IPCC, 2001). Pollution from various

sources is degrading vast areas of land and volumes of

ocean and atmosphere (NRC, 1999). As a result, there are

now significant national and international efforts to develop

a global biosphere monitoring system (Running et al., 1999;

Townshend & Justice, 2002). A keystone component of that

system is NASA’s Earth Observation System (EOS) Terra

satellite platform, launched in 1999. Perhaps the most

important sensor on that platform for land surface observa-

tions is MODIS, the Moderate Resolution Imaging Spec-

troradiometer (Justice et al., 2002).

Associated with the Terra platform is a series of science

teams devoted to producing useful products from the various

sensors onboard the satellite. For the MODIS sensor, the land

team produces a number of standard products, such as

surface reflectance, land surface temperature, bidirectional

reflectance distribution function and albedo, land cover and

cover change, vegetation indices, thermal anomalies and fire,

leaf area index (LAI) and fraction of photosynthetically

active radiation absorbed (fAPAR), and net photosynthesis

and net primary productivity (NPP) (Justice et al., 2002).

Critical to the success of MODIS and other sensor products

is an independent evaluation of product quality. For this

purpose, a system of land validation core sites that represent

a range of biome types where validation activities are

concentrated has been established (Morisette, Privette, &

Justice, 2002). At most of the sites, there is an existing

program of long-term measurements and infrastructure to

support in situ measurements that can be used to assess the

quality of (or ‘‘validate’’) MODIS land data products.

For MODIS products related to the global carbon cycle,

the most important validation core sites have a microme-

teorological tower that uses eddy covariance methods to

measure exchanges of CO2, water vapor, and energy between

terrestrial ecosystem and atmosphere (Running et al., 1999).

These sites belong to a network known as FLUXNET, whose

goals are to understand the mechanisms controlling fluxes

across a spectrum of time and space scales (Baldocchi et al.,

2001). Flux towers have a ‘‘footprint’’ over which measure-

ments are made. Footprints vary in size, shape, and orienta-

tion depending on vegetation structure, height of tower

above the vegetation, and wind speed and direction, but

are generally considered to be about 1 km2 in size. Although

these are critical elements of a validation system for carbon-

related MODIS products (Running et al., 1999), their size

and the lack of detailed measurements of vegetation bio-

physical properties mean it is difficult to use them alone to

directly validate MODIS products.

One project that is bridging the gap between tower

measurements and MODIS is BigFoot (http://www.fsl.orst.

edu/larse/bigfoot/) (Running et al., 1999). The BigFoot

project is working at nine flux tower sites from Alaska to

Brazil, each one representative of one or two distinct biomes,

including the Arctic tundra; boreal evergreen needleleaf
forest; temperate cropland, grassland, evergreen needleleaf

forest, and deciduous broadleaf forest; desert grassland and

shrubland; and tropical evergreen broadleaf forest. BigFoot

collects field-based data over 25 km2 (5� 5 km), and uses

Landsat ETM+ image data and ecosystem process models to

characterize 49 km2 (7� 7 km) around each tower. Our field

sampling design is a nested spatial series to facilitate geo-

statistical analyses (Burrows et al., 2002). Field data are used

both to develop site-specific algorithms for mapping and

modeling land cover, LAI, fAPAR, and NPP, and to charac-

terize the errors in derived surfaces of those variables. Direct

comparisons of BigFoot- and MODIS-derived surfaces can

help interpret possible sources of error in MODIS-derived

surfaces and facilitate improvements to MODIS algorithms

(Cohen & Justice, 1999; Morisette et al., 2002).

In this paper, we describe the methods used by BigFoot

to map land cover and LAI at four sites, and present results

in the context of MODIS validation. Specific objectives

were to:

� develop accurate maps of land cover, based on the

MODIS IGBP (International Geosphere–Biosphere Pro-

gramme) land cover classification scheme;
� derive continuous surfaces of LAI that capture the mean

and variability of the LAI field measurements; and
� conduct initial MODIS validation exercises to assess the

quality of early (i.e., provisional) MODIS products.
2. Methods

2.1. Study sites

The four sites of this study include NOBS (Northern Old

Black Spruce), HARV (Harvard Forest), KONZ (Konza

Prairie), and AGRO (an agricultural system in Illinois).

These sites were described in detail by Campbell, Burrows,

Gower, and Cohen (1999) and through links accessible at

http://www.fsl.orst.edu/larse/bigfoot/. NOBS is a boreal for-

est in northern Manitoba, Canada (Fig. 1), and was a site

used in the Boreal Ecosystem Atmosphere Study (BOREAS,

Sellers et al., 1997). The site is predominantly forested with

black spruce stands of variable density, but contains numer-

ous wetlands, small open water bodies, small aspen stands,

extensive moss cover, and a large, recently burned area in the

southern part of the study site. HARV is located in western

Massachusetts and is predominantly a closed hardwood

forest system with some small patches of conifer and mixed

hardwood–conifer stands. Additionally, there are a few

marshy lowland areas and rural residential development

and pastures. KONZ is a tallgrass prairie in central Kansas

and was the focus of the FIFE study in the 1980s (Sellers,

Hall, Asrar, Strebel, & Murphy, 1992). In addition to

grassland, there are areas of gallery forest and some crop-

lands in the northern part of the study site. AGRO is a series

of private farmlands containing annually alternating crops of
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Fig. 1. Location of study sites in North America, and 1-m resolution panchromatic images of the 7� 7 km sites. Clockwise from upper right: HARV, AGRO,

KONZ, NOBS.
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soybeans and corn. Numerous farmyards dot the landscape,

and a rural community occupies the southeast corner of the

site.

2.2. Sample design and field measurements

The sample design was a nested spatial series (Burrows et

al., 2002) that permits explicit examination of spatial covari-

ation among field-measured ecosystem properties using

variograms and cross-variograms (Cressie, 1991). At each

site, there were approximately 100, 25� 25 m plots where

land cover, LAI, fAPAR, and NPP were measured/observed

at five to nine subplots per plot. Subplot measurements were

averaged to provide a single value for each measured

variable at each plot. Plot locations were determined using

a real-time differential GPS. The accuracy of the system was

< 0.5 m in both the x and y dimensions (Burrows et al.,

2002). Initial measurements were made in 2000, with

remeasurements at some sites in 2001. At NOBS, LAI

calculations were based on measurements from 1999.

At each site, LAI was measured at five subplots per plot

using methods described by Gower, Kucharik, and Norman

(1999) and Campbell et al. (1999). The methods included (at

NOBS) allometric equations developed during BOREAS,
optical methods using a LAI-2000 (at HARV and KONZ),

and standard, direct harvest methods (at AGRO). Optical

measurements were corrected for clumping and the like, as

described by Gower et al. (1999) and Burrows et al. (in

review). Except at NOBS (where allometric equations based

on diameter at breast height were used), measurements were

made at several time periods during the growing season in

2000. At NOBS, percent tree cover was measured at nine

systematically spaced subplots using an upward-looking

digital camera. The imaged canopy projection area was

dependent on tree height and the field of view of the camera,

which was 30j. At approximately 10-m height, this means

that among the nine subplots, nearly 100% of the canopy

area in each plot was imaged. In the lab, each of the nine

photos per plot was sampled using a grid of 99 points to

derive the percent live tree canopy cover at each plot (Cohen,

Maierpserger, Gower, & Tumer, 2003).

2.3. ETM+ imagery and preprocessing

Multidate ETM+ imagery was used at each site to

develop the maps for 2000 (Table 1). At NOBS, two dates

were used, one from the winter (which contrasts forest

against a snow background) and the other from early- to



Table 1

ETM+ images used for mapping at each site in 2000

Site Path/row Date

NOBS 34/21 13-Mar-00

33/21 10-Jun-00

HARV 13/30 31-Aug-99

12/31 13-Oct-00

13/30 23-Dec-00

KONZ 28/33 7-Jun-00

28/33 9-Jul-00

28/33 25-Jul-00

28/33 11-Sep-00

AGRO 22/32 26-Apr-00

22/32 29-Jun-00

22/32 15-Jul-00

22/32 1-Sep-00
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midgrowing season. At HARV, there was no cloud-free

ETM+ image from the 2000 growing season. Thus, for this

site, we used a growing season image from 1999 and two

postgrowing season images from 2000. For KONZ and

AGRO, imagery from four dates was used to capture the

growing season from April (AGRO)/June (KONZ) through

September. All imagery was georeferenced, radiometrically

calibrated, and translated into Tasseled Cap brightness,

greenness, and wetness. All images were acquired at level

1G processing, with a cell size of 30 m, and UTM (WGS84)

projection. At NOBS, a panchromatic IKONOS image was

registered to the Earth’s surface using several GPS points

collected in the field. The June image was then positionally

shifted (i.e., offset in the x and y directions without

resampling) to match the IKONOS image and the March

image was shifted to match the June image. At the other

three sites, the positional accuracy of the ETM+ image

native map projection was judged by direct comparison

with USGS digital orthophoto quadrangles (DOQs) at a

9� 9 km area centered on the study site. After all imagery

at these sites was positionally shifted to provide the best

spatial match with the DOQs, the images were resampled to

25-m resolution, with < 0.5-pixel RMSE.

The COST absolute radiometric correction model of

Chavez (1996) was applied to each image to convert digital

counts to reflectance. Radiometrically ‘‘dark’’ objects were

assumed to have 2% reflectance across all bands. For each

site, the midgrowing season image was selected as a refer-

ence image and all other dates of imagery were relatively

normalized to it, as a fine-tuning for multidate, interimage

calibration. The method used was similar to that of Oetter,

Cohen, Berterretche, Maiersperger, and Kennedy (2001) and

of the Ridge Method of Kennedy and Cohen referred to by

Song, Woodcock, Seto, Pax Lenney, and Gillespie (2001),

which are an adaptation of standard band-by-band relative

normalization procedures based on colocated bright and dark

targets. As the COST model is not appropriate for low sun-

angle situations, the March image from NOBS and the fall

and winter images from HARVwere converted to reflectance

using a more basic dark-object-subtraction model. Further,
no relative normalization was performed for the NOBS

dataset, due to major spectral property differences between

the two dates, given the backdrop of ice and snow for the

March scene and of vegetation and water for the June scene

(Cohen et al., 2003).

No published transformation exists to convert atmo-

spherically corrected ETM+ spectral data to Tasseled Cap

indices. However, Crist (1985) derived coefficients for

brightness, greenness, and wetness from ground-based

spectral data that can be applied to Landsat reflectance

factor data. Slight differences in spectral band width and

position, as well as calibration, exist between Landsat TM

and ETM+ (Teillet et al., 2001; Vogelmann et al., 2001), but

they are similar enough to assume that the differences in

Tasseled Cap indices derived for data from the two different

sensors are small. We tested this assumption using TM and

ETM+ images acquired within a few days of each other

(Path 46/Row 29) over western Oregon in 1999. First, we

converted atmospherically corrected TM DN data to the

Tasseled Cap indices using the coefficients in Crist and

Cicone (1984). We then converted the atmospherically

corrected TM DN data to reflectance using published

coefficients and formulae, before using the Crist (1985)

coefficients to convert the reflectance data to Tasseled Cap

indices. Finally, we atmospherically corrected the ETM+

data and then converted the reflectance data to the Tasseled

Cap indices using the Crist (1985) coefficients. A compar-

ison of the brightness, greenness, and wetness images from

the three methods showed that they were highly intercorre-

lated at a level of roughly 95%. We then transformed each

individual image used in this study into brightness, green-

ness, and wetness indices.

2.4. Land cover mapping

MODIS land cover products (MOD12Q1) exist in several

variants (Morisette et al., 2002). For BigFoot, we mapped to

the IGBP variant, which has 17 cover classes (Table 2). At

AGRO, a modifier was added to account for ecologically

significant differences between corn (Class 12a) and soy-

beans (Class 12b) within Class 12 (croplands). BigFoot land

cover mapping was based on the multidate stack of ETM+

band data or Tasseled Cap indices at each site. The goal was

to map land cover at the peak of the growing season for

2000. First, an unsupervised classification was conducted to

stratify Classes 0 (water), 13 (urban/built), and 16 (barren)

from vegetated classes. There were no events of Classes 2

(evergreen broadleaf forest), 3 (deciduous needleleaf forest),

14 (cropland/natural vegetation mosaic), or 15 (snow/ice).

Class 11 (permanent wetland) is defined by the presence of

water rather than by vegetation (or spectral) characteristics

(Table 2). Thus, the only way to accurately map this class

was to hand digitize occurrences of it, where growing season

standing water was evident. This class existed only at NOBS

and HARV. Specific methods of analysis for the remaining

vegetated classes varied by site.



Table 2

MOD12Q1, IGBP land cover classes

Broad cover type Class

number

Class name Class description

Natural vegetation 1 Evergreen needleleaf forest Lands dominated by woody vegetation with a percent cover >60% and height

exceeding 2 m. Almost all trees remain green all year. Canopy is never

without green foliage.

2 Evergreen broadleaf forest Lands dominated by woody vegetation with a percent cover >60% and height

exceeding 2 m. Almost all trees and shrubs remain green year round. Canopy

is never without green foliage.

3 Deciduous needleleaf forest Lands dominated by woody vegetation with a percent cover >60% and height

exceeding 2 m. Consists of seasonal needleleaf tree communities with an

annual cycle of leaf-on and leaf-off periods.

4 Deciduous broadleaf forest Lands dominated by woody vegetation with a percent cover >60% and height

exceeding 2 m. Consists of broadleaf tree communities with an annual cycle

of leaf-on and leaf-off periods.

5 Mixed forest Lands dominated by trees with a percent cover >60% and height exceeding

2 m. Consists of tree communities with interspersed mixtures or mosaics of the

other four forest types. None of the forest types exceeds 60% of landscape.

6 Closed shrubland Lands with woody vegetation less than 2-m tall and with shrub canopy cover

>60%. The shrub foliage can be either evergreen or deciduous.

7 Open shrubland Lands with woody vegetation less than 2 m tall and with shrub canopy cover

between 10% and 60%. The shrub foliage can be either evergreen or

deciduous.

8 Woody savanna Lands with herbaceous and other understory systems, and with forest canopy

cover between 30% and 60%. The forest cover height exceeds 2 m.

9 Savanna Lands with herbaceous and other understory systems, and with forest canopy

cover between 10% and 30%. The forest cover height exceeds 2 m.

10 Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 10%.

11 Permanent wetlands Lands with a permanent mixture of water and herbaceous or woody vegetation.

The vegetation can be present in either salt, brackish, or fresh water.

Developed and

mosaic lands

12 Cropland Lands covered with temporary crops followed by harvest and a bare soil period

mosaic lands (e.g., single and multiple cropping systems). Note that perennial

woody crops will be classified as the appropriate forest or shrub land

cover type.

13 Urban/Built Land covered by buildings and other man-made structures.

14 Cropland/natural

vegetation mosaic

Lands with a mosaic of croplands, forests, shrubland, and grasslands in which

no one component comprises more than 60% of the landscape.

Nonvegetated lands 15 Snow/ice Lands under snow/ice cover throughout the year.

16 Barren Lands with exposed soil, sand, rocks, or snow and never has more than 10%

vegetated cover during any time of the year.

0 Water Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt-water

bodies.
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2.4.1. NOBS 2000

At NOBS, most of the vegetation could be characterized

along a percent tree cover gradient. Thus, at this site, we

modeled live tree cover directly using reduced major axis

regression (RMA), as described by Cohen et al. (2003).

Using the resultant predicted surface of continuous tree cover

percentages, we labeled individual pixels as Class 9 (savan-

na, 10–30%), Class 8 (woody savanna, 30–60%), Class 1

(evergreen needleleaf forest, >60%), or as unclassified. We

then compared a map of this interim classification with the 4-

m multispectral IKONOS image from Fig. 1 and color-

infrared airphotos acquired during 1999. In this landscape,

Class 4 (deciduous broadleaf forest) existed in small patches

that were easily distinguished on the reference IKONOS and

airphoto imagery. Thus, using these reference data, we hand

digitized around Class 4 patches that were originally desig-

nated as Class 1 using the percent tree cover layer, and
relabeled these as Class 4. Remaining unclassified pixels

were labeled as either Class 6 (closed shrubland) or Class 7

(open shrubland).

2.4.2. HARV 2000

At HARV, most of the vegetation consisted of gradients of

percent tree cover and hardwood to conifer composition, a

problem well suited to mixture modeling (Smith, Ustin,

Adams, & Gillespie, 1990). For this, the August 31 ETM+

band reflectance data were transformed into unstandardized

principal components (PCs). A bivariate plot of the first two

PC axes formed a triangle. The PC image was clustered

(n = 100) and clusters plotted into PC space to find endmem-

bers (vertices of the aforementioned triangle). Clusters of

pixels at the three vertices corresponded to pure grass,

conifer, and hardwood in the image. These endmember

samples had some spectral variability, but were well defined
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spatially within the image domain. Using these endmembers,

constrained linear unmixing was performed on the six-band

ETM+ Aug. 31, 1999, image using commonly available

software. Fraction images were then combined into the

MOD12Q1, IGBP ruleset to form grassland (Class 10),

savanna, woody savanna, evergreen needleleaf forest, decid-

uous broadleaf forest, and mixed forest (Class 5). Mixture-

modeled classes were nested within the original unsupervised

classification to produce the final land cover map. All class

labeling and related site knowledge were based on ADAR

(http://www.possys.com/index.htm) image interpretation,

field notes, ground photography, and color-IR photography

acquired during summer, 2000.

2.4.3. KONZ 2000

The KONZ site is largely a grassland biome, containing

significant amount of grass and woody vegetation in both

shrub and tree form. At the grain of ETM+ data, there was

little or no unvegetated ground cover except for barren areas

associated with roads and the like. Trees and shrubs were

essentially indistinguishable using the ETM+ data; however,

they were well-defined spatially at the site. These and

subsequent land cover calls were made using 2000 ADAR

imagery and airphotos, and notes and hand-held photos from

site visits in 2000. In a fashion similar to NOBS, where a tree

cover regression model was developed, at KONZ, an RMA

model for woody cover was developed using the four-date

Tasseled Cap image stack. To accomplish this, we randomly

distributed 100 1-ha plots within the broad vegetated class

stratified by the preliminary unsupervised classification.

Plots were required to be at least 200 m apart, based on the

range of a semivariogram of the June greenness image. For

each plot, we interpreted the percent cover of woody vege-

tation, grass, and barren (essentially nonexistent at each plot).

The woody cover model was applied to the appropriate

ETM+ pixels, which were then labeled as follows: grassland

( < 10% woody cover), open shrubland (10–30% woody

cover), woody savanna (30–60% woody cover), and decid-

uous broadleaf forest (>60% woody cover). This method of

label assignment precluded labels for savanna and closed

shrubland. Although these existed at the site in rare, small

patches at the grain size of ETM+, it captured the dominant

vegetation patterns very well. Following these assignments,

hand editing was used to minimize confusion between

grassland, open shrubland, and woody savanna, and to isolate

and label croplands (which existed in the northwestern part of

the site).

2.4.4. AGRO 2000

At AGRO, unsupervised classification of the Tasseled

Cap multidate stack was used to distinguish croplands from

all other types, including isolated patches of grassland

located around an airport runway and at an interstate

‘‘cloverleaf’’. Two types of cropland were distinguished:

corn and soybeans. All labels were derived from plot

observations, ADAR imagery, and airphotos acquired in
2000. Hand-editing was used to recode minor mislabeling

within specific fields, and to identify roads and water canals.

2.4.5. 2000 error characterization

Characterization of land cover mapping errors was based

on an independent sample 1-ha plots at each site, except

AGRO. Samples were selected by stratified random sam-

pling, where the strata were land cover classes and the

placement of individual plots next to other plots was never

closer than the range of the semivariogram constructed from

midgrowing season greenness (calculated from ETM+ data).

Distribution of plots was weighted by land cover proportion,

and the number of plots was variable by site (depending on

site complexity). Observed land cover for these plots was

determined from IKONOS and ADAR imagery. For AGRO,

every crop field was visited during the growing season.

ADAR was used to assess errors in the noncrop classes.

2.4.6. 2001 cover map updates

As the MODIS algorithms continue to be improved, it is

important to continue examining the products derived from

them. For NOBS, HARV, and KONZ, we updated the

cover maps to 2001 for this purpose. Updates were

accomplished by closely examining the ETM+ imagery

from 2001 in relation to the 2000 land cover maps, 2001

airphotos, and other high spatial resolution imagery. As

these sites are relatively stable from year to year (and as the

size of each mapped area was small: 49 km2), we could

easily identify areas that had changed due to minor

disturbance processes. The changed areas (totaling 0.27%,

0.77%, and 0.00% of site area for NOBS, HARV, and

KONZ, respectively), once identified, were relabeled with-

in the 2000 maps to develop updated, 2001 land cover

maps. AGRO is highly dynamic from year to year and we

did not visit this site in 2001, thus the change detection

procedure could not be done confidently.

2.5. LAI modeling and mapping

We used a regression approach to model LAI at each site

for 2000. Regression analysis has been a popular empirical

method of modeling the relationship between spectral data

and LAI (Butera, 1986; Chen & Cihlar, 1996; Fassnacht,

Gower, MacKenzie, Nordheim, & Lillesand, 1997; Turner,

Cohen, Kennedy, Fassnacht, & Briggs, 1999). However,

traditional (i.e., ordinary least squares, OLS) methods of

regression are not sufficient when resulting biophysical

surfaces derived from remote sensing are subsequently used

to drive ecosystem process models, as is the case in the

BigFoot project. With OLS regression, the variance of the

predictions is commonly compressed relative to the vari-

ance of the observations (Curran & Hay, 1986). In BigFoot,

to estimate NPP, we use mechanistic models that have

nonlinear functions dependent on LAI. As such, compres-

sion of variance in LAI introduces error in the mechanis-

tically modeled outputs. The degree of compression (and its

 http:\\www.possys.com\index.html 


Table 4

LAI ‘‘fill’’ values for unsampled, and thus unmodeled, classes

Site Value Class Percent of

site area

NOBS 0.0 Water 2.2

0.0 Barren 0.8

0.0 Urban/built 1.2

HARV 0.0 Water 1.8

0.0 Urban/built 0.6

1.0 Grassland 4.5

1.0 Permanent wetland 3.6

1.5 Savanna 0.3

2.0 Woody savanna 1.6

KONZ 0.0 Water 0.1

0.0 Urban/built 2.9

3.0 Cropland 4.3

5.0 Deciduous broadleaf forest 7.2

AGRO 0.0 Water 0.7

0.0 Urban/built 13.1

1.0 Grassland 1.8
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concomitant effect on NPP estimates) is a function of the

correlation between the spectral data and the biophysical

variable; low correlation, much compression, and vice

versa.

In this study, the orthogonal RMA (Reduced Major Axis)

regression method was used. We recently demonstrated the

value of RMA relative to OLS regression to predict both tree

cover at NOBS and LAI at AGRO (Cohen et al., 2003). To

the extent possible, we developed separate models for each

major vegetation cover class or class group. Two conditions

had to be met for this stratification to be applied. First, there

had to be enough plots in the class to develop a model (in

this study, the number of plots per cover type ranged from 9

to 82, with a mean of 37; Table 3). Second, there had to be

some meaningful predictive power to the model. Most

regression analyses in remote sensing rely on a single

spectral vegetation index (SVI) based on red and near-

infrared reflectance from a single date of imagery (Tucker,

1979; Huete, Jackson, & Post, 1985; Sellers, 1987; Turner et

al., 1999). There are compelling reasons for utilizing greater

spectral dimensionality, and for including SVIs from multi-

ple dates in a regression analysis. Here, we used multidate

brightness, greenness, and wetness to predict LAI. When

including multiple SVIs and/or dates, it is useful to integrate

these into a single index for regression modeling, particu-

larly for RMA regression. For this, we employed canonical

correlation analysis (CCA), which had the added benefit of

aligning the spectral data with the variable of interest (Cohen

et al., 2003), in this case LAI.

With both OLS and RMA regression done in a multiple

SVI context, predictor variables (i.e., SVIs) must be selected

based on their statistical significance (e.g., at a p value of

0.05). For each LAI model, we used forward stepwise

regression. In each case, brightness, greenness, and wetness

from all dates of available imagery were used as potential

variables for a model. Prior to conducting stepwise regres-

sion, bivariate plots of all potential SVIs against LAI were

evaluated to determine if transformations were required to
Table 3

LAI models by site and cover class or class group

Site Cover class/group n Correlation

NOBS 1 12 0.68

8 57 0.66

9 25 0.82

4, 7, 11 9 0.68

HARV 1 18 0.75

4 42 0.75

5 13 0.90

KONZ 10 82 0.54

7, 8 17 0.58

AGRO 12 (a. soy only) 62 0.76

12 (b. corn only) 29 0.78

See Table 2 for names associated with class numbers.
a Variables are given by date (e.g., 610 equals June 10) and Tasseled Cap inde

terms are for the CCA axis used for each model.
linearize relationships. Where necessary, standard log and

square root transformations were used.

To map LAI across a study site, each model developed

for a given class at a given site was applied to the relevant

CCA axis and vegetation class from the land cover map.

Some vegetation classes existed as small, scattered patches

at a given site, e.g., the grassland class at AGRO. As we did

not sample that class in the field, we used LAI values from

the literature for these classes (Table 4).

2.5.1. 2000 LAI error characterization

Field-based LAI data are expensive to collect and pro-

cess, so using them prudently is essential. There is a tradeoff

between using all available observations to develop a

regression model and having no independent observations

to test the model, versus excluding a predetermined number

of observations to test the model, but having a less robust

model because it was developed on fewer points. The

statistical literature provides several alternative, but related
Slope Intercept Spectral variables useda

� 38.8 127.9 610b

1.4 4.3 313b, 610bg

1.3 3.1 313bw, 610b

1.7 4.2 313w

� 0.6 5.0 831g, 1013bg, 1223bgw

0.7 4.9 831bw, 1013bgw, 1223bg

0.6 5.2 831bg, 1013g, 1223g

0.5 1.9 607bgw, 709bgw, 725gw

0.9 2.3 607b, 709g, 725w, 911gw

0.6 1.5 426bgw, 629bgw,

715bgw, 901bgw

0.8 4.4 426bgw, 629bgw,

715bgw, 901bgw

x (b is brightness, g is greenness, and w is wetness); the slope and intercept
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ways to address this problem: cross-validation, bootstrap-

ping, and jackknifing (Efron & Gong, 1983). We used the

cross-validation procedure that provides a nearly unbiased

estimator of prediction error (Efron & Gong, 1983). This

required, for each dataset and regression variant, that

(where, e.g., n = 100) 100 separate models be developed,

each time with data from 99 observations. Then, each model

was used to predict the observation that was left out, thus

providing the predictions for all 100 plot observations that

were needed to compare against the observed values (Cohen

et al., 2003).

Additionally, predicted versus observed plots were de-

veloped and overall bias and variance ratios were calculated.

Bias was calculated as the mean of the predicted values

minus the mean of the observed values, such that a positive

bias equated to a mean overprediction, and vice versa.

Variance ratio was calculated as the standard deviation of

the predicted values divided by the standard deviation of the

observed values. As such, a ratio of greater than one meant

that the prediction standard deviation was greater than the

observed standard deviation, and vice versa.

2.5.2. 2001 LAI map updates

The NOBS 2000 BigFoot LAI surface was based on

regression equations. To derive a 2001 LAI map, we

updated the 2000 LAI map by applying the class-specific

equations in Table 3 to pixels identified earlier as changed.

In this case, we used the new labels to determine which

model to use, but the models were applied to the 2001

ETM+ data. For areas that had not changed, we used the

original LAI estimates. For HARV and KONZ, we had new

field measurements, and these were used in conjunction

with 2001 imagery and the 2001 land cover maps to develop

2001 LAI maps using a new set of models developed in the

same way as those from 2000.

2.6. Comparisons with MODIS products

MODIS V003 (also known as Collection 3) provisional

data are in the Integerized Sinusoidal Projection (ISIN,

Seong, Mulcahy, & Usery, 2002) and BigFoot data are in
Fig. 2. Example of using the MODIS Reprojection Tool to translate the NOBS la

projection.
UTM WGS84. To compare MODIS and BigFoot products,

we used the MODIS Reprojection Tool (http://edc.usgs.gov/

programs/sddm/modisdist/index.shtml) to reproject BigFoot

maps into ISIN (Fig. 2). This permitted direct overlay of

land cover and LAI data products from MODIS and

BigFoot. Although we can expect modest errors of coregis-

tration (MODIS data have an expected registration error of

< 50 m at nadir; Wolfe et al., 2002), overlay in this way

provided confidence in making direct spatial comparisons at

the site level.

For land cover comparisons, MOD12Q1 Collection 3

products from 2000 were used (Friedl et al., 2002). At each

site, we summarized these maps to characterize proportions

of land cover classes and compared those with 2000

BigFoot products as frequency histograms. The 2001

MODIS MOD12Q1 Collection 3 product was likewise

compared to the 2001 BigFoot products at NOBS, HARV,

and KONZ.

Collection 3 MOD15A2 LAI products were not available

for 2000 (http://edcdaac.usgs.gov/modis/dataprod.html); for

that year, only products based on poorly calibrated Collec-

tion 1 MODIS data were available. Thus, we used Collec-

tion 3 data from 2001 for our comparisons with both 2000

and 2001 BigFoot LAI maps. For this, we plotted the mean

and standard deviation of MODIS LAI 8-day composite

data for the year 2001 for the four sites. On the same graphs,

mean and standard deviation of the 2000 and 2001 BigFoot

ETM+ surfaces were plotted.

Subsequent to completing these analyses, some provision-

al V004 (i.e., Collection 4) LAI data started becoming

available. Thus, we downloaded a small amount of those

data for comparison with Collection 3 data to determine how

they were different. Collection 4 data include certain

improvements that are purported to be of better quality than

Collection 3 products (http://modis-land.gsfc.nasa.gov/news/

iniv_nws_pgs/c4_descrip.asp). For LAI, these include up-

stream data improvements such as better reflectance calibra-

tion. In addition, the LAI algorithm used an improved

MODIS land cover map, and improved lookup tables for

the main and backup algorithms. The latter improvement

purportedly increased the number of high-quality retrievals
nd cover map (based on ETM+) projected in UTM coordinates to the ISIN

 http:\\edc.usgs.gov\programs\sddm\modisdist\index.shtml 
 http:\\edcdaac.usgs.gov\modis\dataprod.html 
 http:\\modis-land.gsfc.nasa.gov\news\iniv_nws_pgs\c4_descrip.asp 
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by 10%, removing a noted nonphysical peak in global LAI

and improved agreement with ground measurements. The

data we evaluated were for the period from July 4 through

August 12, 2001, representing five 8-day composite bins for

each 7� 7 km site.
Fig. 3. BigFoot land cover maps based on ETM+ data for the four study sites (upp
2.7. MODIS reflectance and LAI

When comparing BigFoot and MODIS Collection 3 LAI

products, we noted significant discrepancies in the estimated

values. This led us toward more close examination of the

Environment 88 (2003) 233–255 241
er left, NOBS; upper right, HARV; lower left, KONZ; lower right, AGRO).
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MOD15A2 algorithm, and consequently, the MODIS re-

flectance data in relation to LAI. The MODIS Collection 3

product was not based on a full implementation of the

MOD15A2 algorithm; it uses a prelaunch land cover prod-

uct based on AVHRR, and apparently relies almost exclu-

sively on the use of red and near-infrared reflectance (akin

to the NDVI) rather than reflectance from all MODIS bands.

We first examined the relationships for NOBS, HARV, and

KONZ between field-measured LAI and ETM+NDVI.
Table 5

Error matrix for BigFoot 2000 land cover maps
These were compared with the relationships of LAI and

new CCA axes developed for use across cover classes so the

results would be consistent with those of the NDVI. Second,

we repeated that exercise using MOD09GHK (the daily

500-m surface reflectance product) acquired close to grow-

ing season maximum LAI for the same sites in 2000

(August 24 for NOBS, July 20 for HARV, and August 24

for KONZ). LAI in this case was derived using a 500-m grid

overlain on the ETM+ LAI surfaces that were spatially
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registered to the MODIS data to calculate mean site-level

ETM+ LAI estimates at a grain of 500 m. Finally, both

datasets were spatially aggregated to 1000 m and compared

once again.
Fig. 5. Cross-validation of BigFoot LAI models/maps.
3. Results

3.1. BigFoot land cover

The BigFoot land cover maps (Fig. 3) varied in overall

accuracy from 81% to 95% (Table 5). NOBS, the most

spatially complex site, had the greatest number of classes

and, consequently, the lowest accuracy. AGRO, being an

intensive agricultural cropland, had the simplest spatial

structure and the least number of classes. It also had the

highest overall accuracy. At NOBS, the greatest proportion

of mapping errors were associated with woody savanna

being mapped as savanna (7/68) or evergreen needleleaf

forest (11/68) and savanna being mapped as woody savanna
Fig. 4. BigFoot LAI maps based on ETM+ data for the four study sites (upper left, NOBS; upper right, HARV; lower left, KONZ; lower right, AGRO).



Table 6

Cross-validation results for BigFoot 2000 LAI predictions

Site Correlation

coefficient

RMSE Bias Variance

ratio

NOBS 0.78 1.17 � 0.01 1.01

HARV 0.75 0.48 0.00 1.04

KONZ 0.54 0.60 0.00 1.13

AGRO 0.94 0.50 0.00 1.00

All sites 0.90 0.77 0.00 1.01
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(8/49). At HARV, the only significant mapping error was

deciduous broadleaf forest being mapped as mixed forest (8/

60). There was a tendency to map open shrubland as

grassland (10/56) at KONZ and for savanna to be mapped

as open shrubland (4/6) or woody savanna (2/6). No

significant mapping errors occurred at AGRO. In general,

cover mapping errors were well balanced.
Fig. 6. MODIS land cover maps for the four study sites (upper left, NOBS; upper

parallelogram-shaped boxes that define the study sites in ISIN projection.
3.2. BigFoot LAI

At each site, mapped LAI patterns generally followed

patterns of land cover across the site (Fig. 4; compare with

Fig. 3). Predicted (from cross-validation) versus observed

(from field measurements) LAI indicated a high degree of

correspondence between field-based measures and remotely

sensed predictions of LAI (Fig. 5). This is true both at the

site level and across sites (Table 6). In all cases, there was

essentially no bias in the predictions and the variance ratio

was near 1.0, suggesting preservation of observed variance

in the predictions.

3.3. BigFoot–MODIS comparisons: land cover

Direct comparisons of BigFoot (reprojected from Fig. 3)

and MODIS (Fig. 6) land cover maps for 2000 revealed

several important distinctions and similarities. One obvious
right, HARV; lower left, KONZ; lower right, AGRO). Also shown are the
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difference was associated with image/map resolution. Big-

Foot maps, being based on Landsat ETM+ data, captured

much of the spatial complexity of land cover at the sites. In

contrast, the relatively coarse resolution of MOD12Q1 did

not allow for that level of spatial detail. This difference was

most striking at NOBS, the most spatially complex site.

However, this observation was relevant at the simplest site,

AGRO, where finer detail of individual fields, roads, and

water courses was absent. Another difference, specific to

NOBS, was an apparent overprediction of tree cover per-

centage relative to BigFoot. For 2000, MOD12Q1 suggested

this site was largely an evergreen needleleaf forest, whereas

BigFoot mapped the site largely as open shrubland, woody

savanna, and savanna (Fig. 7). There was little change at this

site between 2000 and 2001 according to the BigFoot

analysis, whereas the MODIS product contained a greater

proportion of evergreen needleleaf forest. At HARV, a closed

forest system, MOD12Q1 and BigFoot agreed in 2000 over a

substantial portion of the landscape that the predominant

cover types were deciduous broadleaf and mixed forest. For

2001, the MODIS product contained less mixed forest and

more deciduous broadleaf, whereas the BigFoot map indi-

cated the site had not substantively changed. At KONZ,

which BigFoot mapped largely as grassland, punctuated by

deciduous broadleaf forest and open shrubland in both years,

MOD12Q1 also mapped the area largely as grassland both
Fig. 7. Relative proportions of land cover types at each site in 2000 and 2001, as m

cells that were completely filled by ETM+ maps over the 7� 7 km area of each
years. However, MOD12Q1 had more of the area mapped as

cropland than did BigFoot, particularly in 2001. There was

excellent agreement between the two maps at AGRO, where

most of the area was mapped as cropland in 2000.

3.4. BigFoot–MODIS comparisons: LAI

For 2000, BigFoot and MOD15A2 LAI products were

not directly compared. However, placing both 2000 and

2001 BigFoot map data on the graphs containing the

MOD15A2 LAI trajectories for 2001 (Fig. 8) provided

some meaningful insights into the behavior of MOD15A2

Collection 3 provisional products. In 2000/2001, NOBS

was a boreal forest ecosystem consisting largely of black

spruce forests of varying density (i.e., savanna, woody

savanna, and evergreen needleleaf forest). As such, LAI

was fairly stable at this site throughout the growing season.

That there was such distinct seasonality in the MOD15A2

LAI trajectory for this site in 2001 is likely due to several

factors. The most important influence is from changes in

surface reflectance: in the winter, ground cover consists

largely of snow and ice; these are replaced by extensive

moss cover in the summer. Also, during the growing

season, MOD15A2 LAI was not stable. Maximum, site-

level mean LAI occurred in early July (Day 185, Table 7),

at a value of 5.4, but this declined fairly steadily from that
apped by BigFoot (except AGRO 2001) and MODIS. Only those MODIS

site are included. See Table 2 for class names.



Fig. 8. MOD15A2 2001 LAI trajectories for each site. Means and one standard deviation are shown in brown. Only those MODIS estimates for Quality Flags 0

and 4 are shown. Missing data are a function of cloudiness and MODIS sensor problems. BigFoot data are in red (2000) and blue (2001). For 2001 at NOBS,

data are not shown as they are the same as for 2000. See Table 7 for the date equivalents of the bin numbers shown on the x-axis.
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point on. Much of this instability was likely due to sun-

angle effects on reflectance at this high-latitude site. Big-

Foot LAI was estimated from allometric equations, with a

mean field-measured value of 4.0 (Table 8). Five percent of

NOBS was unvegetated (i.e., water, barren, urban/built) and

10% was mostly nontree wetland (11%) (Fig. 7). As

MODIS data contain these areas as well as the more

vegetated forest classes, the most directly relevant BigFoot

data were the ETM+ LAI products. Across the 7� 7 km

mapped area coincident with the MODIS products, mean

LAI was 2.8 for both 2000 and 2001 (Fig. 8). At HARV, the

shape of the seasonal trajectory can largely be explained by

vegetation dynamics, as this site was dominated by decid-

uous broadleaf trees. During the peak of the growing season

from May through September, the MODIS product indicat-

ed a mean LAI of about 6.1. The field measurements at

vegetated plots in 2000 and 2001, respectively, yielded an

average LAI of 5.0 and 5.5 (Table 8). Inclusion of non-

vegetated areas yielded a mean LAI of 4.3 across the site in

2000 and 4.9 in 2001 (Fig. 8).

Overall, the shapes of the seasonal trajectories of

MOD15A2 at KONZ and AGRO follow expected trajecto-

ries for grassland and intensive agriculture (Fig. 8). How-

ever, the MODIS product indicated values of between 4.0

and 6.0 during the 2001 growing season at KONZ (Fig. 8),

whereas BigFoot field measurements from 2000 indicate
that the vegetated plots had LAI values of 2.0 at KONZ at

two separate times during the 2000 growing season and 2.9

during the midpoint of the 2001 growing season (Table 8).

With minimal nonvegetated areas at this site, the ETM+

map values and the field-measured values were similar (Fig.

8). At AGRO, MODIS 2001 LAI values were in excess of

6.0 throughout the peak of the growing season. BigFoot

2000 field measurements averaged between 2.5 and 3.6

during the most active growing period. ETM+ maps values

were similar to those of the field values at this intensively

cropped site. Note that the standard deviations shown in Fig.

8 are always higher for the BigFoot products than for the

MODIS products. This is largely due to the grain size

differences of the two products.

From the MODIS provisional Collection 4 LAI products

we evaluated, it is clear that Collection 4 is different than

Collection 3. Most importantly, the Quality Flag definitions

are quite different, with ‘‘best’’ retrievals coming from either

the main or backup algorithm in Collection 3, whereas in

Collection 4, only main algorithm retrievals were labeled as

best. Of the 245 possible number of LAI retrievals (5 date-

bins� 49 1-km pixels) per site, Collection 3 data contained

as low as 195 (KONZ), and as high as 236 (NOBS), best

retrievals, for an average rate of 91% (Table 9). In contrast,

Collection 4 best retrievals ranged from 1 (HARV) to 45

(NOBS), with an average retrieval rate of 12%. The mean



Table 7

Date equivalents for bin numbers in Figs. 8 and 9

Bin Date in 2001

1 1-Jan

9 9-Jan

17 17-Jan

25 25-Jan

33 2-Feb

41 10-Feb

49 18-Feb

57 26-Feb

65 6-Mar

73 14-Mar

81 22-Mar

89 30-Mar

97 7-Apr

105 15-Apr

113 23-Apr

121 1-May

129 9-May

137 17-May

145 25-May

153 2-Jun

161 10-Jun

169 18-Jun

177 26-Jun

185 4-Jul

193 12-Jul

201 20-Jul

209 28-Jul

217 5-Aug

225 13-Aug

233 21-Aug

241 29-Aug

249 6-Sep

257 14-Sep

265 22-Sep

273 30-Sep

281 8-Oct

289 16-Oct

297 24-Oct

305 1-Nov

313 9-Nov

321 17-Nov

329 25-Nov

337 3-Dec

345 11-Dec

353 19-Dec

361 27-Dec

Table 8

Mean and standard deviation of LAI field measurements

Site Year Date Mean S.D.

NOBS 1999 May–September 4.03 1.75

HARV 2000 June 5.08 0.85

August 4.99 0.67

2001 July 5.54 0.81

KONZ 2000 June 1.96 0.62

August 2.02 0.81

2001 July 2.90 0.85

AGRO 2000 July 2.47 1.50

August 3.60 0.87

Table 9

Mean LAI values for 245 MODIS predictions evaluated to compare

Collections 3 and 4, shown by quality flag group and site

Collection Quality Site

NOBS HARV KONZ AGRO

n Mean n Mean n Mean n Mean

3 Best 236 5.0 230 6.1 195 5.1 229 6.4

Other 9 5.3 15 6.1 50 5.0 16 6.1

255 Fill 0 0 0 0

4 Best 45 4.6 1 5.6 42 2.1 22 2.3

Other 200 4.5 244 6.0 199 2.1 44 3.1

255 Fill 0 0 4 179

The predictions consist of 5 date-bins by 49 pixels.
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value of the best retrievals from Collection 3 and Collection

4, respectively, for each site, were 5.0 and 4.6 (NOBS), 6.1

and 5.6 (HARV), 5.1 and 2.1 (KONZ), and 6.4 and 2.3

(AGRO).

Of the 223 non-best retrievals for Collection 4 at AGRO,

most of these (179) went into the ‘‘255 fill’’ category, which

means no prediction was made (Table 9). At NOBS, the 200

non-best retrievals went into nine other flag categories that

we labeled as ‘‘other’’ in Table 9. At HARV, the 244 non-

best went into 14 other non-best categories, and at KONZ

the 199 non-best retrievals went into 8 non-best categories

and four pixels went into the 255 fill category. The actual

descriptions of the Quality Flags in Collection 4 are not easy
to understand. For example, Quality Flag 10 is described as

not produced due to cloud, clear, and main algorithm with

best result.

By site, the mean Collection 4 LAI values for our other

category (Table 9) were 4.5 (NOBS), 6.0 (HARV), 2.1

(KONZ), and 3.1 (AGRO). Thus, for Collection 4 at NOBS,

there was little difference in mean LAI predictions between

best and other retrievals, and the overall prediction differ-

ence between Collections 3 (5.0) and 4 (4.6) was small

relative to the mean BigFoot ETM+ prediction of 2.8. At

HARV, the single best retrieval had a LAI value 0.4 lower

than the mean of other retrievals, but the overall prediction

difference between Collections 3 and 4 was negligible. At

AGRO Collection, four LAIs of the other category averaged

0.8 higher than best, with the average across categories

being 2.8. These values are a considerable improvement

over the Collection 3 predictions (having a mean in excess

of 6), in that they are close to the mean value of approx-

imately 3.0 for the ETM+ predictions at AGRO during the

same period. However, 73% of Collection 4 pixels at AGRO

consisted of fill values. Finally, at KONZ, there was no

difference in the Collection 4 prediction mean between the

best and other categories, and the combined mean had a LAI

value 0.8 below the mean ETM+ predictions of 2.9 for

2001.

3.5. MODIS reflectance and LAI

The MODIS algorithm has two main pathways: main and

backup. The main algorithm is based on radiative transfer
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theory (Myneni et al., 2002) and the backup algorithm is

semiempirical (http://cybele.bu.edu/modismisr/products/

modis/userguide.pdf). The main algorithm was designed to

utilize all reflectance bands of MODIS data, and it has been

tested using the red, near-infrared, and blue bands (Myneni

et al., 2002), but the functionality of using all bands does

not appear to have been fully exploited in Collection 3

(there is no way for us to determine if this remains true for

Collection 4). Rather, it appears that Bands 1 (red) and 2

(near-infrared) are used exclusively, with perhaps the addi-

tion of Band 3 (blue) (Myneni et al., 2002). Moreover,

according to Myneni et al. (2002), the backup algorithm is

explicitly designed to utilize only Bands 1 and 2 (i.e., the

NDVI). Interestingly, during the 2001 growing season

around the neighborhood of each of the four sites, the

backup algorithm, and thus the NDVI, was the predominant

means used to estimate LAI in Collection 3 (Fig. 9). It is

well known that the NDVI saturates, or is asymptotic with

respect to LAI at relatively low values of LAI across

numerous vegetation types (e.g., Chen & Cihlar, 1996;

Turner et al., 1999). With respect to MOD15A2, this is

referred to as the ‘‘saturation domain’’ (Myneni et al., 2002).

Using the ETM+ data from each BigFoot plot in conjunc-

tion with the 2000 field measurements, we see that, in fact,

there was essentially no sensitivity of NDVI to LAI across

the full range of LAI values at each site (Fig. 10). In

contrast, when other bands were used (Table 10), particu-

larly those in the shortwave-infrared region, at NOBS and

KONZ, there was a nearly linear spectral response to
Fig. 9. MODIS LAI algorithm path (main, backup) usage by composite period for

for Quality Flags 0 and 4 are shown. See Table 7 for the date equivalents of the
changes in LAI across the measured ranges. At HARV,

there was only a slightly improved response using the fuller

spectral depth of ETM+. It is important to note that the

BigFoot LAI maps were not produced using a single

spectral relationship with LAI, as shown here, but using

class-specific relationships where possible (Table 3; Cohen

et al., 2003), which significantly improved the ability to

accurately estimate LAI from ETM+.

That ETM+ data exhibit definite linear relationships with

LAI does not suggest that MODIS data would likewise

exhibit such relationships if greater spectral range than that

offered by the NDVI were used. This is because MODIS

data have significantly larger grain size (250–1000 m),

which can be expected to lower overall spatial variance

(Woodcock & Strahler, 1987; Cohen, Spies, & Bradshaw,

1990) and thus, perhaps, spectral sensitivity to LAI regard-

less of specific spectral ranges used. Furthermore, at larger

grain sizes, there is less likelihood that class-specific rela-

tionships are practical. Examining MODIS-derived NDVI

for the three sites in relation to LAI derived from spatially

aggregated, fine-grained BigFoot ETM+ LAI maps, we see

that there were again no meaningful relationships (Fig. 10).

In contrast, when additional spectral ranges of MODIS data

were used, there were still strong, meaningful relationships

with LAI at NOBS and KONZ. Moreover, the relationship

at HARV was actually improved over that of the finer-

grained data. At 1000 m, not only was there still no

relationship between MODIS NDVI and LAI, but for all

three sites, the strength of relationships actually improved
2001 over 10,000 km2 surrounding each site. Only those MODIS estimates

bin numbers shown on the x-axis.

 http:\\cybele.bu.edu\modismisr\products\modis\userguide.pdf 


Fig. 10. NDVI and CCA indices as a function of sensor and spatial resolution for NOBS, HARV, and KONZ. Top row is Landsat ETM+ data resampled to 25 m to match field plot size; middle and bottom rows are

MODIS data at two spatial resolutions.
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Table 10

Correlation coefficients for LAI with ETM+ and MODIS bands, NDVI, and the CCA index

ETM+ band 1 2 3 4 5 7

Wavelengths (nm) 450–520 520–600 630–690 760–900 1550–1750 2080–2350 NDVI CCA

NOBS 25 m � 0.66 � 0.62 � 0.66 � 0.49 � 0.64 � 0.69 0.45 � 0.74

HARV 25 m � 0.09 0.05 0.00 � 0.04 0.03 � 0.27 � 0.14 � 0.27

KONZ 25 m � 0.13 � 0.04 � 0.02 0.14 � 0.1 � 0.29 0.07 0.53

MODIS band 3 4 1 2 5 6 7

Wavelengths (nm) 459–479 545–565 620–670 841–876 1230–1250 1628–1652 2105–2155 NDVI CCA

NOBS 500 m � 0.23 � 0.40 � 0.36 � 0.38 � 0.44 � 0.48 � 0.46 0.10 � 0.54

HARV 500 m � 0.49 � 0.38 � 0.15 � 0.01 � 0.19 � 0.43 � 0.44 0.14 � 0.63

KONZ 500 m � 0.30 � 0.34 � 0.41 0.17 � 0.09 � 0.49 � 0.22 0.39 0.52

NOBS 1000 m � 0.20 � 0.40 � 0.25 � 0.54 � 0.57 � 0.52 � 0.51 � 0.21 � 0.61

HARV 1000 m � 0.74 � 0.60 � 0.35 � 0.18 � 0.24 � 0.60 � 0.65 0.28 � 0.85

KONZ 1000 m � 0.24 � 0.36 � 0.37 0.04 � 0.28 � 0.50 � 0.16 0.32 � 0.65

Bold text indicates bands that were included in the CCA index. Bands are listed in order of wavelength range.
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over those of the fine-grained and 500-m relationships when

more MODIS bands were used. Most noticeable was the

improvement at HARV.

Table 10 gives Pearson’s product-moment correlation

coefficients for the relationships between LAI and reflectance

for all ETM+ and MODIS bands used to develop Fig. 10.

Correlations varied from an absolute value of zero to 0.74.

For the ETM+ data, the most strongly correlated band for all

sites was Band 7, in the shortwave-infrared region. For

NOBS, all other bands, except Band 4, were nearly equally

correlated with LAI as was Band 7. All bands were negatively

correlated with LAI, such that the NDVI was less effective

than any of the bands individually. The CCA index, which

incorporated Bands 1, 5, and 7, was more highly correlated

than any of the individual bands. At HARV, both Bands 1 and

7 were included in the CCA index, although the index was no

more strongly correlated with LAI than was Band 7. At

KONZ, where all bands were included in the CCA index,

its correlation with LAI was significantly greater than the

correlation with Band 7 alone. For both HARV and KONZ,

the NDVI was significantly less correlated with LAI than

were both Band 7 and the CCA index.

At 500-m resolution, the three shortwave-infrared bands

of MODIS (5, 6, and 7) were the most highly correlated

with LAI at NOBS, although all other bands except 3 (in the

blue) were nearly equally correlated (Table 10). At HARV,

MODIS Bands 6 and 7, along with Band 3, were the most

strongly correlated with LAI, whereas at KONZ, Bands 6

and 1 (red) were most highly correlated. At NOBS and

HARV, all bands were incorporated into the CCA index, and

that index was the most highly correlated spectral variable.

The same is true at KONZ, except that only Band 2 (near-

infrared) was included with the shortwave-infrared bands in

the CCA index. The NDVI was only weakly correlated with

LAI at all three sites. At 1000-m resolution, we saw the

same general results as at 500 m, with the CCA indices

being the most strongly related to LAI and the shortwave-

infrared being among the most important spectral bands
contributing to that strength. Again, the NDVI was only

weakly correlated to LAI.
4. Discussion and conclusions

4.1. BigFoot approach to validation

Validation of MODIS products related to the terrestrial

carbon cycle requires an integrated approach based on field

measurements (including those made by flux towers), re-

mote sensing, and models. As MODIS products are global,

their validation should also be global. For this, it is useful to

stratify the biosphere by major biome type and focus at least

one validation effort in each biome. BigFoot is only one of

the numerous validation efforts that considers the problem

in this way, and for several biomes, there are numerous

validation efforts (Morisette et al., 2002). However, not all

validation projects will come to the same conclusions about

specific MODIS products. This is because of variations in

approaches to validation; such things as field sampling

design and measurement methods, uniqueness of specific

studies sites, types of remote sensing datasets and their

analyses, specific types of extrapolation models and con-

ceptual frameworks for integration, and researcher biases

are often quite different. The approach taken by BigFoot has

been to work over an area at a given site that is large enough

to enable validation in terms of multiple MODIS cells (>25),

to sample each site with field measurements in a way that

captures the ecological variability at each site, to use Land-

sat ETM+ data to develop accurate surfaces (or maps) of

measured variables at a grain size commensurate with the

measurements, to drive spatially explicit ecosystem process

models that capture carbon dynamics using those ETM+

surfaces, to characterize the errors in the fine-grained

surfaces, and then to compare these surfaces with those of

a similar thematic content derived by MODIS data and

algorithms.
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For land cover and LAI, our remote sensing methods

were empirical; our goal being to derive surfaces that would

extrapolate observations in a way that would achieve

relatively high accuracy and that would provide balanced

errors. Given the number of land cover classes to map at

several of our sites, that we accomplished overall accuracies

in excess of 80% (88% across sites) is quite good relative to

what can be expected based on the published literature. We

attribute this to working over areas on the ground that could

be extensively characterized in the field, coupled with

simple, but effective statistical approaches and, where

needed, hand editing. Many of the IGBP classes are based

on percent tree cover, and where in some cases we over-

estimated tree cover, in others we underestimated cover. For

mapping LAI, our desire to balance errors of overprediction

with errors of underprediction across observed ranges at

each site caused us to explore new approaches to mapping

continuous biophysical variables (Cohen et al., 2003).

Stratification by major cover type, RMA modeling, and

use of multiple spectral variables from multitemporal data

series enabled us to predict LAI nearly nonasymptotically

across a range of near zero to 10 with an overall 0.90

correlation coefficient of predicted versus observed and low

standard errors of estimate.

Having fine-grained maps of land cover and LAI that

were well-georeferenced gave us the flexibility to match

these maps with MODIS data and products rather precisely,

given that MODIS data were also well-georeferenced. This

meant that we could do meaningful comparisons (i.e.,

validation) over the same nearly exact 49-km2 areas on

the ground. Moreover, by extending our analysis beyond the

MODIS LAI product, we were able to use our LAI maps as

reference for an examination of MODIS spectral properties

in relation to LAI to determine that the MODIS data

themselves are well correlated with LAI at spatial resolu-

tions up to 1 km.

4.2. MODIS land cover product quality

MODIS land cover products exist in several variants

(Friedl et al., 2002). We choose to validate the IGBP variant,

as it is expected to be the most widely used. The IGBP

product has 1-km spatial resolution and was generated using

an empirical, supervised classification strategy that relies on

a global database of training sites that were interpreted for

land cover class by examining high-resolution imagery and

ancillary data. The training database, STEP (Muchoney,

Strahler, Hodges, & LoCastro, 1999), is geographically

comprehensive and contained 1373 sites (Friedl et al.,

2002) with numerous examples, capturing variation within

each land cover class. Most of the land cover interpretations

were based on Landsat data and expert knowledge. Inputs to

the algorithm include seven MODIS reflectance bands

(specifically the NBAR product described by Schaaf et al.,

2002) and the EVI product (Huete et al., 2002). The

algorithm is designed to be most effective using a full year
of MODIS data. Although this requirement was satisfied for

the 2001 product, the 2000 product was based on only one-

half year of data. The algorithm itself is a univariate

decision tree that incorporates boosting, or voting, which

minimizes sensitivity to noise in the spectral data (Friedl et

al., 2002). To assess the quality of the product, Friedl et al.

use a form of cross-validation that is associated with

boosting.

Early results of ‘‘in-house’’ validation suggest that the

2000 provisional product is realistic and that the algorithm

performed well at the global scale (Friedl et al., 2002). The

quality of the product appears to decrease at increasing

latitudes because of missing data and low sun angles and

there was excessive confusion between natural and agricul-

tural vegetation throughout. BigFoot results corroborated

this assessment. For 2000, the land cover class distributions

at HARV, KONZ, and AGRO were quite similar for MODIS

and BigFoot products. At NOBS, however, which is a high-

latitude site, there was considerable misclassification in the

MODIS product. Although the site was mostly classified by

MODIS as a ‘‘treed’’ or ‘‘forest-like’’ site, the misclassifi-

cation was associated with an overprediction of evergreen

needleleaf cover, forcing savanna and woody savanna to be

classified as ‘‘closed canopy’’ forest. At KONZ and AGRO,

the problem with misclassification of agricultural cropland

was evident in that there was some overestimation of

cropland at these sites. But overall, cropland estimates were

similar for the two products.

The MODIS land cover product for 2001 was based on

12 months of data. As such, given the algorithm is designed

for ingest of a full year of MODIS data, we would expect

improvement in the product. Overall, the results from

comparisons with 2001 BigFoot maps were similar to those

of comparisons with 2000 BigFoot maps. However, what

we saw from our four sites was that the classifications were

trending toward more pure conditions. For example, at

NOBS, there was more evergreen needleleaf forest in

2001 than in 2000. Similarly, at HARV, whereas there was

more mixed forest in 2000, much of that has moved to the

deciduous broadleaf class. At AGRO, the site went to 100%

cropland, at the expense of the mosaic class. The exception

was KONZ, where, although the grassland class decreased

to levels closer to those of BigFoot estimates, there was an

increase in cropland at this site.

The IGBP classification scheme is not without problems.

For example, an ideal classification scheme should have a

total set of nonoverlapping classes; that is, the set should be

all encompassing and mutually exclusive. Ideally, the clas-

ses should also be quantitatively defined. For the forest

classes (1 through 5, Table 2), these standards are more or

less met. Classes 8 and 9, woody savanna and savanna,

respectively, would also appear to meet acceptable quanti-

tative definition standards. These seven classes are all

defined in terms of their woody cover components, and all

require that the woody vegetation be over 2 m in height. But

what of the shrub classes? If an area has, for example, 70%
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shrub cover and 20% or 30% tree cover, is it Class 6 (closed

shrubland) or Class 9 (savanna)? Likewise, if an area has

20% shrub cover and 40% tree cover, is it Class 7 (open

shrubland) or Class 8 (woody savanna)? Other such exam-

ples are relatively easy to find using these classes alone. But

what of Class 13 (urban/built)? Many urban/suburban areas

have extensive tree, shrub, and grass cover, and how does

one decide which class to use as a label for such areas?

Perhaps the most poorly defined class in number 11,

permanent wetland. The basic requirement is for ‘‘perma-

nent’’ water. This literally could encompass all of the classes

from 1 through 10, and how much of the total area needs to

be in that permanent water condition? Moreover, what about

the vast coastal wetland areas that are more influenced by

tidal activity, where the ‘‘permanence’’ element is brought

into question?

4.3. MODIS LAI product quality

The main MODIS LAI algorithm is designed to ingest up

to seven spectral bands and related quality information from

MODIS (Myneni et al., 2002). The algorithm outputs for

each 1-km cell are the most probable values of LAI from

lookup tables (LUTs) developed by iterative runs of a

radiative transfer model using expected distributions of

various parameters (Knyazikhin et al., 1999; Myneni et

al., 2002). The assigned value for a given MODIS cell is

the mean of the retrieved distribution. The main algorithm

can also ingest multiangle reflectance from the MISR

sensor, but appears to be quite sensitive to red and near-

infrared reflectance derived from MODIS, as it will fail to

retrieve LAI values when MODIS NDVI is higher or lower

than expected for a given biome (Myneni et al., 2002). The

main algorithm path is designed to be further limited when

additional reflectance bands or MISR data are used, such

that LUTs incorporating modeled canopy structural proper-

ties are included that further constrain the algorithm. When

the ingested spectral data fall outside the realm of expected

values (i.e., modeled values, and influenced by upstream

algorithm errors such as MODIS reflectance calibration) for

a given biome, there is no retrieval from the LUTs, and a

backup algorithm is used. This backup algorithm is based on

a regression relationship between (model-derived) LAI and

NDVI values, where a single relationship has been derived

for each of six global vegetation types, or biomes (Knyazi-

khin et al., 1999). More nonretrievals are expected with

increasing pixel (or grain) size, as biome mixtures become

more common. However, although the algorithm is sensitive

to biome misclassification, if the misclassification is of a

similar class as the ‘‘true’’ class (e.g., shrubland versus

savanna), the sensitivity is low (Myneni et al., 2002). With

so few biome classes, the likelihood of misclassification is

relatively low, but one could also expect misclassifications

to be generally more critical to the algorithm.

When vegetation densities are high, reflectance from the

vegetation is said to be in the ‘‘saturation domain’’ (Myneni
et al., 2002). In practice, this means there is less confidence

in the output value of the assigned LAI, as there is a wide

range of probable LAI values for a given spectral vector.

MISR data are expected to reduce the importance of the

saturation domain, but it is unclear how often MISR data are

used by the algorithm as this information does not appear to

be included in the quality control flags (Table 5 in Myneni et

al., 2002). Additional uncertainties for an LAI retrieval are

associated with uncertainties in input reflectance and in the

models used to generate the LUTs. Although surface reflec-

tance uncertainties are quantified (Liang et al., 2002; Ver-

mote, El Saleous, & Justice, 2002), model uncertainties are

largely unknown (Myneni et al., 2002). Collection 4 reflec-

tance data use an improved cloud and related shadow

detection algorithm, as well as incorporating improved

aerosol characterization (http://modis-land.gsfc.nasa.gov/

news/iniv_nws_pgs/c4_descrip.asp). As such, the new re-

flectance product should improve the quality of each re-

trieval by the Collection 4 LAI product. As the retrievals

from Collection 4 data we evaluated generally do have more

realistic LAI values than those in Collection 3, improved

reflectances do appear to have helped.

All of the four LAI validation examples shown by

Myneni et al. (2002) suggest that there is good agreement

between MOD15 product values and field measurements (as

well as those scaled through ETM+ and IKONOS spectral

data). Furthermore, the central conclusion of Myneni et al.

(2002) using pre-Collection 4 data is that ‘‘The presented

results indicate expected and satisfactory functionality of the

algorithm in the operational mode’’. While we do not

dispute results that were illustrated in Myneni et al.

(2002), the results of the BigFoot study presented in this

paper indicate that the conclusion that performance of the

algorithm is satisfactory may be an overgeneralization. In

Collection 3, we noted a great sensitivity of MODIS LAI

values to background reflectance at our high-latitude NOBS

site, and a strong seasonality during the active growing

season at that site that was probably associated with sun

angle. At the nonforested sites, KONZ and AGRO, LAI was

apparently overpredicted by values of up to 4 m2 m� 2

throughout the growing season. Even at HARV, where

results from MODIS and ETM+ were most alike, there

was still a difference on average of about 2 m2 m� 2.

In Collection 4, there does in fact appear to be higher

quality retrievals, particularly at KONZ and AGRO where

LAI retrievals are now very close to what BigFoot

measured in the field and mapped through ETM+. How-

ever, as noted earlier, the number of best retrievals is

significantly lower in Collection 4, and for AGRO most of

the MODIS pixels had fill values. At NOBS, there was

essentially no LAI difference in the retrievals between

Collections 3 and 4, with both remaining significantly

higher than BigFoot ETM+ estimates. At HARV, there

also was a negligible difference in retrieval values. As

such, the only major improvement we noted between

Collections 3 and 4 was at KONZ, where, rather than

 http:\\modis-land.gsfc.nasa.gov\news\iniv_nws_pgs\c4_descrip.asp 
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having mean LAI values in excess of 2 relative to ETM+

values, Collection 4 means represented an underprediction

of 0.8.

BigFoot sites, at 49 km2, are not large. One obvious

question might be: Do these results hold over larger areas?

As a simple test of this, we constructed graphs similar to

those of Fig. 8, but containing Collection 3 LAI trajectories

for 10,000-km2 areas centered on the BigFoot sites. The

resulting trajectories were nearly identical to those of the

ones based on 49 km2 except for a slightly greater variabil-

ity of values at each composite period. The large majority of

MODIS LAI values for 10,000 km2 areas centered on the

BigFoot sites throughout the growing season at each site

were from the backup NDVI-based algorithm (Fig. 9). It is

important to note here that when we stratified these large-

area predictions on the basis of main versus backup

algorithm use, the differences in the prediction values were

small (0.6 at NOBS, � 0.1 at HARV, 1.0 at KONZ, and 0.6

at AGRO, with positive values indicating higher predictions

for the backup algorithm).

There may be numerous reasons why, for Collection 3,

the main algorithm did not function as expected over the

regions around our study sites. Certainly, the algorithm’s

sensitivity to reflectance calibration is an important issue,

but with Collection 4, that problem should be less impor-

tant. Also, with Collection 4, the improved MODIS land

cover product is being used, which should minimize mis-

classification impact on the main algorithm. However,

given the low rate of LAI retrievals by the main algorithm

in Collection 4 data, problems remain. As we demonstrate

in this paper, one potentially important improvement would

be active incorporation of more MODIS bands into the

retrieval process, particularly shortwave-infrared bands.

One rather surprising result from this study is the definite

and increasing sensitivity of spectral indices as one moves

from ETM+ grain size to 1-km MODIS grain size across

multiple biome types. However, this is clearly only the case

if spectral bands outside the NDVI range are included,

particularly those in the shortwave-infrared.

4.4. Future steps for MODIS validation by BigFoot

The BigFoot project continues its work at the four sites

described here. From current and future analyses, we will be

able to characterize trends in the MODIS products in

relation to what we understand to be happening at the site

level from field visits and associated measurements, remote

sensing with ETM+, and modeling exercises. Our work will

include an evaluation of MOD17 products (i.e., gross

primary production, net photosynthesis, and net primary

production) and of the fAPAR (or FPAR, as it is otherwise

known) component of MOD15A2. We also have begun our

work at five additional sites: Arctic tundra, desert grassland,

tropical broadleaf forest, dry temperate needleleaf forest,

and an additional temperate mixed forest (similar to

HARV).
The original sample design for BigFoot fieldwork (Bur-

rows et al., 2002) was an excellent starting point for the

project, as we had no good, known way to determine the

spatial properties of the variables of interest at each of our

landscapes. Having been through the full set of field

measurements and remote sensing at each site at least once,

we have learned that the ETM+ data are very informative

with respect to those spatial properties. As a result, we now

have a new design for selection of plots for field measure-

ments that takes better advantage of spectral data to insure

sampling of nearly full distributions of vegetation conditions

at each site. This will be described in an upcoming paper.
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