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Abstract—Global maps of land cover and leaf area index (LAI)
derived from the Moderate Resolution Imaging Spectrometer
(MODIS) reflectance data are an important resource in studies
of global change, but errors in these must be characterized and
well understood. Product validation requires careful scaling from
ground and related measurements to a grain commensurate with
MODIS products. We present an updated BigFoot project protocol
for developing 25-m validation data layers over 49-km2 study
areas. Results from comparisons of MODIS and BigFoot land
cover and LAI products at nine contrasting sites are reported. In
terms of proportional coverage, MODIS and BigFoot land cover
were in close agreement at six sites. The largest differences were at
low tree cover evergreen needleleaf sites and at an Arctic tundra
site where the MODIS product overestimated woody cover pro-
portions. At low leaf biomass sites there was reasonable agreement
between MODIS and BigFoot LAI products, but there was not a
particular MODIS LAI algorithm pathway that consistently com-
pared most favorably. At high leaf biomass sites, MODIS LAI was
generally overpredicted by a significant amount. For evergreen
needleleaf sites, LAI seasonality was exaggerated by MODIS.
Our results suggest incremental improvement from Collection 3
to Collection 4 MODIS products, with some remaining problems
that need to be addressed.

Index Terms—Land cover, Landsat, leaf area index (LAI),
Moderate Resolution Imaging Spectrometer (MODIS), scaling,
validation.

I. INTRODUCTION

FOR comprehensive analyses of the Earth as a system, the
Moderate Resolution Imaging Spectrometer (MODIS)

product stream is unprecedented. Never before has there been
so concerted an effort to use satellite data for characterizing
many of the most important system states and processes, such
as land cover and cover change, albedo, surface temperature,
and productivity on a regular, global basis [1]. These products
are derived from a combination of empirical and mechanistic
models using generalized systems of equations and analysis,
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and because they are routinely updated using newly acquired
MODIS data their production is automated. Generalization and
automation are essential and beneficial design components of
the MODIS product stream, but these may come at a cost to
more localized or regional accuracy. This is important because
climate change and related effects are likely to be manifested
and interpreted at regional scales.

Given the importance of the MODIS product stream to envi-
ronmental research and to management of Earth’s resources on
a global scale, it is critical that there be a regular and ongoing
assessment of product quality. Recognizing this, the various
MODIS product teams are fully engaged in “validating” their
products. Because these teams are intimately familiar with their
products, they can normally identify gross problems that might
be associated with easy fixes. For example, the early versions
(Collections 1–3) of the leaf area index (LAI) product were
derived using a land cover map based on AVHRR data, and
the radiative transfer model on which it is based was tuned to
SeaWiFS reflectance data [2]. Consequently, a variety of prob-
lems, such as overprediction of LAI in certain vegetation types,
could be traced to use of these upstream products. As a result,
Collection 4 of the MODIS LAI product, which is based on
a MODIS land cover product and MODIS reflectance, is ex-
pected to be an improvement in overall quality [3]. Although
internal assessments of MODIS product quality are a necessary
first step in building an understanding of how the products per-
form, these are not enough. Because product teams are more
focused on the development and testing of algorithms, some
problems with the actual products may go unrecognized or
underappreciated. Moreover, no single effort will discover all
important problems.

With respect to the carbon cycle, three of the most important
MODIS products are land cover, LAI, and net primary produc-
tion (NPP) [4]. One effort that is focused on all of these is the
BigFoot project [5], where field measurements of these key bio-
physical properties are linked to Landsat data and models for the
explicit purpose of developing high-quality localized high-res-
olution map products that can be directly compared to spatially
consistent cut-outs of the MODIS products to assess MODIS
product quality (Fig. 1). Each BigFoot site has an eddy covari-
ance flux tower that measures water and carbon fluxes, over an
area roughly the size of 1 km . In BigFoot, we characterize the
greater tower footprint area (25–49 km ), hence the project’s
name.

In earlier papers, we examined the quality of MODIS Collec-
tion 3 products [6]–[9]. In this paper we examine Collection 4
LAI (MOD15A2) and land cover (MOD12Q1) products across
nine sites from Alaska and Canada to Brazil. Our objectives
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Fig. 1. BigFoot project conceptual framework.

are to assess the quality of the IGBP version of MODIS land
cover, representing the year 2001, and the full temporal series
of eight-day composite LAI products from 2000 to 2003 over
these nine sites. A companion paper by Turner et al. [10] exam-
ines the GPP product across three BigFoot sites.

II. METHODS

Detail concerning the methods used by BigFoot to assess
MODIS land cover and LAI product quality has been presented
elsewhere [6], [11]. Here we only present new detail when
relevant.

A. Study Sites

The nine sites used in this study (Table I) include the
four sites from our earlier paper [6] and five new sites. The
original sites, described more fully in [6], are Northern Old
Black Spruce (NOBS), Harvard Forest (HARV), Konza Prairie
(KONZ), and an agricultural system in Illinois (AGRO). The
five new sites include: SEVI, the Sevilleta National Wildlife
refuge in central New Mexico [12]; TUND, an arctic tundra

TABLE I
SITE INFORMATION

located near Barrow, Alaska on the Arctic Coastal Plain [13];
TAPA, the Primary Forest Tower Site in the Tapajós National
Forest, which is part of the Large Scale Biosphere-Atmosphere
Experiment in Amazonia (LBA) [14]; CHEQ, the tall tower site
of the Chequamegon Ecosystem-Atmosphere Study (ChEAS)
[15]; and METL, the Metolius tower site in Oregon that is part
of the Terrestrial Ecosystem Research and Regional Analysis
Project [16], [17]. SEVI is a desert grassland consisting largely
of perennial bunchgrasses, with small amounts of cacti and
shrubs. The site is not grazed by cattle, but is frequently burned.



COHEN et al.: MODIS LAND COVER AND LAI COLLECTION 4 PRODUCT QUALITY 1845

TABLE II
LAI FIELD MEASUREMENT INFORMATION

TUND is low-stature coastal tundra vegetation with large areas
of wetland and open water. CHEQ consists of mixed northern
hardwoods, aspen, lowlands, and wetlands. Much of the area
was logged about 100 years ago, but has since been reforested.
METL is a temperate coniferous forest site with areas of grass-
land and shrubland. Portions of this site have been disturbed
by harvesting and wildfire. TAPA is a moist tropical forest
consisting largely of evergreen broadleaf species. The site is
relatively undisturbed except by natural gap forming processes.
Topographic variability is negligible at all sites except KONZ
and HARV.

B. Field Sampling Design and Measurements

At seven of the nine sites, we established 100 plots, each
25 m 25 m, distributed around a square 25-km area where
LAI and related data were collected (Table II). At METL [17]
and CHEQ [15] there were current, existing LAI measurements
collected for other research projects that were available for use.
In all cases except TAPA, all plot locations were determined
using a real-time differential GPS, with an accuracy of 0.5 m.
Although 100 plots were established at TAPA, the spatial ac-
curacy was inadequate for all but ten due to the difficulty of
using a GPS under these dense canopies. Because our plot size
was close to the resolution of a single Landsat pixel, which was
roughly equivalent to tree canopy and gap size at this site, the
penalty for inaccurate coregistration of plots and Landsat im-
agery was high. Thus, only those ten plots were used to model
LAI. However, the mean LAI of 5.6 was relatively stable across
the 100 plots sd (Table II), such that, although not
an ideal situation, the ten plots used were sufficiently represen-
tative of the conditions over the full site. For some sites, plots
were measured multiple times. The sample design used at the
original four sites and at CHEQ was a nested spatial series [15],
[18]. That sampling scheme was revised for the other four sites,
as reported by Kennedy et al. [19].

At each plot, a set of biophysical measurements was made
[20]. Of these, only LAI is reported in this paper. At all but
METL, LAI was measured at five subplots, and measurements
were averaged to provide a single value for each 25 m 25 m
plot. At METL, plot size was 1 ha, and data along a transect

TABLE III
LANDSAT ETM+ DATA USED TO MAP LAND COVER AND LAI

within each plot were averaged to calculate a mean value for
each plot. Sampling at a given site varied by date, and methods
used varied by vegetation type (Table II), as described by Camp-
bell et al. [20]. At METL, LAI was measured optically with an
LAI-2000, as described by Law et al. [17]. See Gower et al. [21]
for a discussion of common assumptions and errors in measure-
ments of LAI.

Land cover was observed using a number of methods, de-
pending on site and data availability. At all sites, IGBP land
cover classes [6] were observed at each of the plots. This
dataset was augmented by interpretation of contemporaneous
high-resolution traditional and digital airphotos and IKONOS
imagery. At NOBS, in addition to these observations, percent
tree cover was measured at nine systematically spaced subplots
over the 100 plots using an upward-looking digital camera, as
described by Cohen et al. [11]. This enabled direct measure-
ment of tree cover percent. At the other sites, percent tree
and woody cover was quantified from the photo and IKONOS
data [6].

C. Landsat Data

1) Preprocessing: Landsat Enhanced Thematic Mapper
Plus (ETM+) imagery was used at each site to develop land
cover and LAI maps, with most maps based on multiple
image dates (Table III). All imagery was acquired at level
1G processing,1 with a cell size of 30 m, and UTM (WGS84)
projection. At seven sites (all except NOBS and TAPA), U.S.
Geological Survey digital orthophoto quadrangles were used

1http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html
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for georeferening the Landsat data. At NOBS and TAPA, a
panchromatic IKONOS image was used after it was registered
to the Earth’s surface using several global positioning system
(GPS) points collected in the field. All Landsat images were
resampled to 25-m resolution, with 10 m RMSE.

The COST absolute radiometric correction model of Chavez
[22] was applied to each image to convert digital counts to re-
flectance, as given in [6]. All ETM+ images were translated into
tasseled cap brightness, greenness, and wetness using the The-
matic Mapper (TM) reflectance factor coefficients [23], after
they were atmospherically corrected and radiometrically nor-
malized using pseudoinvariant features [11].

2) Mapping: At each site, BigFoot measurements and error
assessments were conducted on the core 25-km area that de-
fined the site around the flux tower. However, by mapping land
cover and LAI over an area that included a 1-km buffer around
the core site, we increased the number of potential MODIS cells
we could use for comparison with BigFoot maps from 25 to 49.
We felt that this modest extension of area beyond where mea-
surements were made was reasonable, as these sites are gener-
ally representative of their local biophysical environments. To
check the validity of this assumption, we visited every site and
its immediate environment and determined that there was no
substantive change in vegetation properties in the buffer rela-
tive to the core site. Additionally, we examined the reflectance
properties of the images used, and these were consistent within
and without the buffer.

a) Land cover: BigFoot land cover maps were based on
the IGBP variant of MODIS land cover products, which has
17 cover classes [6]. Where relevant, the maps were based on
the multidate stack of ETM+ band data or tasseled cap indexes
at each site (Table III). The goal was to map land cover at the
peak of the growing season for the year represented. Details of
the approach for mapping land cover and assessing accuracy
of land cover at BigFoot sites are given in [6]. We compared
25-m distributions of BigFoot land cover against 1-km MODIS
distributions.

b) LAI: As described in [6] and [11], regression analysis
was used to model the relationship between spectral data and
LAI at each site. To the extent possible, we developed separate
models for each major vegetation cover class or class group. To
map LAI across a study site, the model developed for a given
class at a given site was applied to those pixels labeled as that
class in the land cover map. Some vegetation classes existed as
small, scattered patches at a given site, e.g., the grassland class
at AGRO. As we did not sample those classes in the field, we
synthesized LAI values from the literature, as follows: water,
barren, urban/built were assigned a value of 0.0; grassland and
permanent wetland were assigned 1.0; savanna was assigned
1.5; woody savanna was assigned 2.0; and cropland and decid-
uous broadleaf forest were assigned 3.0 and 5.0, respectively.
To assess errors in the LAI maps, we used the cross-validation
procedure [11]. Additionally, predicted versus observed plots
were developed, and overall bias and variance ratios were cal-
culated. Bias was calculated as the mean of the predicted values
minus the mean of the observed values, such that a positive bias
equated to a mean overprediction, and vice versa. Variance ratio
was calculated as the standard deviation of the predicted values
divided by the standard deviation of the observed values. As

such, a ratio of greater than one meant that the prediction stan-
dard deviation was greater than the observed standard deviation,
and vice versa.

In general, the date represented by each map was the field
measurement date. However, at the coniferous forested sites
(i.e., METL and NOBS), we assumed LAI values were rela-
tively stable throughout the growing season and across years.
As such, at these sites and at TPA our mapped dates represent
the acquisition date of the Landsat image used, or the one that
was closest to the middle of the growing season if more than
one image was used. For some sites without remeasurement
dates, we updated the land cover maps for subsequent years
using change detection techniques with new Landsat images,
and then applied our existing LAI spectral models, as described
by Cohen et al. [6]. We realize that LAI values exhibit poten-
tially important temporal variability that we did not account
for and that one should account for this variability whenever
possible.

3) BigFoot-MODIS Comparisons: MODIS Collection 4
products were in the sinusoidal projection and BigFoot prod-
ucts were in UTM WGS84. To compare these, BigFoot maps
were reprojected into sinusoidal projection, permitting direct
overlay and comparison of land cover and LAI data products
at the site level [6]. Only those MODIS cells completely filled
with mapped Landsat pixels were used for comparison, with
the maximum potential number being 49. At each site, we
summarized both sets of maps to characterize proportions of
land cover classes as frequency histograms in each dataset.
For LAI we plotted the mean and standard deviation of 1-km
MODIS LAI eight-day composite data for the years 2000 to
2003. On the same graphs, mean and standard deviation of the
25-m resolution BigFoot ETM+ surfaces were plotted.

The MODIS LAI algorithm has multiple pathways, including
the main and the backup [24]. The main (or default) algorithm
pathway is based on a radiative transfer model that expects cer-
tain conditions to be met in the input variables (e.g., reflectance,
land cover). When these conditions are not met, the backup (or
empirical) algorithm pathway may be used. Also, if input re-
flectance does not meet certain threshold conditions, it may be
identified as in the “saturation domain,” in which case the esti-
mate of LAI produced is considered of suspect quality. There are
also several other conditions that lead to a variety of certainty
(or quality) levels associated with individual estimates. As such,
every MODIS LAI estimate has quality flags that describe cer-
tain characteristics of the input data and thus the quality of the
LAI prediction.

For our analysis, we have stratified the MODIS estimates into
four categories, based on quality flag information provided with
each estimate. The usable main RT category includes only those
estimates that are “OK” or “best” where the main algorithm was
used in a nonsaturated condition. Usable main RT with satura-
tion is the same, but under saturation conditions. The usable em-
pirical category includes OK and best combined, but where the
empirical algorithm was used to produce the estimate. Not us-
able includes estimates that were not flagged as OK or best or
where clouds were present or other problems were identified. To
enhance our understanding of the behavior of the MODIS algo-
rithm, we examined the usage of these categories for an area of
100 km 100 km around each study site.
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Fig. 2. BigFoot land cover (top) and LAI (bottom) maps, and IKONOS and ADAR false-color images (middle), of the nine study sites. Of the 17 IGBP classes,
a total of 14 were mapped at the sites.

III. RESULTS

A. BigFoot Surfaces

1) Land Cover: Land cover maps of the nine sites indicate
that, across sites, 14 of the 17 MODIS IGBP land cover classes

were evaluated (Fig. 2). Overall, errors rates were low ( 11%)
(Table IV), with site level errors varying between 2% and 19%
depending on vegetation complexity. Comparing the patterns
of land cover with patterns of reflectance in high-resolution
images of the sites (Fig. 2), provides additional confidence that
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TABLE IV
SITE-SPECIFIC ERROR MATRIX FOR BIGFOOT LAND COVER MAPS. GIVEN ARE NUMBERS OF OBSERVATIONS BY SITE AND COVER CLASS

Fig. 3. Observed versus predicted for the BigFoot LAI maps at the nine study
sites, from cross-validation.

the BigFoot cover maps closely follow actual land cover pattern
at the sites. For example, at METL, the denser vegetation is

TABLE V
RESULTS OF LAI MODEL CROSS-VALIDATION

mapped as closed forest ( 60% tree cover), whereas more
open forest conditions ( 60% tree cover) are mapped as woody
savanna (30% to 60% tree cover) and savanna (10% to 30%
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Fig. 4. Proportions of IGBP classes in the BigFoot and MODIS land cover maps of the nine study sites.
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tree cover). Note also that NOBS (particularly in the northern
four-fifths of the site) consists largely of woody savanna and
savanna and very little evergreen needleleaf forest. In addition
to matching the spectral patterns in the reflectance values the
BigFoot land cover maps also matched what we saw during
field visits.

Spatial patterns across the sites were highly variable. The
simplest were TAPA, SEVI, and AGRO (if soybeans and corn
are collapsed to cropland), each consisting largely of one class.
The most complex were the boreal and subboreal forest sites
NOBS and CHEQ. Small patches ( 1 km) should not resolve in
MODIS 1-km maps. This is particularly so for NOBS, CHEQ,
HARV, TUND, and KONZ. Forested sites containing small
patches of one type as part of a matrix of another type should
increase the amount the mixed forest type at the expense of the
more spatially detailed types. CHEQ, for example, had very
few 1-km or larger patches of evergreen needleleaf, embedded
largely in a matrix of deciduous broadleaf. As such, the amount
of mixed forest at 1 km is likely to be significantly larger than
that type at the grain Landsat ( 30 m).

2) LAI: Landsat-based LAI maps of the sites indicate a high
correspondence among land cover, reflectance, and LAI patterns
(Fig. 2). The lowest LAIs were found at two of the grassland
sites (TUND and SEVI) and the highest LAIs were observed
at closed forest sites, particularly TAPA and HARV. Errors in
predicted LAI overall (Fig. 3 and Table V) were relatively low
(e.g., RMSE of 0.73, with RMSE 6% of the range of predic-
tions). Among sites, RMSEs varied from 0.03 at SEVI to 1.47
at CHEQ.

B. BigFoot-MODIS Comparisons

1) Land Cover: TAPA, AGRO, and SEVI had the least
spatial complexity of IGBP vegetation classes among the sites.
The mapped proportions of cover classes at these sites were
essentially identical (TAPA and SEVI) or nearly so (AGRO) for
BigFoot and MODIS (Fig. 4). MODIS mapped KONZ as nearly
pure grassland, which was expected given the fine-grained na-
ture of patches of other vegetation classes. MODIS labeled
much of the TUND site as open shrubland, whereas BigFoot
observed (in the field and via Landsat) mostly grassland.
The difference between grassland and open shrubland can be
minimal, as, using the IGBP system, the site could consist of
90% grassland and 10% shrubland, but be still be labeled as
shrubland.

The North American forest sites were spatially complex.
HARV included several small evergreen needleleaf forest
patches and other classes that were unresolvable in the MODIS
land cover product. As a result, this site appeared to MODIS
as a deciduous broadleaf and mixed forest site, which at 1-km
grain it is. The best example of fine-grained patches not being
resolved in the MODIS product was CHEQ, within which
it had been mapped as a largely mixed forest. Again, this is
correct at 1-km grain size, because this site consists largely
of numerous, well-distributed sub-MODIS pixel size patches
of ENF and DBF. METL and NOBS were mapped largely as
woody savanna and related classes by BigFoot, but as evergreen
needleleaf forests in the MODIS product. Although these are
colloquially thought of as evergreen needleleaf forest sites, they
consisted mostly of forests that were less than 60% tree cover,

and hence are by IGBP definition not evergreen needleleaf
forest sites. Rather, in IGBP terms, they tend more toward
being savanna and woody savanna sites.

2) LAI: The MODIS LAI product can be complex to inter-
pret. One reason is that LAI estimates differ depending on algo-
rithm pathway used. Focusing first on the pathway used over the
100 km 100 km greater site area, we observed considerable
variability in pathway used over the course of the year (Fig. 5).
SEVI was the simplest site in this regard, with nearly 100% of
the LAI values assigned by the main algorithm under ideal or
near ideal conditions. The same was true for KONZ and AGRO;
however, at AGRO the dominant algorithm pathway was em-
pirical during the peak of the growing season. At HARV and
CHEQ the empirical algorithm pathway also dominated during
the growing season. Although at METL and NOBS there was
significant usage of the empirical pathway, during the growing
season the main algorithm was used predominantly. TAPA and
TUND are relatively cloudy sites, such that much of the time
during a year MODIS data were unusable for LAI mapping
within eight-day intervals. At these sites, although there was sig-
nificant use of the empirical pathway, during the growing season
the proportion of main algorithm usage increased. No MODIS
data existed for TUND prior to 2002.

Over the local site area (up to 49 km ), direct comparisons
of MODIS and BigFoot LAI maps enable an assessment of
MODIS LAI quality in relation to algorithm pathway (Fig. 6).
In both datasets, the desert grassland (SEVI) and Arctic tundra
(TUND) sites had the lowest LAIs. At SEVI, the main algorithm
pathway was used almost exclusively. At this site, precipitation
was much higher in 2002 than in 2003 and both datasets showed
a correspondingly higher LAI in 2002; see also [10]. At TUND
there was only one BigFoot observation date, but the mean LAI
predicted at that date by MODIS used the main algorithm and
was nearly equal to that of BigFoot.

KONZ is interesting in that, at the local level the empirical
algorithm pathway dominated during the growing season, in
contrast to use of the main pathway dominating over the greater
100 km 100 km area. Overall, the mean LAI values for
KONZ in the MODIS datasets were similar to those of the
BigFoot datasets. However, the seasonal dynamics for these
two datasets appeared somewhat different, and the algorithm
pathway that provided estimates that most closely matched
those of BigFoot’s was not consistent. Additionally at this
site, mean LAI across algorithm pathways near the peak of
the growing season was higher than BigFoot mean LAI by as
much as 2.0. At AGRO, for the one year that common datasets
existed, it appears that the mean in both datasets was similar at
two times during the growing season. However at both KONZ
and AGRO, because multiple algorithm pathways were used
locally during the growing, we can begin to see differences in
pathway estimates. At these sites, there appeared to be a strong
stratification of estimated values, with the main algorithm
without saturation providing the lowest estimates and the main
algorithm with saturation providing the highest. Empirical
estimates were intermediate.

At HARV and CHEQ, stratification of estimate value by
pathway was more clearly evident. At both of these sites the
main algorithm without saturation provided estimates that were
closest to BigFoot estimates, but those estimates were not stable
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over time. The mean across pathway estimates for these sites
during the growing season were between 2 and 3 higher than
those estimated by BigFoot.

At METL seasonal LAI values should be relatively stable,
varying at most by 30% of maximum (derived from [16] and
[25]). This suggests that the seasonal dynamics of the MODIS
product, which varied from roughly 1 to 4, was unrealistic at this
site. Interestingly, at this site, the empirical and saturation algo-
rithm pathways provided the lowest estimated values. At NOBS,
although seasonal dynamics of LAI exist, these are mostly as-
sociated with the understory, which in this system is commonly
a small proportion of total LAI [26]. Consequently, the varia-
tion observed in the MODIS LAI product (0 to 5) is highly un-
realistic. Moreover, like at METL, the mean product estimate
at NOBS was unstable during its growing season trajectory,
bouncing from a value of 2 to 5, for example, in neighboring date
bins. Additionally, the mean value for this site was higher than
that observed by BigFoot by as much as 2 during peak growing
season.

The MODIS LAI product for TAPA was very unstable, with
the mean generally varying between 3 and 6. The mean BigFoot
estimates for that site was around 6, which was most closely
approximated by the saturation pathway.

IV. DISCUSSION AND CONCLUSION

For validation of MODIS land cover and LAI, the Big-
Foot strategy used observations from field measurements and
high-resolution image data (e.g., IKONOS) to train statistical
models based primarily on Landsat ETM+ data. The results of
this strategy at a given site were high-quality map representa-
tions of vegetation characteristics, lending validity to their use
as a reference against which to compare MODIS land products.
Following is a synthesis of observations from this study, and
where relevant these observations are given in the context of
related studies.

A. MODIS Land Cover

Considering the inherent limitations of a 1-km dataset and use
of a less than ideal classification system, results of this study in-
dicate that the MODIS land cover product is generally accurate
across a large assortment of biomes and cover types. We know
for land cover that the 1-km MODIS product cannot resolve
small patches of vegetation that do not dominate a pixel. Given
that limitation, we noted in our earlier validation study that, at
the site level, the MODIS Collection 3 land cover product was
in close correspondence with actual land cover as depicted by
BigFoot at HARV, KONZ, and AGRO [6]. The same was true
here for Collection 4 data, and for CHEQ. At NOBS, we found
that the earlier MODIS product labeled the site primarily as an
evergreen needleleaf forest, whereas BigFoot found the site to
be a mix of open shrubland, savanna, and woody savanna. In the
Collection 4 product, we noted here the same inconsistency at
this site. A similar problem was noted at METL, another rela-
tively open evergreen needleleaf forest site. In both cases, the
problem seems to be one of strict definition versus colloqui-
alism, as the MODIS IGBP evergreen needleleaf forest class
requires the presence of greater than 60% tree cover. Our ob-
servations indicate a significantly lower canopy cover generally

exists across these two sites. At SEVI and TAPA, which are both
essentially single class sites, Collection 4 MODIS land cover
corresponded closely to BigFoot land cover. TUND is an Arctic
grassland, but was labeled by MODIS as an open shrubland.
Shrubs are known to more readily inhabit Arctic grasslands fur-
ther inland, but at this coastal site there was almost a total ab-
sence of shrubs.

No land cover classification system suits all needs [27].
The MODIS IGBP classification system, although quite useful
and generally accepted by the science community, may not be
the best system to use for MODIS products, particularly if it
continues to contain ambiguities in definitions of classes, as
described by Cohen et al. [6]. Also, like most classification
systems it is relatively inflexible. A trend toward continuous
fields/estimates [28], [29] is a viable solution to the general
inflexibility of class definitions. Also, it may be necessary to
consider a flexible system based on local characteristics. For
example, if the common reference to treed boreal ecosystems is
to call them forests, then the classification system should allow
for that, even though they may not contain tree covers in excess
of 60%.

B. MODIS LAI

When designing an LAI algorithm based on MODIS data
to produce an ongoing series of global LAI maps for use
in regional to global Earth-system process models, several
criteria are vitally important. Primary among these are that
the algorithm produce maps that are accurate at the biome or
regional level, and that it correctly respond to biome-level LAI
trajectories associated with interannual climate variability. The
algorithm should also be sensitive to meaningful perturbations
to LAI, such as from significant disturbances. Although the
MODIS LAI Collection 4 product is an improvement toward
these goals over the Collection 3 product, our results indicate
that there are still significant problems to be addressed. These
include overprediction of LAI in forested biomes, instability of
LAI trajectories during the growing season that are not related
to vegetation change, and unrealistic dormant-season LAI in
evergreen needleleaf forest sites. Given these findings, it is
important to consider the results of similar studies to facilitate
a more general understanding of MODIS LAI product quality.

In a global assessment of MODIS LAI predictions, the best
retrievals were found to be from the main algorithm without
saturation [3]. This was consistent with our findings at all but
TAPA, and to a lesser degree at KONZ, AGRO, and possibly
METL. Confirming what we found in this study, low LAI sites
(especially those in arid and semiarid regions below an LAI of
about 2) were found to be correctly mapped by MODIS [2], [30],
[31]. At KONZ, Huang et al. [32] confirmed our observations
for Collection 3 data of disagreement with field measurements,
differences between main and backup estimates, and low usage
of the main algorithm [6]. Over the greater AGRO area of largely
broadleaf crops, Tan et al. [2] confirmed our earlier findings for
Collection 3 data that usage of the empirical algorithm pathway
dominated and that there were substantive overestimations of
peak summer LAI values. Consistent with our findings, Leuning
et al. [33] and Fang and Liang [34] observed significant over-
predictions by the Collection 4 LAI product at forested sites.
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Fig. 5. Relative frequency of MODIS LAI algorithm pathway usage between 2000 and 2003 for 100 km � 100 km areas around the nine study sites.

We did not explicitly examine the accuracy of MODIS LAI
seasonal trajectories. However, others have and the results are
mixed. Privette et al. [30] found that MODIS LAI seasonality
in arid and semiarid, low LAI systems follows independent ob-
servations. However, early onset of increase in LAI with new
growth has been observed elsewhere in a similar system [31].
Acceptable representation by the MODIS LAI product of LAI
seasonality has also been noted in temperate mixed forest [35].
But like we found at NOBS, Yang et al. [3] identified spurious

seasonality in high-latitude forests. They attributed this to use
of the backup algorithm, whereas at our site the main algorithm
pathway dominated through the growing season. Tian et al. [36]
similarly noted that winter retrievals for evergreen forests in
northern latitudes were significantly underestimated by the Col-
lection 4 product.

Huang et al. [32] state that the LAI algorithm anomalies noted
in the greater KONZ area are resolved and no longer a problem
for the Collection 4 algorithm. Although for the greater land-
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Fig. 5. (Continued). Relative frequency of MODIS LAI algorithm pathway usage between 2000 and 2003 for 100 km� 100 km areas around the nine study sites.

scape around KONZ, there is a definite and substantive increase
in the use of the main algorithm, much of that landscape is dif-

ferent from the grassland preserve itself. Additionally, for that
area we found that the backup algorithm was used predomi-
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Fig. 6. MODIS LAI estimates by algorithm pathway and across pathways between 2000 and 2003 for the 7 km � 7 km areas of the nine study sites. See [6] for
a description of why BigFoot LAI values in this figure and Table II are different.

nantly during the growing season, and that for the grassland area
itself, the backup algorithm may more accurately estimate LAI
during the peak of the growing season. This may have, as of
yet, unknown implications for vast areas of grassland around
the globe.

For the greater AGRO area, Tan et al. [2] claim that the prob-
lems identified in Collection 3 have been addressed and that
there is now a better fit of the MODIS predictions with obser-
vations by BigFoot. Our results suggest that Collection 4 esti-

mate quality around the AGRO site is definitely improved rela-
tive to Collection 3, but that peak growing season estimates are
still derived from the empirical backup algorithm, not the main
algorithm.

Tan et al. [2] state that estimates from the backup algorithm
should be used with extreme caution, and as demonstrated in
this study, algorithm pathway can have a profound impact on
the quality of the MODIS LAI product. Thus, the product user
must pay close attention to the quality flags associated with the
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Fig. 6. (Continued). MODIS LAI estimates by algorithm pathway and across pathways between 2000 and 2003 for the 7 km� 7 km areas of the nine study sites.
See [6] for a description of why BigFoot LAI values in this figure and Table II are different.
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specific dataset they are using. Moreover, users of the current
MODIS LAI product need to understand that they cannot use
the data without careful consideration of product quality and
implications of inaccuracies in the product for their models.

Ideally, the main algorithm pathway should be used most of
the time when estimating LAI within a given region or biome. In
a study by Yang et al. [3], it was found globally that the main al-
gorithm was used 50% of the time for the Collection 3 product,
but that for Collection 4 the main algorithm was used 70% of
the time. This improvement globally is important, but our results
indicate that, on a more regional level, there may still be prob-
lems. For four of the nine BigFoot sites (HARV, CHEQ, TAPA,
and AGRO), the backup algorithm was used at least 50% of the
time during much of the growing season, and nearly exclusively
at TUND and NOBS during the dormant season.

MODIS LAI and fPAR products are very closely related [22].
As both of these are used in the MODIS GPP/NPP algorithm
[37], the errors in the LAI and fPAR estimates may propagate
into the GPP and NPP products. Turner et al. [10] discuss this
more thoroughly.

LAI products from MODIS and other satellite-borne sensors
are also intended for use in initializing LAI in the atmos-
phere–biosphere exchange component of general circulation
models [38]. In that case, errors in the MODIS LAI products
would potentially propagate into the water and energy balance
of the climate model. Also, satellite-based LAI products have
potential for use in validating the LAI outputs in prognostic
carbon cycle models, i.e., those that generate their own LAI
based on local climate and soil properties [39]. Uncertainty in
the MODIS LAI products would limit the degree to which they
could serve as reference values.
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