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Substantial research seeks to improve estimates of eco- meaningful evaluation (or “validation” in some sense) of
simpler, globally applied models. In this article, we 1) pro-system processes and fluxes at a range of scales, notably
vide a biological framework that links ecosystem attributesfrom the stand scale (,1 km2) using ecosystem physiol-
and ecosystem carbon flux processes at a variety of scales,ogy and eddy covariance techniques, to the landscape
and summarizes the state of knowledge and models in(,102 km2) and global (108 km2) scales using a variety of
these areas, 2) describe the need for developing NPP sur-modeling and data acquisition approaches. One approach
faces at a local landscape scale as a means of validatinguses remotely sensed ecosystem properties in the scaling
global models, in particular the MODIS NPP product, 3)process. This approach combines digital maps of key eco-
describe the approach of the BigFoot project to performingsystem properties such as land cover type, leaf area in-
such a validation exercise for a series of sites in Northdex, and/or canopy chemistry with quantitative models of
America, and 4) present an example using one such modelbiological processes based on these ecosystem properties.
(PnET-II) across diverse vegetation types in a heteroge-Constraints on parametrizing models for global scale ap-
neous landscape in central North America. Elsevierplications mean that relatively simple algorithms must be
Science Inc., 1999used which are based almost exclusively on satellite-de-

rived inputs, for example, the planned Earth Observation
System (EOS)-MODIS Land Science Team model output.

INTRODUCTION AND OBJECTIVESPresently, there are limited ways of validating these out-
OF THE BigFoot PROJECTputs. At the landscape scale, the opportunity exists to

combine remote sensing data with spatially distributed, Major uncertainties remain in measuring and modeling
process-based biogeochemistry models to examine varia- local, regional and global patterns of net carbon (C) ex-
tion in ecosystem processes such as NPP as a function of change between the terrestrial biosphere and the atmo-
land cover type, canopy attributes, and/or location along sphere (Wofsy et al., 1993; Schimel, 1995; Aber et al.,
environmental gradients. These process models can be 1996; Baldocchi et al., 1996). Because of the broad spa-
validated against direct measurements made with eddy tial extents associated with regional- to global-scale ef-
covariance flux towers and ground-based NPP sampling. forts at modeling C flux, satellite remote sensing has of-
Once run and validated over local landscapes, these fine ten been employed to initialize, drive, or validate models.
scale models may provide our best opportunity to provide Considerable progress has been made in linking satellite

imagery, derived products, and process-based net carbon
exchange models at a variety of spatial scales; however,
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Table 1. Background Information on Initial BigFoot Study Sites

Representative
Net Primary ProductionRepresentative

Leaf Area Index Above ground Total
Site Location Major Cover Type (m2 m22) (MgC ha21) (MgC ha21)

BOREAS Thompson, Manitoba, Canada Black spruce 4.2 1.2 2.2
Harvard Forest Harvard Forest, MA Mixed hardwood/conifer 4.7 4.0 7.0
Konza Prairie Riley Co., KS Tallgrass prairie 2.9 2.1 3.3
Reifsteck Farm Urbana, IL Corn/soybean 3.0 10.3 12.1

is, grids on the order of 50–250 km on a side (Esser, 1987; BigFoot will use four or more sites covering a range
of ecosystem types in North America including borealMellilo et al., 1993). More recently, global scale modeling

of NPP at the 1 km2 resolution has been discussed (e.g., and temperate forest, grassland, and crops (Table 1). At
each site, process-based biogeochemistry models will bePrince and Goward, 1995) and is now planned in associa-

tion with NASA’s EOS Moderate Resolution Imaging validated in the short-term against eddy covariance tower
flux data and in the long-term against ground-based NPPSpectrometer (MODIS) Land Discipline Group (MOD-

LAND). Planned to begin in 1999, MODLAND will es- data. These models will them be run in a spatially-dis-
tributed mode over a 2500 ha area and results will betimate NPP using a light use efficiency approach with

data from the MODIS sensor (see Running et al., 1999, compared to contemporaneous NPP estimates from
MODLAND (Justice et al., 1998; Running et al., 1999,this issue). This approach uses estimates of the absorbed

photosynthetically active radiation (APAR) along with this issue). In this article the spatially distributed model-
ing aspects of the BigFoot project are described in rela-biome-specific efficiency factors (g C MJ21) derived from

the process-based BIOME-BGC model (Running et al., tion to what is available (i.e., state-of-the-art) in terms of
data, measurements, tools, and approaches, and to what1994a; Justice et al., 1998). Both prior global model out-

put (at much coarser resolution) and the planned MOD- constitutes validation of global-scale estimates such as
MODLAND EOS products. As an example of the mod-LAND studies have potential scale-related spatial prob-

lems, and both the model output and the extent of such eling approach, results are described from the applica-
tion of one process-oriented model for estimation ofproblems are difficult to validate and/or evaluate in

meaningful ways. NPP in a heterogeneous landscape at Cedar Creek, Min-
nesota, USA.Considering the wide range of approaches to model-

ing NPP, it is evident that the choices of grain size and
model structure, although often selected for practical AVAILABLE DATA AND APPROACHESreasons, may seriously affect the accuracy of modeled FROM REMOTE SENSINGNPP data. Multiple land cover types often exist even
within a 1 km cell, and can have variable leaf area index Most models of NPP or net ecosystem exchange (NEE)

are underlain by certain relatively simple biological prin-(LAI), canopy chemistries, phenology, leaf structure, and
production efficiencies. The degree to which an incon- ciples, regardless of the way these are manifested in

model calculations. Total annual carbon input to an eco-gruency of vegetation patch size and model resolution is
important for modeling NPP likely depends on how dif- system (annual gross primary production) is in fact a

product of the size of the canopy (e.g., number of leaves3ferent the various observed vegetation patches within a
1 km cell are in terms of NPP, on the proportional distri- their size) multiplied by the average photosynthetic rate

(e.g., productivity per unit leaf mass or area) during thebution of patch types within the cell, and equally, on the
degree of nonlinearity associated with the scaling of NPP proportion of the day and year when significantly greater

than zero photosynthesis can occur. Clearly, accurate es-to key ecosystem attributes.
Only limited attempts have been made at validating timates of canopy properties and functioning as influ-

enced by climate and local resource heterogeneity aremodel-based C flux estimates even at a relatively modest
landscape scale, such as 104 ha (Milner et al., 1996), let needed in broad scale modeling efforts. Input variables

relevant to canopy processes that can plausibly be de-alone at larger scales (McNulty et al., 1994). There is of-
ten a fundamental mismatch in scale between the plot rived from satellite imagery include land cover type (as

influenced by natural factors as well as human use), leafsize of ground-based measurements of carbon flux and
the size of the grid cells in large scale modeling efforts. area index (LAI, the projected surface area of plant fo-

liage), the fraction of incoming photosynthetically activeThus, stand-to-landscape scale estimates of net carbon
cycling and NPP must be developed and validated which radiation that is absorbed by the canopy (FAPAR), and

other leaf structural and chemical attributes such as spe-can then be compared to, and used to validate estimates
made at larger, coarser, scales. That is the primary goal cific leaf area (SLA) and %N.

Land cover type is important because canopy prop-of the BigFoot Project.
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erties or physiological rates often considered constants in ANPP are nonlinearly related to LAI is well understood,
models (such as LAI or maximum stomatal conductance as is why the relationships are asymptotic. In essence, as
or photosynthetic capacity) are sometimes based on as- canopies get denser, additional increases in light inter-
sumed representative values for land cover types, and ception decline toward zero; and thus both remote mea-
such values can vary widely among cover types (Reich et sures such as NDVI and SR, and biological processes
al., 1997). Satellite remote sensing has proved effective such as canopy CO2 assimilation also increase less and
for the purpose of mapping cover types using either clas- less. Several simulation approaches have been suggested
sification of multispectral data at a single point in time, that all in some fashion quantify the relative efficiency
for relatively small areas at fine spatial resolution (Bauer of a canopy of a given size at assimilating carbon out of
et al., 1994; Woodcock et al., 1994), or multitemporal the atmosphere. These approaches are based on combin-
data, for large areas at a relatively coarse spatial resolu- ing the physiological attributes of the foliage with the
tion (Loveland et al., 1991; Running et al., 1994b). The canopy size and arrangement and directly or indirectly
ability to resolve successional stages (Cohen et al., 1995), estimating the efficiency with which intercepted light is
or effects of land use change (Moran et al., 1994), as well utilized (Running et al., 1994a; Field et al., 1995; Aber
as simple biome type is an important consideration with et al., 1996; Landsberg and Waring, 1997).
respect to parametrizing C flux models. Measurements of radiation utilization efficiency (e)

Canopy N and SLA can be useful because they rep- have indicated considerable variation (see Gower et al.,
resent key leaf structural and chemical properties known 1999, this issue). There is evidently a tradeoff (among
to be related to leaf and canopy gas exchange rates (Re- species) between LAI (and especially canopy mass) and
ich et al., 1992; 1997; Gower et al., 1993; Landsberg and the production efficiency and photosynthetic physiology
Gower, 1997). Efforts to map canopy nitrogen have been of foliage (Reich et al., 1992; 1994a; Gower et al., 1993).
limited to high spectral resolution sensors such as AVRIS, Species with high LAI or canopy foliage mass tend to
and as yet results are not generalizable across sites or have low SLA and therefore low NPP per unit LAI or
biomes (Martin and Aber, 1997). Information about SLA leaf mass due to low maximum photosynthetic rates cou-
may be derivable indirectly from estimates of LAI since pled with increased shading (Reich et al., 1992) (Fig. 1).
the two variables tend to be correlated across space This biological heterogeneity is responsible in part for
within a particular biome (Pierce et al., 1994). In both the wide range of reported radiation utilization efficienc-
cases a great deal of continued research is needed before ies, which complicate the process of modeling NPP
operational retrieval from satellite imagery is feasible. based on an absorbed radiation approach (Running et al.,

LAI is desirable for C flux and NPP modeling be- 1994a; Field et al., 1995; Landsberg and Waring, 1997).
cause of its strong influence on canopy energy balance It is also likely that radiation utilization efficiency is (at
and rates of gas exchange. LAI over large areas is hy- least partially) independently a function of climate. Thus,
pothesized to be obtainable from empirical relationships although LAI and FAPAR provide substantial information,
of LAI measured in the field to spectral vegetation indi- there are complications that must be addressed.
ces (SVIs) derived from satellite image data (Begue,
1993; Spanner et al., 1994), although there are serious How Can Global Scale Modelsproblems to be overcome. At low LAI, the influence of

Dependent on Satellite Imagery Be Evaluated?reflection from uncovered ground must be accounted for
There are presently limited means for evaluating region-(van Leeuwen and Huete, 1996) and the preponderance
ally or globally applied C flux models. Comparisons to Cof evidence is that SVIs (in particular, NDVI and the
sources and sinks inferred from inverse modeling of theSR) are generally asymptotic with respect to LAI (Fass-
global C cycle, which is based on spatial and temporalnacht et al., 1997; Turner et al., 1999, this issue). Never-
variation in the atmospheric CO2 concentration (e.g., Fantheless, both empirical relationships and more complex
et al., 1998), has been used in some cases (Hunt et al.,algorithms employing radiation transfer models have
1996; Denning et al., 1996). Other attempts have in-strong potential for retrieving LAI from remote sensing
volved intermodel comparisons (VEMAP, 1995). In think-imagery over large domains. FAPAR is more linearly related
ing about how to better evaluate, or hopefully somedayto NDVI than is LAI, so that retrieval using remote sens-
validate, global-scale models, such as the MODLANDing is less problematical (Ruimy et al., 1994).
NPP algorithm, it is important to consider the strengths,The challenges of modeling C flux or NPP from LAI
weaknesses, and scales of various direct and indirect (i.e.,and deriving accurate estimates of LAI from relation-
modeling) approaches. This is so important that we willships with image SVIs have aspects in common. There
revisit the basic concepts involved in carbon flux dynam-tends to be a close relationship of NPP to LAI at rela-
ics, to define what part of the biosphere–atmosphere car-tively low LAIs; however, once a certain level of canopy
bon exchange is of interest and how we are able (or incover and LAI is reached, increasing above-ground NPP
many cases unable) to effectively measure or model(ANPP) becomes less tightly related to LAI or canopy
these fluxes.mass (Waring, 1983; Reich et al., 1992; Landsberg and

Gower, 1997). The physical basis for why NDVI, SR, and For global carbon balance considerations, net eco-
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Figure 1. Forest canopy production efficiency (ANPP per unit canopy foliage mass or LAI) in relation
to several canopy measures: (upper left) relationship between production efficiency (LAI basis) and LAI,
data from Reich (1998) plus Fassnacht and Gower (1997), log10(ANPP/LAI)50.4220.0427*LAI, r250.49,
n560; (upper right) relationship between production efficiency (foliage mass basis) and canopy foliage
mass, data from Reich (1998), log10(ANPP/canopy foliage mass)50.8420.878*log10(foliage mass), r250.75,
n5178; and (lower right) relationship between production efficiency (mass basis) and specific leaf area
on a projected basis, data from Reich et al. (1997) and Reich (1998), ANPP/canopy foliage mass5
20.0410.01776*SLA, r250.59, n554.

system exchange (NEE) of CO2 is of great interest. NEE creasing interest for monitoring of NEE (e.g., the Flux-
net and Ameriflux Networks). Measurement of ecosys-is defined as the net carbon dioxide flux to or from an

ecosystem, and integrates all ecosystem carbon sources tem scale gas fluxes integrated over the area of the tower
“footprint” (,1 km2) can provide information about theand sinks: NEE5GPP2Ra2Rh, where GPP is gross pri-

mary production (i.e., total gross photosynthesis), Ra is functioning of ecosystems, and are of potential use as
validation data for other larger scale efforts. NEE can beautotrophic respiration, and Rh is heterotrophic respira-

tion. Total net primary productivity considers only the estimated directly but the measurement requires heavily
instrumented eddy covariance flux towers, ideally locatedautotrophic part of the ecosystem (i.e., NPP5GPP2Ra)

and is of equal but different importance globally than in flat terrain and in large homogeneous patches of vege-
tation, and relies on a number of assumptions that mayNEE, given our dependence on NPP for all of our food,

fiber (wood, etc.) and many other ecological and agricul- frequently be violated. Eddy covariance-based NEE esti-
mates are thus a kind of model output although this istural services. Annual NPP can also generally be esti-

mated by: NPP5DB1tissue turnover1herbivory, where only infrequently recognized. Nonetheless, eddy covari-
ance flux towers are by far the best available directDB is the change in the autotrophic biomass pool and

tissue turnover includes above-ground litterfall and be- means of estimating NEE. Additionally, eddy covariance
data can be used to provide estimates of GPP and Rtlow-ground fine root turnover. Although these concepts

are simple, no one technique provides accurate measure- (ecosystem respiration, Ra1Rh) , but provide no means
of estimating NPP.ments of all of these carbon fluxes at even one spatial or

temporal scale, making NPP and NEE model validation The relationship of nighttime NEE (which is night-
time Ra1Rh) and nighttime temperature can be usedsurprisingly difficult.

The eddy covariance flux approach is attracting in- with daytime temperature to estimate daytime Ra1Rh,
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and hence GPP (i.e., GPP5daytime [NEE1Ra1Rh]) are considerably larger. Traditional ground-based mea-
sures of ANPP are possible for tens of individual plots,(e.g., Aber et al., 1996). However, since there is no way

of separating Ra from Rh using this technique, it is impos- each quite small (0.000025–0.0025 km2 scale is typical),
but cost and difficulty preclude measuring below-groundsible to estimate. To estimate NPP using eddy covariance

data, therefore, one must rely on modeling in order to NPP (and hence total NPP) for more than one or two
very small plots within 1 km2. Moreover, in the temper-separate Ra from Rh. Unfortunately, of all processes mod-

eled with biogeochemistry-type models, separate esti- ate zone the time scale for such measurements is effec-
tively 1 year, and the plots used to characterize any givenmates of microbial and root respiration have proved

among the most intractable. The situation becomes even 1 km2 cell will not necessarily reflect the true conditions
over the entire cell. Thus, plot-level measurements alonemore problematic if eddy flux data are used to estimate

above-ground NPP (ANPP), since there is no way of par- have substantial problems as a method for MODLAND
validation, including: a mismatch of spatial scales; an op-titioning NPP to above-ground vs. below-ground compo-

nents except by highly arbitrary modeling assumptions in posite mismatch of temporal scales; lack of representa-
tiveness of the entire landscape; and relatively low datamost cases. Thus, eddy covariance techniques by them-

selves provide us with the best available estimate of NEE replication.
Eddy covariance flux measurements provide a largerand probably the best if an indirect estimate of GPP, but

a poor means of estimating NPP or ANPP. In contrast, (but variable) footprint and a direct measure of NEE
over a wide range of temporal scales. However, as men-MODLAND or other globally applied models are likely

to be able to estimate ANPP relatively well, NPP to a tioned above, eddy covariance flux measurements do not
provide NPP estimates and the modeling required to dolesser degree, and NEE even more problematically. As

discussed below, there is also a mismatch in spatial scale so is at present far less feasible than most other types of
ecosystem modeling. Moreover, a very low number ofbetween the footprint of eddy flux measures and the size

of grid cells in most global models, and, given the costs eddy flux tower sites will ever be available at any spatial
scale. Thus, eddy covariance measurements also haveinvolved, it is unlikely that a sufficiently large eddy flux

network could ever be developed to be of much use as substantial problems as a vehicle for MODLAND valida-
tion, including 1) no direct means of estimating NPP, 2)a direct comparison for global models.

NPP, or its subcomponent ANPP, is technically sim- lack of representativeness of the entire landscape, and 3)
very low data replication.pler to measure than NEE, and thus data are available

for far more sites. However, because of the difficulty in To summarize, eddy covariance techniques provide
our best estimates of NEE whereas direct plot-level sam-accurately measuring or modeling below-ground NPP,

accurate estimates of total NPP are, perhaps surprisingly pling provides our best estimates of NPP (Gower et al.,
1999, this issue). The inadequacies with both types ofto nonspecialists, still extremely scarce (Gower et al.,

1994) and both difficult and expensive to obtain. In con- measurements, and with the related global data bases,
are indicated here not out of negativity, but in an at-trast, ANPP is considerably easier to measure than be-

low-ground (and hence total) NPP, and far more is tempt to reveal the difficulties in developing an effective
approach to evaluating global scale models. In contrast,known about ANPP than total NPP. Therefore, valida-

tion of satellite-based C flux estimates or any coarse- by validating biogeochemistry models against ground-
based NPP data and eddy covariance GPP data, and byscaled carbon balance model, especially at multiple sites,

will be more feasible if the measure initially used is then applying these spatially distributed biogeochemistry
models over a domain (25 km2) which includes multipleANPP rather than NPP or NEE. It is important to note,

however, that most measures of ANPP are likely not MODIS pixels and at a spatial resolution (25 m325 m)
which is relevant to NPP measurements, BigFoot shouldeven particularly accurate (few attempts to assess their

accuracy have been made so it is difficult to say pre- provide a basis for comparison with satellite-based global
NPP products such as MODLAND output at sites repre-cisely). Given that the approach is decidedly “low-tech”

and has been available for decades, this also may be sur- senting several of the major biomes. It is logical and
likely (but not certain) that the BigFoot output shouldprising to some readers. However, most estimates of

ANPP in either forests or herbaceous vegetation types be more accurate than the MODLAND output, and thus
it is fair to call this a validation or “validation exercise”are dependent on a number of assumptions, often involv-

ing turnover rates, which are likely violated frequently; (as one prefers). In any case the errors in the BigFoot
NPP surfaces will be well characterized by reference toand most estimates of ANPP suffer from “undersam-

pling” as well. flux tower daily time step GPP measurements and plot-
level, annual time step NPP measurements (Gower et al.,A key point here is the fundamental mismatch in

temporal and spatial scale and patchiness between global 1999, this issue) dispersed over each 25 km2 site. In the
remainder of this article we will describe how spatiallymodel outputs and direct observations. The spatial reso-

lution of the EOS MODLAND NPP products will be 1 explicit, process-based NPP models may be validated
against eddy flux and ground-based NPP data and subse-km2, and the grid cells for many globally applied models
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quently be applied at the landscape scale where in turn Nevertheless, there is significant spatial heterogeneity
relevant to carbon flux modeling induced by human landtheir output may be useful in evaluating (“validating”)

satellite-based global NPP products. use at relatively fine spatial resolutions. Several studies
have documented potential for errors in NPP estimates
associated with coarsening the spatial resolution of theMODEL SELECTION, APPLICATION, analysis (White and Running, 1994; Turner et al., 1996).AND VALIDATION FOR BigFoot Thus there will usually be a compromise between spatial
resolution and spatial domain such that alternative mod-An enormous range of complexity exists in current mod-

els that estimate NPP and related carbon cycling compo- eling approaches are required as the domain of interest
increases.nents. At the most mechanistic end of the continuum in

model complexity are hourly time step models which Given the constraints and goals of the BigFoot proj-
ect, two NPP models of intermediate complexity are be-highly disaggregate plant components and treat processes

based on fundamental physical, biochemical, and physio- ing used which have been applied broadly and validated
in at least several instances: Forest-BGC/BIOME-BGClogical principles. Input requirements are extensive and

the optimal methods for validation include eddy correla- (Hunt and Running, 1992; Running and Hunt, 1993;
Running, 1994; Hunt et al., 1996) and PnET (Aber andtion flux data and ancillary gas exchange measurements.

At the other end of the continuum are simplified radia- Federer, 1992; Aber et al., 1995; 1996). For instance,
Forest-BGC estimates of ANPP were compared to mea-tion-based approaches, as will be used by MODLAND,

in which the focus is on quantifying absorbed photosyn- sured ANPP for sites across the Oregon transect, and
PnET estimates of ANPP were originally (1992) com-thetically active radiation and applying it to an appro-

priate generalized light use efficiency factor. Several vari- pared to measured ANPP values for a variety of forested
sites. Both Forest-BGC and PnET originated as process-ants of this approach have been examined, and it has

been shown to have promise in more localized studies based forest ecosystem models, but have designs that
allow modification for other vegetation types such as(McMurtrie, 1991; Prince and Goward, 1995; Waring et

al., 1995; Landsberg and Waring, 1997). A critical prob- grasslands (see below).
The use of PnET will provide independent valueslem at the regional or global scale is accurately assigning

a light use efficiency to different vegetation types under for comparison with MODLAND output, and thus is of
critical importance in this exercise. BIOME-BGC cannotdifferent climates and seasons (Ruimy et al., 1994; Lands-

berg and Gower, 1997). Between the extremes are NPP be considered to provide independent output relative to
MODLAND products because it is used in the MOD-models in which plant structure and processes are aggre-

gated to some degree relative to the highly mechanistic LAND NPP model algorithm for estimation of epsilon
(Running et al., 1994a; Justice et al., 1998). However,models but whose input requirements are such that the

models can be still be applied in a spatially-distributed use of BIOME-BGC at the landscape scale will permit
investigation into the role of factors such as spatial reso-mode (e.g., VEMAP, 1995).

For the purposes of developing NPP surfaces for ar- lution, land cover classification scheme, and alternative
values of epsilon in the differences between the globaleas on the order of landscapes to regions, it is these

models of intermediate complexity which may hold the NPP products and the local BigFoot NPP products.
The principles underlying the canopy model ofmost promise (Running et al., 1999, this issue). The least

demanding of this class of models are those which re- PnET include fundamental physiological relationships
(and constraints on their combinations) between climate,quire only climatic driving variables (often at a monthly

time step) and vegetation type (e.g., Esser, 1987; Mellilo photosynthetic capacity, ecosystem leaf mass and area
(LAI) per ha, and leaf longevity (Reich et al., 1992;et al., 1993). These models have typically been devel-

oped for simulation of changes in NPP in response to 1994a; Gower et al., 1993). Canopy size does not usually
vary independently of foliage attributes. For instance,environmental change. Models which also require LAI

(potentially derived from remote sensing) tend to be across the diverse Oregon transect and comparing closed
canopy forests, there are strong relationships betweenmore physiologically based and have application for mon-

itoring current NPP (e.g., Running and Hunt, 1993). In LAI and leaf traits such as SLA. However, these relation-
ships can be opposite in direction, depending on whetherboth approaches, the computational requirements for the

models over an annual cycle on grids up to 105 cells are variation in properties is largely driven by climate (as
across the Oregon Transect) or by species differences.within the capabilities of contemporary workstations.

Besides problems associated with model complexity Across a strong precipitation gradient where canopies are
larger under moister conditions, leaves have higher SLAand the number of inputs, NPP modeling projects must

also address the issue of the optimal spatial resolution of (Pierce et al., 1994) because of the general relationship
of SLA to site moisture conditions (Reich et al., 1999).the analysis. Running a process-based NPP model for a

year or more at the 25 m resolution over the ,1493106 In contrast, for closed canopy forests of all kinds (in a
comparison where the majority of variance was due tokm2 terrestrial surface is not computationally feasible.



Spatial Modeling of Net Primary Production 75

forest type rather than climate), canopies can either be Modeling C flux or ANPP on a landscape scale at a
25 m grain size offers numerous challenges, even afterrelatively sparse (low LAI or canopy leaf mass) but with

highly productive leaves (high photosynthetic capacity) or estimates of land-cover class (Thomlinson et al., 1999,
this issue) and LAI (Turner et al., 1999, this issue) havedense (high LAI or canopy leaf mass) with low produc-

tivity leaves (low photosynthetic capacity) (Gower et al., been developed. Percent N, SLA, soil water-holding ca-
pacity, and climate are some of the key input variables1993; Reich et al., 1992; 1994a; 1997). As a result of

these patterns, opposite gradients of canopy production which vary spatially and/or among land-cover classes and
will need to be estimated in BigFoot across the four orefficiency (which should scale closely with radiation use

efficiency) exist: In one case (across a climate gradient) more sites. Several of the variables will be estimated as
a function of land cover class or a combination of coverproductivity per leaf increases with canopy size, and in

the other case (across forest types within closed-canopy and LAI (canopy light attenuation, foliar %N, SLA). Al-
ternative sources for initializing these variables will beforest types) productivity per leaf decreases with canopy

size. Having a better ability to quantify these relation- the field data collected in this study and existing global
scaling relationships developed for vegetation in variousships (of leaf traits to canopy traits) across all sources of

variation will be critical to continuing development of ef- biomes (Reich et al., 1992; 1995; 1997; 1998a,b; Aber
and Federer, 1992; Aber et al., 1996; Hunt et al., 1996).fective generalized models.

The canopy productivity subroutine of PnET is Climatic variables, including solar radiation, temper-
ature, precipitation, and humidity are critical inputs tobased on the differential relationship between photosyn-

thetic capacity, leaf dark respiration, and leaf nitrogen the NPP models. Each of the four planned BigFoot sites
has relevant climate data for one to several points fromfor differing plant functional types (Reich et al., 1994b;

1995; 1998a,b) and on the scaling of leaf structure and site meteorological stations. The meteorological data can
be readily interpolated across the landscape based on afunction vertically through a canopy (e.g., Ellsworth and

Reich, 1993). digital elevation model and algorithms such as MTCLM
(Running et al., 1987). The issue of juxtaposing NPPThe photosynthesis leaf N subroutine of a 1995 east-

ern deciduous forest model version of PnET was devel- measurements with time-series climate data for the same
year or interval is important because of significant in-oped from data for trees of central North America, and

the model was successful in predicting canopy net photo- terannual variation in climate evident at most of the
sites. In the case of forests, where estimates of bole pro-synthesis when compared to eddy flux data for Harvard

Forest in Massachusetts in eastern North America (Aber duction will be based on radial increment determined
from tree cores, growth is estimated over a period of 5et al., 1996). For the BigFoot application, the leaf photo-

synthesis and respiration parameters (maximum photo- or more years and the relevance of the long-term aver-
age climate is obvious. In biomes, such as a grassland,synthetic rate and basal foliar respiration rate) for PnET

will be estimated as a function of leaf %N and SLA, where annual ANPP is more closely tied to the climate
of a given year, attention to the difference between thebased on process oriented relationships that vary for dif-

ferent functional types and biomes (Reich et al., 1998a,b; year of ANPP measurements and the long-term average
climate is more important.1999), replacing more limited algorithms used earlier

(Aber et al., 1996). PnET has a relatively modest list of Validation of the GPP model component of the NPP
models to be used in BigFoot will be made by comparingrequired input variables, the most important of which

are LAI, leaf %N, canopy phenology, soil water-holding their outputs to estimates from eddy flux measurements
at each site, as done for temperate forests by Waring etcapacity, air temperature, and precipitation.

BIOME-BGC has a daily time step for key processes al. (1995) and Aber et al. (1996). One of the exercises
done in temperate forest at Harvard Forest (Aber et al.,in the hydrologic cycle (precipitation, interception, tran-

spiration, snow melt, and runoff) and carbon cycle (pho- 1996) provides a useful example. PnET was run on a
daily time step (PnET-Day) to enable close comparisontosynthesis and maintenance respiration). Transpiration

is estimated using the Penman Monteith equation and of simulated GPP to the GPP estimated with eddy flux
data. Agreement between PnET-DAY and tower data wasthus is sensitive to radiation and vapor pressure deficit.

The carbon assimilation algorithms are from the model generally very good (Fig. 2). Comparisons of monthly ag-
gregated tower data were made with model runs at de-of Farquhar et al. (1980). Maintenance respiration is de-

termined by biomass, tissue N concentration, a base rate, creasing levels of specificity. PnET was either 1) run daily
using tower weather data and averaged per month, 2) runand a Q10. Recent enhancements include an internal leaf

phenology related to air temperature, a subannual car- for 1 day using the monthly average of the tower climate
drivers (and multiplied by the number of days in thebon allocation scheme, and a decomposition module.

BIOME-BGC has been run globally at a coarse resolu- month), or 3) run for the average day of the month using
mean monthly climate data from off-site. The three aggre-tion (Hunt et al., 1996). The input requirements for

Biome-BGC are similar to PnET, with the additional gation methods produced similar results and average daily
GPP for the 4-year period ranged from 3.9 to 4.3 g Cneed for daily solar radiation (Hunt et al., 1996).
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Figure 2. Comparison of temporal pat-
terns (1991–1994) in simulated gross
carbon exchange, GCE (equivalent to
GPP in this article) predicted by the
PnET-Day model and measured using
eddy correlation at Harvard Forest.
Day 1 is 1 January 1991. From Aber et
al. (1996).

m2/d for the three aggregation methods. Such results sug- eas, and for parts of the world where little ground data
are available, will require generic models.gest that accurate predictions of monthly GPP can be ob-

tained using monthly mean data from off-site sources or
models at this eastern hardwood forest site. In coniferous

EXAMPLE OF PnET APPLIED INforests of the western United States where site water bal-
A HETEROGENEOUS LANDSCAPEance is more critical, a daily or weekly time step may be

required to adequately model GPP. PnET and BIOME-BGC were developed based on con-
Validation of the annual NPP model components cepts of upland forest ecosystem functioning, and it is

will be made at each site by comparing their output to not yet clear how easily or well those concepts can be
direct measurements of NPP (above- and below-ground) modified for application in different ecosystems. Model-
made at the flux tower and measured ANPPs made at ing in diverse landscapes may include canopies which are
25–30 other plots dispersed over the 25 km2 study area much sparser and patchier (e.g., savannas), vegetation

types that do not have woody perennial tissue (e.g.,(Gower et al., 1999, this issue). Each study area will be
initially stratified on the basis of remote sensing-based grasslands), vegetation types with dissimilar plant–soil in-

teractions (marshes and forested wetlands), or annualland cover classification scheme, with additional stratifi-
cation by factors such as soils, slope, and aspect if vegetation types (agricultural ecosystems). The heteroge-

neous landscape in and around the Cedar Creek Naturalneeded. Model accuracy can then be characterized
within each cover type, across all cover types within a History Area in east central Minnesota contains such ele-

ments, and many of the BigFoot sites will contain a simi-site, and across all sites treated by BigFoot.
A key theme in NPP model runs will be testing the lar range (if different type) of heterogeneity.

As one of the initial stages of the BigFoot project, agenerality of the model algorithms and associated “con-
stants.” For example, the accuracy of model output (for 30 km2 land cover map of Cedar Creek (Fig. 3) was de-

veloped and PnET was parametrized for 10 differentall sites) based on runs made without site-specific leaf N
values will be compared to the accuracy based on model vegetation types (land cover classes) for which some vali-

dation NPP data were also obtained. Color infrared ae-runs made with site-specific leaf N values. The close co-
ordination of leaf and canopy SLA, %N, total foliage rial photographs were acquired in October 1994. These

were photointerpreted by an ecologist familiar with themass and LAI, photosynthetic capacity, and leaf life span
observed in nature (Reich et al., 1992; 1997, Gower et study area and vegetation of the region. Control locations

were measured using a global positioning system re-al., 1993) and incorporated in the logic of PnET (Aber et
al., 1995; 1996) will potentially result in generic models ceiver, and interpreted vegetation boundaries digitized

and registered to a known coordinate system using thesefunctioning almost as well as models with substantial site
specific information. It is important to test these issues control points. These data were then rasterized to vari-

ous cell sizes, using a modal assignment rule. The land-in this study, given that modeling of NPP over large ar-
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Figure 3. Land cover class map for a 6 km35 km area
surrounding Cedar Creek Natural History Area, in east
central Minnesota, USA.

cover class (LCC) map so developed originally contained gether different display large differences in simulated
nonfoliar production that are consistent with direct ob-34 vegetation types, but these were collapsed into 10

classes, because this was the largest number for which servations and with differences in potential photosyn-
thetic performance of leaves of these different functionalmodel parameters could be reasonably provided. Alterna-

tively, several vegetation types for which the model could types. For instance, crops (mix of corn and soybean) had
a relatively low LAI, yet a high potential photosyntheticbe parametrized (different subclasses of oak woodlands

and savannas, or corn vs. soybean crops, etc.) were not dif- rate combined with a high priority of allocation to repro-
duction yielded a high ANPP in the model, similar to theferentiable in the LCC process, and so were lumped here.

Several parameters of PnET varied among land direct observation.
Both LCC and ANPP were initially mapped at a 25cover classes. These included: the algorithms for the

photosynthesis–N relationship (Reich et al., 1997; 1998a; m grid cell size (Fig. 4). The potential effects of aggrega-
tion were also investigated by mapping LCC and ANPP1999) and the values of leaf %N, SLA, and maximum

and minimum foliage mass (and hence LAI), C allocation at different grid cell sizes (250 m, 500 m, and 1000 m).
For each aggregation the LCC for each cell was definedalgorithms, and soil water-holding capacity. Input param-

eters such as %N, SLA, LAI, and carbon allocation frac- as being that of the dominant (modal) LCC, and the
mean ANPP for that LCC was assigned to that cell. Thetions were determined based on field sampling, as will

be the case in BigFoot. Data from a local weather station average ANPP for the entire 3000 ha area was 8.97 Mg
ha21 yr21 based on the finest scale aggregation (25 m cellfor a typical year were used in running the model.

Total annual ANPP simulated by the model com- size). Aggregation at the 250 m and 500 m cell sizes
yielded total ANPP estimates for the 30 km2 area thatpared relatively well with direct observations (Reich and

Bolstad, in preparation). Estimates from PnET for all were within 1% of the fine scale estimate. However, the
1-km-scale estimate (9.43 Mg ha21 yr21) was 5% differ-LCCs were within 10% of the mean of directly measured

ANPP for plots within each LCC (data not shown). Sim- ent. An LCC that was patchily distributed across the
landscape would probably “disappear” during a coarsen-ulated ANPP was highest in agricultural and marsh vege-

tation, intermediate in most forested land, and lowest in ing aggregation process, with proportionate impacts on
total ANPP. Alternatively, an LCC which is clumpedold field grasslands. It is especially interesting that crop,

grassland, and forest stands with canopy sizes not alto- would likely tend to dominate aggregated cells and might
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Figure 4. Above-ground net primary productivity (ANPP) class map for a 6 km35 km area surrounding Ce-
dar Creek Natural History Area, in east central Minnesota, USA, at four spatial aggregations. For each map,
land cover class of each grid cell was characterized as belonging to dominant (plurality) class, and assigned
ANPP values for that LCC based on a biogeochemistry process model (PnET-II) that was run for each LCC.
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