
Article

Assessment of tree detection methods in multispectral
images

Dagoberto Pulido 1, Joaquín Salas1,*, Matthias Rös 1, Klaus Puettmann2 and Sertac Karaman3

1 Instituto Politécnico Nacional
2 Oregon State University
2 Massachusetts Institute of Technology
* Correspondence: Joaquín Salas. jsalasr@ipn.mx. CICATA Querétaro, Instituto Politécnico Nacional. Cerro

Blanco 141, Colinas del Cimatario, Querétaro, CP 76090, México.

Version July 9, 2020 submitted to Remote Sens.

Abstract: Detecting individual trees and quantifying their biomass is crucial for carbon accounting1

procedures at the stand, landscape, and national levels. A significant challenge for many organizations2

is the amount of effort necessary to document carbon storage levels, especially in terms of human3

labor. To advance towards the goal of efficiently assessing the carbon content of forest, we evaluate4

methods to detect trees from high-resolution images taken from unoccupied aerial systems (UAS).5

In the process, we introduce the Digital Elevated Vegetation Model (DEVM), a representation that6

combines multispectral images, digital surface models, and digital terrain models. We show that the7

DEVM facilitates the development of refined synthetic data to detect individual trees using deep8

learning-based approaches. As field validation, we carried out experiments in two tree fields located9

in different countries that demonstrate our approach’s efficiency. SimultaneouslyAt the same time,10

we perform comparisons among an array of classical and deep learning-based methods highlighting11

the precision and reliability of the DEVM.12

Keywords: Tree Detection; Convolutional Neural Networks; Unocuppied Aerial Systems; Digital13

Elevated Vegetation Model; Synthetic Data Set14

1. Introduction15

Programs to reduce emissions from deforestation and forest degradation (e.g. , REDD+ [1]) intend16

to mitigate the effects of climate change by providing forest landowners with economic incentives17

reflecting the value of the carbon stored within the trees. However, despite advancements in remote18

sensing technology, many measurements manual labor still needneeds to be accomplished by manual19

laboraccomplish many measurements, such as estimating the overall vegetation biomass and the20

carbon stored in individual trees and forests. For example, it is common for field crews to travel to21

inventory plots and perform tasks such as counting and measuring tree sizes using visual estimations22

and manual measurements. This approach requires a considerable amount of time and resources, e.g.,23

the USDA Forest Service spends more than 75% of the inventory costs on data collection [2].24

In thisThis describes study, we describe methodologies that efficiently detect trees automatically25

using remote sensing technology (see Figure 1). In our approach, we collected data using Unoccupied26

Aerial Systems (UAS) equipped with multispectral cameras sensitive to the green, red, red edge, and27

near-infrared wavelengths. Using structure from motion techniques (SfM) [3], we obtained 4-band28

orthophotos, digital surface models (DSM), and digital terrain models (DTM) [4] in the form of29

orthomosaics. Then, we calculated the Normalized Difference Vegetation Index (NDVI) [5] from the30

multispectral orthophotos. After the orthophotos registration of the orthophotos, we utilized the DSM,31

DTM, and NDVI to obtain a Digital Elevated Vegetation Model (DEVM). We then generated a synthetic32
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Figure 1. A Pipeline to Automatically Detect Tree Tops. Aerial photogrammetry, obtained from UAS
using multispectral cameras, allows us to construct orthomosaics representing the DSM, DTM, and
NDVI, from which we eventually build the DEVM. We split the DEVM into sub-images and evaluate
them with an object detector, which predicts the bounding boxes for each sub-image. Then, we express
the results in a common reference system. Once we obtain a prediction for the whole image, we apply
non-maximal suppression to eliminate redundant detections.

dataset of DEVM images that we used to train classic and modern machine learning algorithms to33

detect trees. Finally, Performance tests using two tree plots in different countries indicated the precision34

of the new method. Our results show that CNN based methods have become the leading performer.35

Nonetheless, classic approaches remain competitive and may offer advantages in settings where data36

collection and available computing resources for training are an issue.37

Our main contributions include:38

• The introduction of the DEVM, an image representation that blends aboveground structural39

information and the quantification of vegetation suitable for the detection of trees;40

• the development of a scheme to generate synthetic data sets of trees in DEVM space for training41

classical and modern tree detection methods;42

• the assessment of classical and modern techniques, trained with synthetic images, to detect43

treetops.44

We structure the rest of the document as follows. In the next section, we describe the current45

state-of-the-art and practice regarding tree detection. Then, in section 3, we formulate the foundation46

of the newly developed DEVM, provide further detail about the method to generate synthetic tree47

data sets, and detail the classical and modern techniques we benchmark in the paper. In section 4,48

we describe the resultseffects of implementing the methods to detect treetops in two tree plots and49

compare their performance. We continue the paper discussing our results in section 5 and finally50

conclude summarizing our findings and delineating possible directions for future research.51

2. Related Literature52
3.1.153
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The most significant divide among tree detection methods is whether they use classical54

approaches, where one manually engineers the design of features, or deep learning strategies, which55

compute features automatically.56

This section reviewsIn this section, we review the scientific literature describing classical and57

modernboth of these approaches for tree detection with particular emphasis on aerial images. Also,58

related to our work, we discuss the research aiming to generate synthetic images for training deep59

learning methods and describe the image sources for automatic tree detection.60

2.1. Classical Tree Detection61

Classical methods for detecting trees rely mostly on the use of crafted features (see [6–8] for62

reviews of approaches to detect individual tree crowns). The proposed methods include local maxima63

filtering, template matching, valley following, watershed region growing, circular structures fitting,64

and Support Vector Machines with Histograms of Oriented Gradients (HOG) features. Some recent65

research follows this trend. For instance, basing trees detection on edge votes required applying66

tree crown delineation for the candidates using watershed segmentation (Özcan et al. [9,10]). The67

eccentricity of the ellipses to fit these segments was used to discard human-made objects. Another68

method filtered out non-vegetation utilizing the NDVI (Ozdarici-Ok [6]). The selection of tree crows69

employed the gradient to detect high radial symmetry and increased diameter thresholds. A third70

method was based on the binarization of RGB images (Reza et al. [11]). An adaptive median filter71

removed noise and distortion before a morphological operation outlined the boundaries between the72

plants.73

Alternatively, Maillard and Gomes [12], and Bao et al. [13] used template matching to detect trees.74

The former detects deciduous trees using a geometrical-optical model as a template, which includes75

parameters such as illumination angles, maximum and ambient radiance, and tree size specifications.76

The latter method selects several templates from the original image and computes mutual information77

for matching. When local maxima and watershed models were evaluated for the individual detection78

of trees, both approaches performed well for dominant and co-dominant trees but underperformed for79

small trees (Goldbergs et al. [14]). In contrast, Random Forest regression can estimate the number of80

trees using the local maxima and the result of a classification process which can distinguish between81

trees, soil, and shadows (Fassnacht et al. [15]). These features are fed to a Support Vector Machine82

(SVM) with a Radial Basis Function (RBF) to classify the tree species. Similarly, Wang et al. [16] first83

separated images between vegetation and non-vegetation with an SVM. After the extraction of HOG,84

these features were used to train an SVM to detect palms. This method appears limited to identifying85

palms, and it showed more reduced performance when the palms are intermingled with trees.86

Recently, several approaches for tree detection used the local maximum filtering algorithm. For87

instance, Li et al. [17] implemented a Field-Programmable Gate Array (FPGA) for the detection of88

tree crowns, speeding up the computations considerably without loss of performance. On 12,188 ×89

12,576 pixel satellite images, the task was accomplished 18.75 times faster than the original algorithm90

without loss of performance. Marinelli et al. [18] proposed a Bayesian formulation to improve91

the detection of treetops in LiDAR data. This approach fuses bitemporal airborne acquired data92

improving the overall accuracy up to 8.6% with respect to single date detections. Xiao et al. [19] used93

the DSM obtained from the 3D information provided by multiview satellite images to detect individual94

trees and delineate their crowns. Treetops are recognized from the local maxima, and outliers are95

eliminated with allometric equations. An alternative approach investigated optimal parameters to96

detect treetops from airborne LiDAR sensing. These parameters include the distance to the ground,97

the smoothing of the digital surface model, and the filtering of the output point cloud (Koledo and98

Ksepko [20]). Finally, Garcia et al.[21] presented a framework for individual citrus tree detection99

based on Digital Surface Models that included a segmentation method based on Extended Maxima100

Transforms followed by a controlled-marker watershed for single tree segmentation. Other tree101

detection approaches include shallow neural networks. For instance, a two-stage method trained a102
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backpropagation (BP) neural network to detect trees from color images in stage one. In the second103

stage, properties, such as energy, entropy, mean, skewness, and kurtosis, are used to correct the BP104

neural network and build a cascade neural network classifier (Tianyang et al. [22]).105

2.2. Deep Learning for Plant Detection106

Lately, there has been a surge in methods to detect and count plants using deep learning.107

Researchers have alreadySo far, researchers have employed already tested architectures [23], such108

as LeNet, VGG, AlexNet, or GoogLeNet for classification or regression. For instance, Weinstein109

et al. [24] made combined use of LiDAR and RGB sensing information in a self-supervised approach,110

which employed an unsupervised delineation method to train a crown detection model. A RetinaNet111

convolutional neural network, basically a one-stage detector, is then refined using annotated RGB112

images. Freudenberg et al. [25] developed a palm detection method using satellite images with 40113

cm/pixel resolution. They employed a U-Net Convolutional Neural Network (CNN), which performs114

semantic segmentation between palms and background. This method performs particularly fast,115

especially when compared with traditional CNNs such as AlexNet. Similarly, Li et al. [26] detected oil116

palms in satellite images using a two-stage CNN. In the first stage, they classified land cover, and in117

the second, they detected the palms. For training, they employ 20,000 samples, and during operation,118

they apply a multiscale sliding window.119

There are ample examples of the use of CNN to detect orchard trees such as citrus [27,28], coconut,120

oil palm [27,29–31], palm [32], and tobacco [33]. Also, species found typically in forests have been121

the subject of researchers’ interest, such as spruce, birch, and pine [34,35]; while Pribe et al. [36] have122

studied the detection of urban trees. CNN architectures have received a lot of attention including123

LeNet [29,31,32], SqueezeNet [37], AlexNet [30,32,36], GoogLeNet [38] and DarkNet [39]. Windrim124

and Bryson [35] explored the combined use of candidates generation, with Faster R-CNN, and 3D125

detectors with VoxNet. Still, Zorte et al. [27,40], Fan et al. [33], Csilik et al. [28], and Trier et al. [34]126

studied the use of simple custom-made CNN architectures with two or three convolutional layers127

followed by two or three fully connected layers. Zortea et al. [27] first applied a CNN to detect tree128

rows, then located center lines, and finally used another CNN to detect trees. Puttemans et al. [39]129

showed that CNNs are a feasible alternative to boosted cascade [41] and aggregated channels [42].130

Csillik et al. [28] utilized CNN on NDVI images to distinguish between trees, bare soil, and weeds;131

while Mubin et al. [31] detected and distinguished between mature and young trees. Zortea et al. [40]132

were the first to apply an ensemble of CNN-based classifiers. Windrim et al. [35] further separated the133

background class into shrubs, partial trees, and the tree class as foliage, lower stem, upper stem, and134

clutter components. Trier et al. [34] used the green-blue ratio to remove shadows and the NDVI image135

to remove dead vegetation and non-vegetation, similarly to Pribe et al. [36]. Finally, Fan et al. [33]136

selected their tree candidates using morphological operations. In contrast, Chen et al. [37] presented a137

pipeline for fruit counting, where they used a custom crowd-sourcing platform to label large data sets.138

After using a CNN to extract candidate blobs, they employed a secondary convolutional network to139

count. Finally, Ribera et al. [43], experimenting with AlexNet, Inception v2, Inception v3, and Inception140

v4, proposed a linear regressor to estimate the final fruit count.141

In research similar to ours, Xiao et al. [44] used a Fully Convolutional Network (FCN) [45] to142

detect treetops in satellite imagery. They fused the NDVI values, the DSM, and the red band into a143

3-channel input. To train the FCN, they obtained samples using the top-hat morphological operation144

on the DSM to detect the local maximum as treetops. In contrast, we used synthetic DEVM images145

to train the CNN. Regarding RGB images, Santos et al. [46] used a Deep Learning-based approach to146

detect and classify trees in aerial images. They captured and manually annotated a set of 392 images.147

They then trained and compared Faster-RCNN, YOLOv3, and RetinaNet, three different models for148

detection and classification models. Similarly, Fromm et al. [47] trained Faster R-CNN, SSD, and149

R-FCN CNN architectures to detect seedlings using images taken from UAVs along seismic lines. This150
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brief overview of the different methods suggests an increasingly predominant role of CNN-based151

techniques to tackle the problem of tree detection.152

2.3. Synthetic Dataset Generation153

Deep learning commonly requires vast amounts of labeled data to train a CNN. As the manual154

labeling of images is very demanding, synthetic datasets are attractive for researchers working in155

machine learning. Previous research efforts on this topic have resulted in datasets for detection of156

humans (particularly through the recognition of faces [48] and human bodies from unrestricted [49]157

and frontal view poses [50]), medical applications (particularly to generate Positron Emission158

Tomographies [51], synthetic ultrasound images for intravascular ultrasound simulation [52] and159

images of retinal vessel networks [53]), manufacturing (particularly to render scenarios to generate160

synthetic data for automotive applications [54] and synthetic depth images from CAD models [55])161

and synthetic aperture radar data [56]. Using an approach similar to our work, Ubbens et al. [57] count162

leaves of Arabidopsis thaliana rosettes. They render 3D models of plants and use these to create data163

sets for training. Han and Kerekes [58] reviewed simulation methods for multispectral images, such164

as the ones used in our approach. They concluded that technological trends, including emerging165

computing power, powerful graphics processing units, and deep learning techniques, will continue166

to push for the use of more realistic images. Recently, Fassnacht et al. [59] introduced a method to167

simulate realistic tree canopy by combining the SILVA individual-tree forest simulator [60] with real168

LiDAR point clouds of individual trees. They employed their system to assess remote-sensing models169

for biomass estimation.170

2.4. Image Sources171

To obtain the data for the detection of trees, researchers have employed satellites [29–32]172

and airborne sources, such as UAS [27,28,33,40], helicopters [35] and piloted airplanes [34,36,173

38,39]. For instance, Millard and Gomes [12], Özcan et al. [9] and Fassnacht et al. [15] have174

employed high-resolution satellite images taken from GoogleEarth and WorldView-2 have employed175

high-resolution images taken from the USGS’s Landsat 8 satellite using the GoogleEarth platform and 3.2176

WorldView-2 respectively to detect mango, orange and apple trees, as well as estimating stand density177

above-ground biomass. Ozdarici-Ok [6] detected and delimited citrus trees using the images obtained178

from the GeoEye-1 satellite, which image resolution is 50 cm/pixel. Bao et al. [13] also used GeoEye-1179

to extract individual tree crowns from panchromatic satellite images, covering areas of 5 and 25 km2.180

Using CNN, Li et al. [29] detected oil palm plants from satellite images in Malaysia.181

Nowadays, UAS are becoming a popular tool for high-resolution, timely, and low-cost image182

capturing. For instance, Ribera et al. [43] counted plants using a regression CNN from images taken183

from a UAS flying over a sorghum field. Chen et al. [37] presented a pipeline for fruit counting in184

a supervised deep learning framework where they use a custom crowd-sourcing platform to label185

large data sets. They took their images from a multi-rotor UAS, and they evaluated their method’s186

performance using ground truth produced by humans. Wu et al. [61] assessed watershed, polynomial187

fitting, crown segmentation, and point cloud segmentation algorithms to estimate the canopy cover188

of individual trees in a planted forest. They obtained the data from a LiDAR mounted on a UAS and189

compared the results of the algorithms with field data. Selim et al. [62] used an object-based method190

to detect trees from images obtained from UAS. Their approach got 1 (one) cm resolution scene191

reconstructions using SfM. They implemented a set of rules to identify trees based on their height,192

scale, shape, and integrity. Finally, Reza et al. [11] proposed a method to recognize and count rice193

plants using low altitude flying UAS.194

Sensors employed to obtain information to detect trees from airborne platforms include RGB195

cameras [27,31–33,38–40], multispectral cameras [28–30,34], and LiDAR [35]. Using RGB images,196

Krisanski et al. [63] proposed a novel method to measure trees’ diameter. They flew a UAS manually197

under the trees canopy while taking photos. Offline, they obtained a 3D representation from which198



Version July 9, 2020 submitted to Remote Sens. 6 of 24

they automatically measured the trees’ diameter within a plot. Their results are promising and will199

undoubtedly boost the exploration of fully automatic approaches. Employing multispectral imagery,200

Qiu et al. [64] introduced an individual tree delineation map on multispectral images from cameras201

mounted on a UAV overflying a forest stand. Using the gradient map, they extracted treetops and202

refined the delineation employing spectral differences. They segmented the gradient map using203

watershed with the treetops as markers and improved the segmentation to yield the crown map.204

Utilizing LiDAR sensors on UAS, Kuvzelka et al. [65] detected the individual tree stems and measured205

the stem diameters. They applied segmentation methods based on Hough transform, RANSAC, and206

robust least trimmed squares to Norway spruce and Scot pine with encouraging results. Also, Picos207

et al. [66] detected and measured the height of Eucalyptus trees in a plantation. For detection, theyThey208

investigated two methods for detection: One based on constructing overlapping polygons around209

each point in the stem cloud, and another employing density estimation with an axis-aligned bivariate210

quartic kernel. Finally, Yan et al. [67] observed that the fixed-bandwidth mean-shift based methods211

work well to extract the same size of individual trees. Thus, they introduced a self-adaptive bandwidth212

estimation method. Starting from the global maximum point, they divided the 3D space into angular213

sectors simulating the canopy surface. They employed the potential crown boundaries to estimate the214

crown width and from it, the kernel bandwidth.215 3.1.4216

Our literature review highlights the identification of trees from aerial images using either classic217

and deep learning-based methods remains an active area of research, with recent approaches competing218

in aspects such as detecting rate, computing time, and hardware requirements. Therefore, to assess219

their potential and limitations, Overall, there seems to be a need for comparisonsbetween modern220

approaches based on deep learning and classical approaches. However, asAs deep learning methods221

deliver promising results, there is a requirement to develop databases for evaluation and improvement.222

As some recent work as precluded [24], shortly, there will be significant and rich-enough datasets of 3.1.3223

trees taken from aerial images to cover data-hunger approaches. In the meantime, it is of immediate224

interest to generate synthetic Of particular interest in this context is the synthetic generation of data225

that fuses structural and multispectral information sources. Such novel and efficient representations226

allow testing different image capturing platforms, particularly those based on UAS. It is within these227

opportunities that we develop our approach.228

3. Materials and Methods229

In this section, we introduce DEVM, an image representation suitable for tree detection. Also, we230

present a model for the generation of synthetic images. Also, we describe the classical and modern231

methods we will use in our assessment.232

3.1. DEVM: A Blended Representation of Structure and Multispectral Information233

The database for this study is a set of multispectral images captured from UAS. We describe how234

these images were processed to generate the input for the convolutional neural networks we utilize in235

this study.236

3.1.1. Characterizing Vegetation237

Researchers have proposed several indices to measure the extent of vegetation in images [68].
These indices include the perpendicular vegetation index (PVI), the soil adjusted vegetation index 4.1
(SAVI), the atmospheric resistant index (ARVI), the global environment monitoring index (GEMI),
and their many variations [68]. It is still an open question under what conditions, which of these
indices works best. It appears that their performance depends on several factors, including the
atmospheric conditions, the presence of clouds, the plants’ water content, the particular imaging
viewpoint, and the sensitivity of the specific instrument used [69]. We employed the NDVI [70], a
classical index that practitioners have used extensively because of the ample availability of sensors
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from which it can be extracted. For a pixel at position x ∈ R2, Weier and Herring [71]) calculated the
NDVI from the visible red (R, 640-680 nm) and near-infrared (NI, 770-810 nm) radiation as

NDVI(x) =
NI(x)− R(x)
NI(x) + R(x)

. (1)

When using NDVI, we assume that healthy vegetation absorbs most of the radiation and,238

simultaneously, reflects a large portion of the near-infrared radiation [71]. Researchers have observed239

that the NDVI saturates rapidly in dense vegetation canopies. In these cases, one may employ a240

saturation adjusted NDVI, such as the ones proposed by Gu et al. [72] or Fang et al. [73]. 3.7241

3.1.2. The Digital Elevated Vegetation Model242

DSM are 2.5D pictures (2D images that facilitate the visual perception of depth) that represent
the elevation over the terrain, i.e., the land surface, vegetation, or human-made structures that one
could obtain the DSM from images processed with SfM reconstruction techniques [3]. Usually, it is
calculated with reconstruction methods using Light Detection and Ranging (LiDAR), Interferometer
Synthetic Aperture Radar (IFSAR), or photogrammetry [74]. Alternatively, one could obtain the DSM
from images processed with SfM reconstruction techniques [3]. In contrast, DTM are 2.5D pictures
that show the bare surface of the soil, ignoring any vegetation or human-made objects, leading to the
challenges of computing the DTM from the DSM. For instance, Unger et al. [75] used variational energy
minimization to solve the problem. They employed the Huber norm for regularization to smooth
surfaces and an L1 norm for the data fidelity term. In our approach, we used the orthomosaics (for
the DSM and DTM models, and the NI and RE spectral bands) produced by Pix4D, a photogrammetry
program for 3D reconstruction from a series of images. Using the NDVI, DTM and DSM orthomosaics,
we expressed the concept of DEVM as

DEVM(x) = (DSM(x)−DTM(x))NDVI(x), (2)

where the subtraction of the DTM from the DSM represents the objects over the terrain. Then, we243

multiplied the result by the NDVI, aiming to highlight those objects that correspond to vegetation above244

ground level (see Figure 2). Thus, the DEVM bundles characterizations of vegetation and terrain into a 3.3245

description which facilitates the generation of synthetic images for training. In its present form, the246

DEVM characterization gives a head start to the detection of trees algorithms. However, it also offers an247

ambivalence where tall/small trees with low/high NDVI values may be comparable. Adapting to that248

ambivalence may be a feature of a tree detection algorithm, resulting in a corresponding performance. 3.7249

3.2. Synthetic Dataset Generation250

Convolutional Neural Networks (CNNs) have become the dominant approach for object detection251

in computer vision. However, its application requires massive amounts of labeled images. The work252

needed to obtain the datasets tends to be costly, challenging, and error-prone. Even though people253

are using UAS in photogrammetry in recent years and have captured many pictures of terrain, it is254

still expensive to obtain a human-labeled training dataset of aerial multispectral images. Thus, we255

generated a batch of simulated and computer-labeled DEVM images designed to look similar to the256

real ones (see Figure 3).257

Inspired by the resulting structure of trees in DEVM space as observed from overhead, we created258

synthetic images using as a basis the multiple occurrences of a shape with closed-form analytical259

expression. In our procedure we generated an image I(x), for x = (x, y), where x ∈ [1, w] and260

y ∈ [1, h], containing at most n trees, where n is a random variable with probability density function261

(pdf) given by n ∼ U (nmin, nmax). In our case, U (ui, u f ) represents a uniform distribution with value262

1/(u f − ui) between the extremes of the interval [ui, u f ] and zero outside. To ensure that the DEVM263

representation of each tree is inside the image, we defined each tree center at (xi, yi), where xi and yi are264
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(b) (c)

(d) (e)
(a)

Figure 2. We generated orthomosaic models from multispectral images corresponding to (a) RGB,
(b) DSM, (c) DTM, (d) NDVI, and (e) DEVM. The patch of 867m × 801m terrain corresponded to an
agricultural landscape with scattered trees in Zimatlan, Oaxaca, Mexico.

random variables with pdf defined as xi ∼ U (amax, w− amax) and yi ∼ U (bmax, h− bmax), respectively.265

Here i refers to the i-th tree, and thus i ∈ [1, . . . , n]. Each tree will have lateral orthogonal widths266

given by ai and bi, where ai and bi are random variables with pdf given by ai ∼ U (amin, amax) and267

bi ∼ U (bmin, bmax).268

Also, we modeled each tree as a set of at most mi overlapping domes (see (3)), where we defined269

mi as a random variable with pdf given by mi ∼ (mmin, mmax). We defined the center of each dome270

(xij, yij) around the tree center as xij = xi + ∆x and yij = yi + ∆y, where ∆x and ∆y are random271

variables defined as ∆x ∼ U(−∆xy, ∆xy) and ∆y ∼ U(−∆xy, ∆xy). Meanwhile, we randomly varied272

the lateral widths of each dome by aij and bij respectively, for j ∈ [1, . . . , mi], where aij and bij were273

random variables with pdf given by aij ∼ U (ai − ∆ab, ai) and bij ∼ U (bi − ∆ab, bi), respectively.274

For our method, we found it suitable to define the domes using the closed analytical form
expressed as

D(α, β) = hij · cos

(
απ

2aij

)
· cos

(
βπ

2bij

)
, (3)

for given values of aij, bij, and hij, where α ∈ [−aij, aij] and β ∈ [−bij, bij], and hij was a random275

variable with uniform pdf given by hij ∼ U (hmin, hmax). The dome could be conveniently represented276

in image space using the linear transformation x = Kθ+ x, where x = (x, y)T are the coordinates of a277

point in the image, K2×2 was a matrix which diagonal contains k, a constant k that relates pixels in the278

image with metric units, θ = (α, β)T contains the dome parameters, and x = (xij, yij)
T is the center of279

the dome. In Algorithm A1, we present a pipeline describing how we created domes. 4.2280

Given an image resolution and a set of parameters defining bounds, we created synthetic images281

by randomly varying the number of trees, their width, their height, and with a random amount of282

domes with random location and diameter, which themselves depend on the parameters previously283

computed. Along with the images, we saved the bounding boxes’ location, describing each tree’s284

position.285
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(a) Real example of a DEVM patch.

(b) (c)

(d) (e)

(f) (g)

Figure 3. Example of a training dataset using DEVM to highlight trees. We built a synthetic data set
of trees in the DEVM representation using random ellipses. In (a), we show an example of a DEVM
image. We illustrate the orthogonal (b)-(d) and isometric (e) views of a single dome, which forms the
basis for the construction of the synthetic representation of a tree in DEVM space. We show an example
of the side (f) and top (g) views of the synthetic description.

3.3. Treetop Detection Methods286

We implemented several classical and deep learning-based alternatives for treetop detection. In 3.1.2287

their comparison, Also, we employed DEVM images as inputs, using synthetic images when the288

methods required training, to establish a baseline to evaluate theirthe performance. Thus, our results289

could differ from those reported in the literature because either the input images contain different290

information or our implementation changes in subtle details from other studies. We developed the291

approaches using Matlab, Nvidia DIGITS, and Tensorflow with the Google Object Detection API [76]292

for classical and deep learning-based methods, respectively. In all cases, we compared the inferred293

bounding boxes against the manually-obtained ground truth data.294

Table 1. Constant values used for the generation of synthetic images in Algorithm A1

r c nmin nmax mmin mmax hmin hmax amin amax bmin bmax ∆xy ∆ab
1248 384 2 7 5 10 1.4 2.3 65 75 65 75 5 20
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3.3.1. Classical Methods295

For our comparison, we have included implementations for Local Maxima Filtering, Correlation296

with a Template, HOG features with an SVM classifier, and a Hough-based circular structures detector.297

Local Maxima Filtering (LMF). In this method (inspired by Pouliot et al. [77]), we detected trees298

as peaks in the DVEM image. First, we smoothed the DVEM image with a Gaussian filter, with σ = 2,299

and proceeded to find the regional maxima, which we defined as the set of connected pixels with equal300

value surrounded only by pixels with a lower value. Although rarely necessary, we selected a random301

pixel when several pixels have the same regional maximum values. We considered a successful tree302

detection when pixels survived a non-maxima suppression stage, where, starting from the highest303

valued pixel, we eliminated all those pixels within a neighborhood of radius τ ∈ [1, 500] that have a304

smaller value.305

Correlation with a Template (Template). In this method (inspired by Ke and Quackenbush [78]),306

we compared portions of the DVEM image with a template we extracted from using Pearson’s307

linear correlation coefficient. We selected the local maxima peaks as the centroids of the detected308

bounding boxes, with the same size as the template. We generated the templates using eCognition,309

a computer program aimed to determine detections from a set of sub-images extracted by the user310

from the orthomosaics. In eCognition, the user gives relevant feedback based on the proposed311

examplesdetections to improve the detector’s performance. The program defines the template as the312

average over the correct predictions.313

HOG Features with an SVM Classifier (HOG+SVM). In this method (inspired by Wang et314

al. [16]), we characterized the DVEM image using HOG features [79] and used a SVM classifier to315

distinguish between the classes tree and no-tree. Using the DVEM image corresponding to the Almendras,316

we selected 64 × 64 ground truth bounding boxes corresponding to trees. Afterward, we chose areas317

randomly without trees to construct a dataset of true negatives. Then, we augmented the dataset with318

five images corresponding to rotations of 90◦, 180◦ and 270◦ degrees, vertical and horizontal mirroring,319

resulting in 27,055 images. Using this dataset, we extracted HOG features for each image, resulting320

in a feature vector of 1, 764 values. Next, we fit an SVM with a linear kernel that ended up with 578321

support vectors. Using this classifier, we slid a window over all the test images to obtain the SVM322

score in each location. To get the position of the trees, we first detected the position of the maxima.323

Then, for a given SVM score threshold, we applied non-maximal suppression for those detections324

around it. To assess the performance, we varied this threshold from -11.28 to 10.05 in steps of 0.1.325

Circular Structures (Hough). In this method (inspired by Ke and Quackenbush [78]), we326

detected trees by the similarity of the contours in the DVEM image with circular rings. Firstly, we327

computed a Canny edge detector. Then, we found the circles between a minimum and maximum328

radius. We estimated the parameters for the minimum and maximum threshold for the Canny edge329

detector, and the minimum and maximum radius for the circular rings, using the DVEM image for the330

Mancañas field. To evaluate the performance, we varied the minimum radius from 10 to 65 pixels and331

tested these parameters on the DVEM image for the Almendras field.332

3.3.2. Deep Learning-based Methods333

We used deep learning to detect the trees because this technique automatically extracts complex334

features, is well suited detectingfor the detection of objects, and generalizes well in the presence of335

new data. Our deep learning-based alternative methods include implementations for DetectNET,336

Faster R-CNN with Inception v2, Faster R-CNN with ResNet-101, Single Shot Multibox with Inception337

v2, and R-FCN with ResNet-101.338

DetectNET. Barker et al. [80] derived DetectNet from the classification engine GoogLeNet [81,82].339

In turn, GoogLeNet corresponds to the incarnation of Inception v1. It is a 22 layer CNN that receives340

as input a 224 × 224 RGB image with mean subtraction. To detect multiple objects during training,341

DetectNET extracts the bounding boxes of each image from the annotations overlaid on the coverage342

map. Given the coverage map for object k, Ck(x), for x = (x, y)T and 1 ≤ x, y ≤ S, we set positions to343



Version July 9, 2020 submitted to Remote Sens. 11 of 24

1 where objects are present and 0 otherwise [80]. Once DetectNet predicts the coverage map and the344

bounding boxes, it expressed the result as a three-dimensional label format describing the class of the345

present object and the pixel coordinates of the corners of the bounding box’s corners relative to the346

center of the grid. Then, aA clustering function produces a list of M bounding boxes (see Figure 4). We347

trained with Nvidia/Caffe, a modified version of Berkeley’s Caffe framework for deep learning, and348

used transfer-learning to establish the initial weights from a model previously trained with the KITTI349

dataset [83] to achieve faster convergence.350

Faster R-CNN with Inception v2 (Faster R-CNN/Inception v2). Faster R-CNN consists of two351

stages, a Region Proposal Network (RPN) and a detection network [84]. The former simultaneously352

predicts bounding boxes and objectness scores at each position of its last feature map layer. In the353

latter, a detector attends the proposals and refines them, i.e., one pools the features from bounding354

boxes from where one detects a class of objects. In our implementation, we scaled the image to 600355

× 1024 pixels. We initialized the weights with a checkpoint of MSCOCO Dataset from Tensorflow’s356

object detection zoo [76]. Then, we We then refined the model with our DEVM synthetic database for357

30,000 steps, using the stochastic gradient descent (SGD) with momentum optimizer with an initial358

learning rate of 2× 10−4 that changes to 2× 10−5 after step 15,000. To evaluate the performance, we359

divided the validation DEVM maps into smaller overlapping images.360

Faster R-CNN with ResNet-101 (Faster R-CNN/ResNet-101). In this case, we initialized the361

weights with a checkpoint of the KITTI dataset (cars and pedestrian) [83] from the Tensorflow’s362

object detection zoo [76]. We thenThen, we trained the model with our DEVM synthetic database for363

30,000 steps, using the momentum optimizer with an initial learning rate of 10−4 that changes to 10−5
364

after step 15,000. To evaluate the performance, we divided the validation DEVM maps into smaller365

overlapping images.366

Single Shot Multibox Detector with Inception V2 (SSD/Inception v2). Similarly to Faster367

R-CNN, SSD consists of a neural network-based strategy where one extracts feature maps from368

images and infers bounding boxes and classes using a multi-scale bounding box predictor [85]. We369

initialized the weights with a checkpoint of MSCOCO Dataset from Tensorflow’s object detection370

zoo [76]. Then, we refined the model with our DEVM synthetic database resized to 300× 300 pixels371

for 30,000 steps, using RMSprop [86] optimizer with an initial learning rate of 4× 10−3 that changes to372

4× 10−4 after 15,000 steps. To evaluate the performance, we divided the validation DEVM maps into373

smaller overlapping images.374

R-FCN with ResNet-101 (R-FCN/ResNet-101). R-FCN is a method for object detection that uses375

a region-based, fully convolutional network (R-FNC) that proposes candidate regions of interest that376

are later voted to decide which one accurately covers the object. We initialized the weights with a377

ResNet-101 checkpoint of MSCOCO Dataset from Tensorflow’s object detection zoo [76]. We refined378

the model with our DEVM synthetic database resized to 300× 300 pixels for 30,000 steps, using a379

Stochastic Gradient Descent (SGD) with the momentum optimizer with an initial learning rate of380

3× 10−4 that changes to 3× 10−5 after 15,000 steps. To evaluate the performance, we divided the381

validation DEVM maps into smaller overlapping images, which in turn, we resized to 300× 300 pixels.382

3.4. Image Acquisition383

We mounted a Parrot Sequoia camera on a UAS and flew over the Almendras and Mancañas(see 3.4384

4.1) field using a self-built multicopter for the former and over the with a 3DR Solo quadcopter for385

the later. For these settings, we performed NADIR double grid missions with an overlap of 85% at an 3.5386

altitude of 25 meters. The Sequoia produced multispectral images with spectral response peaking in387

wavelengths of 550 nm (Green), 660 nm (Red, R), 735 nm (Red Edge), and 790 nm (Near Infrared, NI).388

Each of these images has a spatial resolution of 1280 (horizontal) × 960 (vertical) pixels. Forfor all the389

flight missions.390
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(a)

(b)

Figure 4. Training and inference of neural network models for treetop detection. We fed CNN with
synthetic DEVM images I . During training (a), we utilized synthetic DEVM images I to fine-tune the
pre-trained weights of the fully connected layers. Then we compared the estimated bounding boxes
BB with the respective ground truth BB∗ to compute the loss. During evaluation (b), the CNN infers
the bounding boxes for real DEVM images to generate predictions P .

4. Experimental Results391

To assess the effectiveness of treetop detection methods, we implemented the algorithms described392

above, set experimental environments to gather data, and evaluated their performance. To achieve393

this, weWe divided the validation images into multiple overlapping sub-images of 1248× 384 pixels394

and trained using the different methods. Since we partitioned the original image into sub-images, the395

integration ofintegrating the results in a common reference frame can give rise to multiple boxes for396

the same tree. We used non-maximal suppression to select the bounding box corresponding to the397

highest confidence score from the overlapping bounding boxes with IoU ≥ 0.5 [41] (see Figure 1).398

4.1. Experimental Setup399

For our experiments, we flew over two different locations (see Figure 5): Almendras and Mancañas.400

The Almendras is a 3.5 hectare (ha) leaf-on almond (Prunus dulcis) tree plantation with a mean distance401

between the trees of 7.9 m located near Valencia, Spain. The Mancañas, in Guanajuato, Mexico, is a 0.76402

ha leaf-on pine (Pinus greggii) with rows of trees and a mean distance between rows of 5.9 m. However,403

within the rows, the trees have a mean distance of ≈ 1 m.404

The hardware employed to run the computer vision and image analysis algorithms consisted405

of a computer to implement the classical approaches and a second one for the deep learning-based406

methods (see §3.3 and Table 2). The former consists of a Windows 8.1 machine with an i7-3770 CPU at407

3.4 GHz, 16 GB of RAM. The latter is a computer running Ubuntu 16.04 xenial with a liquid-cooled408

Intel Xeon E5-2650 CPU, 32 GB of RAM, four Nvidia Titan X Pascal GPUs, each one with 12 GB of409

video memory.410

We flew over the Almendras using a self-built multicopter and over the Mancañas with a 3DR411

Solo quadricopter. In these settings, the Parrot-Sequoia produced multispectral images with spectral412

response peaking in wavelengths of 550 nm (Green), 660 nm (Red, R), 735 nm (Red Edge) and 790 nm413

(Near Infrared, NI). Each of these images has a spatial resolution of 1280 (horizontal) × 960 (vertical)414

pixels.415
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(a) Almendras (b) Mancañas

(c) Almendras detail

(d) Mancañas detail

Figure 5. Test Fields. In (a) and (b), we present the orthomosaics for the whole area of the two places
we used to test our method. The Almendras (a) corresponds to almond (Prunus dulcis) trees in Spain,
and the Mancañas (b) corresponds to pine (Pinus greggii) trees in Mexico. The DEVM shows that while
the trees in the Almendras are isolated (c), in the Mancañas (d) the rows of trees are isolated between
them but clustered together within. The bounding boxes in (c) and (d) show the detections with our
method. Please note that viewed from above, almond trees seem to have a hole in the middle.

For our experiments, we mounted a Parrot Sequoia Micasense camera on a UAS and416

flew over two different locations (see Figure 5): Almendras and Mancañas. The Almendras417

is a 3.5 hectare (ha) leaf-on almond (Prunus dulcis) tree plantation with a mean distance418

between the trees of 7.9 m located near Valencia, Spain. The Mancañas, in Guanajuato,419

Mexico, is a 0.76 ha leaf-on pine (Pinus greggii) with rows of trees and a mean distance420

between rows of 5.9 m. However, within the rows, the trees have a mean distance of ≈ 1 m.421

We flew over the Almendras using a self-built multicopter and over the Mancañas with a 3DR Solo quadricopter. In these settings, the Parrot-Sequoia produced multispectral images with spectral response peaking in wavelengths of 550 nm (Green), 660 nm (Red, R), 735 nm (Red Edge) and 790 nm (Near Infrared, NI). Each of these images has a spatial resolution of 1280 (horizontal) × 960 (vertical) pixels.422
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(a) LMF (b) Template-matching (c) Hough (d) HOG+SVM

Figure 6. Tree Detection with Classic Methods. In (a), the gradient points toward the maximum, where
we place a red dot. In (b), we show the correlation between trees and a template made with synthetic
images in the Almendras field, in (c), we show the edges (gray) and a circle fitting the edge points. In
(d), we show the HOG descriptors superimposed on the corresponding DEVM patch.

4.2. Tree Detection423

We trained our treetop detection methods using synthetic images and evaluated the performance424

on the images produced at the Almendras and Mancañas test fields. To train the deep learning-based425

approaches for treetop detection, we generated a synthetic-labeled dataset of 12,500 synthetic DEVM426

images of 1248× 384 pixels that simulate a resolution of 1 cm/pixel with the values described in Table427

1. At refinement, weWe split the 12,500 images synthetic dataset into two subsets of 10,000 images for428

training and 2,500 images for validation at refinement. We refined the neural network weights during429

ten epochs. The structure of the neural network models that we tested require three-channel images.430

Thus, to feed the network, we converted the DEVM to RGB images using OpenCV’s cvtColor function,431

which replicates the DVEM image in each of the three channels. This process facilitated usingthe use432

of the synthetic database on off-the-shelf neural network models requiring three-channel images, of433

course, at the expense of additional weights in the first convolutional layer.434

We tested the efficiency of the different methods in the Almendras and Mancañas DEVM435

orthomosaic images containing pine (Pinus greggii) and almond (Prunus dulcis) trees, respectively. We436

evaluated the performance of our approach’s performance by comparing the detections with manually437

obtained ground truth data (see Figure 7). We considered a detection when the Intersection of the438

Union (IoU) is at least 0.50 between the predicted and the ground truth bounding boxes.439

We processed the individual images from our test fields with Pix4D to generate GeoTIFF440

orthomosaics with a size of 3, 843× 4, 386 and 7, 063× 8, 410 pixels for the Almendras and Mancañas,441

respectively. Since these images are too large for the computer’s memory, we divided them into smaller442

overlapping clips of 1248× 384 pixels (resulting in 176 images for the Almendras and 504 images for443

the Mancañas) which in turn were fed to the different methods for treetop detection. Afterward, we444

expressed the results on a global reference system and applied non-maximal suppression.445

4.3. Results446

For our results, weWe trained and fine-tuned the algorithms using the synthetic dataset, while447

employed the Mancañas and the Almendras datasets to test without making a change to the parameters448

to obtain the respective performance metrics. To evaluate the performance of the different algorithms449

involved in the comparison, we applied the methods to the Almendras and Mancañas tree stands and450

evaluated different metrics, including Precision, Recall, Average Precision, Average Recall, and F1. In451

Figure 8, we show the precision-recall curves resulting from varying the acceptation threshold for452

detection. We obtained each point of the curve by discarding those detections whose confidence score453

was under the threshold. The companion Table 2 highlights quantitatively some characteristics of the454

curves in Figure 8. In particular, it provides indicators such as the Average Precision, AP, Average455

Recall, AR, and the metric F1. The columns AP0.5, AR0.5, and F1max follow the Pascal VOC [87]456

criterion, where an object is correctly detected when the IoU between its prediction and the ground457

truth bounding boxes is larger or equal to 0.5. Thus, F1max corresponds to the maximum value of the458

F1 metric for the criterion IoU≥ 0.5.459
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(a) (b) (c) (d)

Figure 7. Tree Detection. We show the trees in DEVM images with the detected bounding boxes on
it. The columns show examples of (a) true positive, (b) false-positive, (c) true-negative, and (d) false
negative detection.

For the Template method, we selected the correlation template from the synthetic DEVM database460

and applied it to both Almendras and Mancañas fields. Note that consistently, the Almendras tree stand461

gave better results than the Mancañas tree stand for the AP0.5, AR0.5, and F1max metrics.462

Despite low averages for AP0.5 and AR0.5, the LMF method, with 0.918, obtained the second463

highest F1max value for the Almendras. Its behavior in the Mancañas observed just slight fluctuations464

with values 0.700, 0.774 and 0.797 for AP0.5, AR0.5 and F1max, respectively. The Hough method465

obtained the highest AR0.5 value at 0.950 in the Almendras. Interestingly, in the same metric had an466

abrupt decrement, at 0.442, in the Mancañas. It is worth noting that both methods are easy to code467

and exhibit low computing complexity. Template-matching had a regular performance in both the468

Almendras and the Mancañas, perhaps justifying the common practice of selecting the template from469

samples of the same image where it is going to operate but underscoring its fragility to diversity. For470

HOG+SVM, we computed the HOG features using training examples from the synthetic dataset and471

tested on the Almendras and the Mancañas fields, performing better across our metrics in the former472

(0.794, 0.914, 0.92) than in the latter (0.659, 0.644, 0.663) for AP0.5, AR0.5, and F1max, respectively. These473

results show the ability of the DEVM synthetic database to generalize well.474

Applying the deep learning-based methods, SSD/Inception v2 observed the lowest performance475

for both tree stands. DetectNET performed better for the Almendras in terms of AP0.5, at 0.880, but was476

outperformed by R-FCN/ResNet-101 in terms of F1max, at 0.922. In all other cases, the deep learning477

methods performance was weaker for the Mancañas dataset than for the Almendras one. A noticeable478
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(a) Almendras. (b) Mancañas.

Figure 8. Precision-Recall curves for the methods described in §3.3 for the Almendras (a) and the
Mancañas (b) tree stands (best seen in color). The curves describe the precision of the methods at
different levels of recall levels, varying the confidence score to discard those detections under the
threshold. See Table 2 for some quantitative highlights describing the performance.

Table 2. Performance Results. We tested in the Almendras and Mancañas tree plantations. AP, AR and
F1max stand for the Average Precision, Average Recall, and maximum F1 measures. Bold numbers
correspond to the maximum per column. The methods in this table include Local Maximum Filtering
(LMF), Template-matching correlation, Hough Transform to detect circles (Hough), and HOG as
features followed by an SVM Classifier (HOG+SVM), DetectNet, Faster Region-based Convolutional
Neural Network with Inception v2 as the backbone (Faster R-CNN/Inception v2), Faster Region-based
Convolutional Neural Network with ResNet-101 as the backbone (Faster R-CNN/ResNet-101),
Single-Shot Multibox Detector with Inception v2 as the backbone (SSD/Inception v2), and Region-based
Fully Convolutional Networks with ResNet-101 as the backbone (R-FCN/ResNet-101). The columns
show the Average Precision for an IoU of 0.5, AP0.5, Average Recall for an IoU of 0.5, AR0.5, and the
maximum value for the F1 metric, F1max. Computing Time columns show the time that it takes to
execute the different algorithms during training(CTtrain) and validation(CTtrain) stages.

Method Computing Time Almendras Mancañas
CTtrain CTval AP0.5 AR0.5 F1max AP0.5 AR0.5 F1max

C
la

ss
ic

M
et

ho
ds LMF 00:00:00 10:17 0.786 0.548 0.918 0.700 0.774 0.797

Template-matching 00:26:00 07:53 0.719 0.792 0.863 0.611 0.655 0.733
Hough 12:00:00 21:53 0.779 0.950 0.719 0.702 0.422 0.796
HOG+SVM 07:27:01 00:02 0.794 0.914 0.920 0.659 0.644 0.663

D
ee

p
Le

ar
ni

ng

DetectNet/GoogleNet 02:45:26 32:24 0.880 0.855 0.907 0.920 0.906 0.940
F. R-CNN/Inception v2 01:06:46 02:59 0.820 0.720 0.881 0.563 0.568 0.718
F. R-CNN/ResNet-101 07:28:26 11:52 0.796 0.722 0.873 0.343 0.357 0.526
SSD/Inception v2 02:59:34 02:02 0.128 0.258 0.251 0.047 0.091 0.208
R-FCN/ResNet-101 01:26:30 09:34 0.872 0.821 0.922 0.571 0.577 0.723



Version July 9, 2020 submitted to Remote Sens. 17 of 24

exception was the DetectNet method, which actually had a better performance for the Mancañas with479

AP0.5 = 0.920, AR0.5 = 0.906, and F1max = 0.940. Interestingly, Faster R-CNN, both with the Inception480

v2 and ResNet-101 backbones, has comparable performance in the Almendras but the Inception v2481

backbone performed better in the Mancañas tree stand. R-FCN with ResNet-101 backbone was the best482

for the F1max metric, at 0.922, for the Almendras but its AP0.5, AR0.5 and F1max declined sharply for the483

Mancañas at 0.571, 0.577 and 0.723, respectively. In terms of computing time, besides LMF that does 4.3 and
3.8

484

not require a training stage, the Template method took the least time to obtain the template used for485

detection, being less than any of the neural-network-based approaches where Faster R-CNN/Inception486

got trained in the least time. For evaluation, HOG+SVM was the fastest, taking only two seconds to487

process.488

5. Discussion489

The DEVM representation permitted us to synthesize structural and contextual information490

efficiently. An alternative may be to employ single RGB or multispectral images. However, the 3.9491

resulting system may require a large dataset of manually annotated data to work with the neural492

network approaches [23] and correspondingly expensive infrastructure. An alternative may be to493

employ LiDAR and multispectral imaging sensing [88]. However, the resulting system may require494

a large aircraft and a correspondingly costly infrastructure. Our results confirm that the DVEM495

representation facilitates the generation of synthetic images, which can be used effectively to train496

classical and modern tree detection methods. This observation aligns with Perez et al. [89], who497

have highlighted the importance of incorporating the NDVI as an input to foster the performance of498

automatic tree detection algorithms. However, for a precise estimation of vegetation indices, one needs499

to consider some crucial factors, including illumination geometry and flying height, which may play500

a significant role in surface reflectance determination [90]. In our work, we used the built-in Pix4D501

conversion formula to obtain the derived NDVI, but we may need to investigate further whether a502

more robust radiometric calibration could enhance tree detection performance [91]. 3.6503

Our synthetic dataset includes images with a wide range of tree spacing and crown characteristics,504

including size, height, and shape. Therefore, it seems that neural network-based methods may505

generalize well for different forest types. In contrast to template matching, such approaches do not506

require producing a template describing a particular experimental forest [78]. We believe that the507

deep learning approach provides a unified framework where different tree models interact, making508

it easier to generalize. One could consider a CNN as a generalization of template matching where509

training supports the estimation of the most appropriate convolutional masks for detection [92]. This510

interpretation could explain the similar performance to DetectNET obtained in the Almendras tree511

stand.512

Simple methods, such as LMF and Hough, performed consistently well. They can be programmed513

easily using widely available computer vision libraries and require humble computing platforms.514

From our perspective, this result confirms the often neglected value of classic approaches [93]. Perhaps,515

the most surprising result was the differential performance exhibited by the deep learning methods in516

the Mancañas test field. Certainly, detecting individual trees in the Mancañas is more difficult than in517

the Almendras site. (see Figure 5 (c)-(d)). In the latter, the trees are isolated, while in the former, the518

rows are isolated, but the trees within are clustered. Our results show the value of DetectNet as an519

object detection model based on coverage maps rather than the anchor-based models such as Faster520

R-CNN, SSD, and R-FCN [94]. Although they share the same backbone architecture in some cases, the521

bounding box extraction strategy may show different performance for specific scenarios [95]. However,522

further studies are needed to understand the effects of deep learning architectures in the generation of523

covering maps [96]. In our experiments, the DetectNet representation exhibited better performance524

than the region-based proposal architectures.525
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Conclusion526

In this paper, we describe new methods to assess treetop detection methodologies efficiently. The527

DEVM representation made it possible to develop a strategy to construct synthetic ground truth data528

useful for training, alleviating the need for the task of labeling images. The representation compares529

well when benchmarked with classic and deep learning-based algorithms. Our experiments with530

datasets from two different forests provide support for our claims.531

Although our results suggest that the methods can accommodate a limited degree of tree overlaps,532

further research is required to extend them to more challenging scenarios, such as the conditions of533

overlapping crowns often found in dense forests. Nonetheless, our experiments were successful in534

two different settings, including broadleaf and evergreen (needle leaf) trees, suggesting that we can535

apply the methods to other scenarios.536

We planare planning to formulate the input to the CNN models with the raw data constituted by537

the near-infrared and red images, and the DMT and DSM maps. We expect that the neural network538

will unveil an optimized combination of the inputs to improve performance. We will alsoAlso, we539

will incorporate tree detection methods to a pipeline where SfM reconstruction and tree identification540

could be combined with allometric equations to obtain estimates of the stored carbon dioxide. Finally,541

we will continue the development ofdeveloping algorithms for the detection of trees in more complex542

scenarios, such as urban areas or forests.543
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Appendix A556

Algorithm 1 Synthetic DEVM images of trees. We generated domes to define individual tree shapes.
The pdf U (a, b) generated random real values from a uniform distribution in the range between a and
b, inclusive. b·c is the floor function.

1: Call: I← Synthetic_DEVM_Image(r, c)
2: Input: The number of rows r and columns c for the output image
3: Output: Synthetic DEVM image, Ir×c

. Assume the existence

of global constants n = (nmin, nmax), m = (mmin, mmax), and h = (hmin, hmax), the minimum

and maximum number of trees, number domes per tree, and height of the trees, respectively;

a = (amin, amax) and b = (bmin, bmax), the minimum and maximum lateral widths of each dome,

correspondingly; ∆ = (∆xy, ∆ab), the maximum displacement of the centroid and the change of the

width, respectively; and K2×2 and x, a diagonal matrix with the relationship between meters and

pixels, and the center of the dome in the image.
4: I← 0w×h; . Initialize DEVM image to zero
5: n← bU (nmin, nmax)c; . Define the number of trees
6: for i← 1 : n do
7: hi ← U (hmin, hmax); . i-th tree height
8: ai ← U (amin, amax);
9: bi ← U (bmin, bmax); . i-th tree width

10: xi ← U (amax + ∆xy, c− amax − ∆xy);
11: yi ← U (bmax + ∆xy, r− bmax − ∆xy);

. i-th tree center
12: mi ← bU (mmin, mmax)c; . number of domes for the i-th tree
13: for j← 1 : mi do
14: hij ← hi + U (−∆h, ∆h); . height for the j-th domes of the i-th tree
15: xij ← xi + U (−∆xy, ∆xy);
16: yij ← yi + U (−∆xy, ∆xy);

. center of the j-th dome of the i-th tree
17: aij ← U (ai − ∆ab, ai);
18: bij ← U (bi − ∆ab, bi);

. width of the j-th dome of the i-th tree
19: D(α, β) = hij · cos

(
απ
2aij

)
· cos

(
βπ
2bij

)
; . create a dome using (3)

20: J(Kθ+ x) = D(α, β); . transform domains, θ = (α, β)T

21: I← max (I, J); . Add dome to image I
22: end for
23: end for
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Appendix B557

Algorithm 2 Detection of trees in images using a CNN and a synthetic dataset for training. The
symbols � and � represent the point-wise division and multiplication, respectively.

1: Call: BBList← DETECTION(NI, R, DSM, DTM)
2: Input: Near Infrared (NI), Red (R), Digital Surface Map (DSM), Digital Terrain Map (DTM)
3: Output: BBList . Trees in the image
4: NDVI←(NI - R) � (NI + R) . Compute NDVI
5: DEVM← (DSM - DTM) � NDVI . Digital Elevated Vegetation Model
6: ∆w← · · · , ∆r ← · · · . image patch size
7: ROIList← Partition(DEVM, ∆w, ∆r ); . divide DEVM into ROIs
8: BBList← {}
9: for j← 1:length( ROIList) do . for all the ROIs in the image

10: ROI← ROIList(j) . obtain current ROI from DEVM
11: 〈BB, S〉 ← DetectNet(ROI); . bounding boxes and confidence score
12: if BB is not empty then
13: BB ← GlobalCoordinates (BB) . BB in global coordinates
14: BBList← Append (BBList, BB, S) . add to global list15: end for
16: BBList← selectStrongestBB(BBList) . Non-Maximal Suppression
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