
A Revised Shear-Lag Analysis of an Energy Model for
Fiber-Matrix Debonding

John A. Nairn∗ and H. Daniel Wagner†
∗Material Science & Engineering, University of Utah, Salt Lake City, Utah 84112, USA

†Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

A shear-lag analysis based on energy is used to predict the amount of debonding that
occurs when a fiber fragment breaks into two fragments. The shear-lag analysis repro-
duces all features of more sophisticated analyses. A drawback of the shear-lag analysis,
however, is that it depends on an unknown parameter which can be expressed in terms
of an effective fiber volume fraction. If the effective fiber volume fraction can be deter-
mined (by experiments or by advanced stress analyses), the shear-lag model can be used
to interpret debonding experiments.

Introduction

Reference [1] proposed that the extent of debonding during a single fiber fragmentation test can
be predicted by equating the total energy released due to fiber fracture to the energy required
to create fiber fracture and debond fracture surface area. Using this hypothesis and a one
dimensional shear-lag analysis, an expression was derived that predicts the initial debond length
as a function of applied stress level. This analysis was limited to long fragments, ignored residual
thermal stresses, and assumed frictionless debonds.

There have been two developments since Ref. [1]. First, some general tools for energy analysis of
fragmentation specimens have been derived [2]. By using the results in Ref. [2], we can extend the
previous shear-lag debonding analysis to work for all fragment lengths, and to include residual
stresses. Second, both the limitations and capabilities of shear-lag analysis for fiber-matrix stress
transfer have been assessed [3]. By using the results in Ref. [3], we can recommend some minor
revisions to the shear-lag analysis in Ref. [1]. Furthermore, we can examine the limitations and
capabilities of shear-lag debonding analyses.

Revised Theory

In a fragmentation test, a single fiber is embedded in a large amount of matrix and the specimen
is loaded until the fiber breaks into fragments. In Ref. [2], the total strain energy in a single
fragment within a fragmentation specimen with an intact and perfect interface was derived to
be

U(ρ) = ρU0 + πr2
fσ
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where ρ = l/(2rf ) is the aspect ratio of the fiber fragment (of length l and radius rf ), σf∞ is the
far-field fiber stress (the fiber stress far-away from a fiber break in an infinitely long fragment),
and ρU0 is the far-field strain energy. In terms of fiber and matrix properties, applied stress
(σ0), and temperature differential (∆T ),the far-field fiber stress is [2]:
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The anisotropic fiber is assumed to be transversely isotropic. The terms EA, ET , νA, νT , αA, and
αT are the axial (fiber direction) and transverse moduli, Poisson’s ratios, and thermal expansion
coefficients of the fiber. The terms Em, νm, and αm are the modulus, Poisson’s ratio, and
thermal expansion coefficient of the isotropic matrix.
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The term
〈
w

(p)
f (ρ)

〉
in Eq. (1) is the average fiber displacement on the end of the fiber. The

superscript (p) denotes a “perturbation” fiber displacement or the fiber displacement due to
compression stress of−1 on the fiber ends and zero displacement on the matrix ends [2]. Equation
(1) is exact provided we supply an exact result for

〈
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〉
. Here we will use shear-lag methods

to derive an approximate
〈
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f (ρ)

〉
and therefore an approximate strain energy. The shear-lag

equation for average axial fiber stress is

∂2 〈σf 〉
∂ζ2 − β2 〈σf 〉 = −β2 〈σf∞〉 (3)

where β is a dimensionless shear-lag parameter and ζ is a dimensionless axial coordinate (ζ =
z/rf ). This equation was first used by Cox [4] who further claimed the shear-lag parameter to
be

β2
cox = − 4µm

Ef lnVf
(4)

where µm is the shear modulus of the matrix and Vf is the volume fraction of the fiber. A
careful examination of shear-lag analysis, however, shows βcox to be an extremely poor choice
for modeling fiber/matrix stress transfer [3]. An alternate parameter first derived by Nayfeh [5]
works much better:
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where µA is the axial shear modulus of the fiber and Vm is the volume fraction of the matrix.
βcox was used in the previous debonding analysis [1]. An important revision made here is to
replace βcox by β in Eq. (5).

We consider a fiber fragment with the origin at the center of the fragment. The boundary
conditions for the perturbation stresses are 〈σf (±ρ)〉 = −1. The shear-lag solution is easily
found to be

〈σf 〉 = −coshβζ
coshβρ

and
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〉
=
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An approximate expression for strain energy in a fiber fragment becomes

U(ρ) = ρU0 − πr3
fσ

2
f∞F (ρ) where F (ρ) =

tanhβρ
EAβ

(7)

The analysis in Ref. [2] developed results for fiber fracture and debonding based solely on the
fragment energy and expressed in terms of an analogous energy function F (ρ). In Ref. [2], F (ρ)
was found by a complicated, axisymmetric analysis of the fragmentation specimen stresses; here
we generate simpler shear-lag results simply by using the results from Ref. [2] but substituting
instead F (ρ) from Eq. (7). When the two fragment ends each have debonds of length Ld/2, the
total fragment strain energy changes to [2]:

U(ρ, δ) = ρU0 − πr3
fσ
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where δ = Ld/2rf is the dimensionless length of each debond and
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Q is approximately 1 when EA >> Em; it accounts for strain energy associated with radial and
hoop stresses within the debond zone [2]. The energy release rates for fiber fracture, Gf , and
for debonding, Gd, are [2]:

Gf (ρ, δ) = rfσ
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Gd(ρ, δ) =
rfσ

2
f∞

4

[
Q

EA
− F ′(ρ− δ)

]
=
rfσ

2
f∞

4EA

[
Q− sech 2β(ρ− δ)

]
(11)

The debonding energy release rate reduces to the Outwater and Murphy [6] result in the limit
of (ρ− δ)→∞ provided Q is taken as equal to 1 (because they ignored radial and hoop stresses
in the debond zone).

Using an energy analysis [1, 2], we assume that when a fragment of aspect ratio ρ having two
initial debonds of length δi breaks into two fragments of aspect ratio ρ/2 each with two debonds
of length δf , that the total amount of new debonding, δ∗ = 4δf − 2δi, can be predicted by
equating the total energy released by fiber fracture and debonding to the total energy required
to create the new fiber fracture and debond fracture surfaces. Note, the analysis is unaffected
by unequal debond lengths on the two fiber ends; δi and δf can thus be taken as average debond
lengths before and after the fiber break. The energy balance expression is [1, 2]:

πr2
fGf (ρ− δi, 0) + 8πr2

f
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where Γf and Γd are the average fiber and interface toughnesses. The result after partially
solving for δ∗ is
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When coupled with actual or predicted fragmentation data (i.e., fragment aspect ratio as a
function of applied stress), Eq. (13) can predict the amount of debonding associated with each
fiber break. Alternatively, when coupled with debond observations, Eq. (13) can be used to
determine interfacial debonding energy (Γd). Thus, Eq. (13) is the revised shear-lag debonding
model that extends the model in Ref. [1] to work for all fragment lengths, to include residual
thermal stresses (through terms in σf∞), and to use improved shear-lag analysis (through the
improved β in Eq. (5)). The shear-lag debonding model is based only on shear-lag calculations
of average fiber stress and total strain energy. As discussed in Ref. [3], shear-lag is qualitatively
accurate for these quantities; thus this shear-lag debonding model should give reasonable results.
In contrast, shear-lag debonding models that are based on interfacial shear stresses should not
be used because shear-lag analysis gives unreliable results for shear stresses [3].

Equation (13) must be solved numerically because δ∗ appears as an argument in tanh(x). The
situation simplifies in the long-fragment limit where limx→∞ tanh(x) → 1 and an analytical
expression for δ∗ is

δ∗ =
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The analogous result in Ref. [1] was
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Figure 1. Debonding predictions by shear-lag model, Bessel-Fourier model, and long-fragment
limit model during fragmentation of a carbon fiber (EA=390 GPa, ET=14 GPa, µA=20 GPa,
νA=0.2, νT=0.25, rf=3.5 µm) in an epoxy matrix (Em=2.6 GPa, νm=0.34) (data from Ref. [7]).

The forms of the new model (Eq. (14)) and of the old model (Eq. (15)) are the same. The
new model, however, includes residual thermal stresses (through σf∞ instead of σf ), uses the
improved shear lag parameter (β instead of βcox), and includes the factor Q. The previous model
had an additional term in the numerator that is proportional to EA/µA. That term occurs
because in Ref. [1], strain energy was calculated by integrating strain energy density; the extra
term arose from the shear stress terms in the strain energy density. Although mathematically
correct, it is unlikely that the integral approach is more accurate than the strain energy analysis
based on perturbation fiber displacement (see Eq. (1) [2, 3]).

Results and Discussion

In Ref. [2] a set of fragmentation data for a high-modulus carbon fiber in an epoxy matrix [7]
was modeled by assuming that the fiber fragments when the peak stress in the fiber reaches
the length-dependent strength of the fiber and that each fiber break is associated with debond
growth. The fiber strength was experimentally determined to be σult(l) = 3750 − 817 log l (in
MPa when l in mm) [7]. The debond growth, although not measured, was predicted using the
energy balance method [1, 2] with Γd = 30.5 J/m2 and Γf = 10 J/m2. The debonding toughness
was determined by fitting the predictions to the fragmentation data; the fiber toughness was
selected arbitrarily but has little influence on the predictions as long as it is much less than
the amount of energy released by fiber breaks (about 4000 J/m2 [2]). In Ref. [2] the debond
predictions were made using an axisymmetric stress analysis based on a Bessel-Fourier series
stress function. Here we compare the full Bessel-Fourier analysis results to the much simpler
shear-lag model.

Figure 1 shows typical fragmentation data and energy model predictions of the amount of
debonding associated with each fiber break. The shear-lag model and Bessel-Fourier model
are virtually identical. They both rise to a peak and then decrease as the fragmentation process
approaches saturation. The shear lag model has a slightly higher peak than the Bessel-Fourier
analysis. Also shown in Fig. 1 is the debond growth predicted by the long-fragment limit result
(see Eq. (14)). The long fragment limit is accurate prior to the peak in the full analysis results.
The shear-lag and Bessel-Fourier analysis results are identical in the long fragment limit.

The shear-lag predictions in Fig. 1 depend on the value of β, but, it is formally not possible
to determine β for a single fiber in a large amount of matrix. The problem is that as Vf → 0,
β incorrectly approaches zero. In other words, shear-lag analysis does not correctly model
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stress transfer at very low Vf [3]. The only recourse, is to treat β as an unknown parameter;
the traditional approach is to define an effective Vf . Looking at fiber stress (see Eq. (6)), an
effective β can be estimated from the number of fiber diameters required to transfer 50% of the
far-field fiber stress back into the fiber:

ζ50 =
1
β

cosh−1
(

1
2

coshβρ
)

(16)

Alternatively, from Eq. (10), β can be found from the long fragment limit for fiber energy release
rate

β =
rfσ

2
f∞

EA

1
limρ→∞Gf (ρ)

(17)

The later approach was used here with Gf (ρ) given by the Bessel-Fourier analysis in Ref. [2].
For the carbon fiber/epoxy system, the effective Vf was 0.16%. For other systems, the effective
Vf depends on the fiber and matrix mechanical properties and on the ability of the fiber/matrix
interface to transfer stress. The effective Vf increases as the modulus ratio EA/Em decreases and
decreases as the stress transfer efficiency gets worse [2]. In summary, the shear-lag debonding
model reproduces all features of more complicated models, but it depends on an unknown
parameter — the effective Vf . Before shear-lag analysis can be used to interpret experiments, the
effective Vf must be determined by comparison to stress transfer experiments or by calibration
using more advanced analyses that do not have unknown parameters (e.g., the Bessel-Fourier
analysis in Ref. [2]).

It is possible that not all the energy released by fiber breaks will be consumed by debonding. For
example some energy could be dissipated as heat, vibrations, or friction on the debond surface.
To a first approximation, effects of other energy dissipation mechanisms can be included by
reducing the value of Q. This change will not change the form of any of the debond predictions
or of fits to experimental data, but it will change the value of Γd required to generate the fits.
Specially, the Γd determined from a frictionless model is an upper bound to the true debonding
toughness.
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