
Mechanics of Materials 26 (1997) 63–80

MECHANICS
OF

MATERIALS

On the Use of Shear-Lag Methods for Analysis of Stress Transfer in
Unidirectional Composites

John A. Nairn∗

Material Science and Engineering, 304 EMRO Bldg., University of Utah, Salt Lake City, Utah 84112, USA

Received 6 November 1996

Abstract

The “shear-lag” analysis method is frequently used for analysis of stress transfer between the fiber and the matrix

in composites. The accuracy of shear-lag methods has not been critically assessed, in part because the assumptions

have not been fully understood. This paper starts from the exact equations of elasticity for axisymmetric stress states

in transversely isotropic materials and introduces the minimum assumptions required to derive the most commonly

used shear-lag equations. These assumptions can now be checked to study the accuracy of shear-lag analysis on any

problem. Some sample calculations were done for stress transfer from a matrix into a broken fiber. The shear-lag

method did a reasonable job (within 20%) of predicting average axial stress in the fiber and total strain energy in the

specimen provided the shear-lag parameter most commonly used in the literature is replaced by a new one derived

from the approximate elasticity analysis. The shear-lag method does a much worse job of predicting shear stresses

and energy release rates. Furthermore, the shear-lag method does not work for low fiber volume fractions.

1. Introduction

The so-called “shear lag” method is often used for analysis of stress transfer problems in composites. The
term “shear lag” can be traced, prior to its use in composites, to analysis of bending of I beams and T beams
with wide flanges (Troitsky, 1976) and to box beams (Reissner, 1946). Simple beam theory predicts that the
axial displacements in the flanges of such beams are only a function of the distance from the neutral axis
and independent of the distance from the web. This simple theory also predicts zero shear stress and zero
shear strain in the flange. In reality, the true axial displacements “lag” behind the beam theory predictions.
This “lag” is cause by load diffusion which can be viewed (using equilibrium arguments) as a consequence
of non-zero shear stresses in the flange — hence the term “shear lag.” In these beam analyses, “shear
lag” is an effect and not an analysis method. Many possible analysis methods can evaluate the “shear lag”
effect. These methods generally result in defining an effective flange width that is less than the actual flange
width (Troitsky, 1976). If effective width is not considered when designing beams, the resulting beams can
be seriously under designed.

In composites, the term “shear lag” is associated with a stress transfer analysis method originally proposed
by Cox (1952) as a small part of a larger paper on the elasticity and strength of fibrous materials. He derived
a one-dimensional equation for fiber stress that can be written as

∂2 〈σf 〉
∂z2

− β2 〈σf 〉 = −β2 〈σf∞〉 (1)
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where 〈σf 〉 is the average axial stress in the fiber, 〈σf∞〉 is the average axial stress in the corresponding
infinitely long fiber embedded in an infinitely long matrix, and β is the shear lag parameter. Cox (1952)
further stated that the shear-lag parameter is given by

β = βcox =
1

r1

√
2Gm

Ef ln s
r1

(2)

where Gm is the matrix shear modulus, Ef is the fiber axial modulus, r1 is the fiber radius, and s is the
mean center-to-center separation of fibers normal to their length (Cox, 1952). When Cox’s model is applied
to concentric cylinders with the fiber as the central cylinder, s is generally taken as equal to r2 or the outer
radius of the matrix cylinder (Piggott, 1987); that convention, because it is the predominant convention,
will be used in this paper. A more literal interpretation Cox’s analysis might use s = 2r2.

Cox (1952) derived Eq. (1) by starting with an exact equilibrium relation between average fiber stress,
〈σf 〉, and interfacial shear stress, τ :

∂ 〈σf 〉
∂z

= −2τ

r1
(3)

Equation 3 follows by integrating the axial equation of stress equilibrium over the fiber cross-sectional
area (McCartney, 1992). To eliminate shear stress, Cox (1952) introduced the assumption that

τ ∝ w∞ − w (4)

where w is axial displacement in the fiber and w∞ is the axial displacement for the corresponding unbroken,
infinitely long fiber in an infinitely long amount of matrix. Or equivalently, as stated by Cox (1952), the
axial displacement in the absence of the fiber. In mathematical terms, w∞ is the matrix displacement at
large r and w is the fiber displacement at small r which leads to

τ ∝ ∂w

∂r
(5)

By an exact elasticity analysis, the shear stress should be given by

τ = Gγ = G

(
∂w

∂r
+
∂u

∂z

)
(6)

where γ is the engineering shear strain and u is radial displacement. The Cox (1952) assumption, which will
be referred to here as the fundamental shear-lag assumption, is thus that

γ =
∂w

∂r
(7)

This assumption is formally exact when ∂u/∂z = 0, but it should be expected to give a good approximate
solution provided it can be shown that ∣∣∣∣∂u∂z

∣∣∣∣ << ∣∣∣∣∂w∂r
∣∣∣∣ (8)

Cox’s (1952) original analysis has lead to wide-spread use of shear-lag models for analysis of stress transfer
in composites (e.g., Kim, Baillie, and Mai, 1991; Jiang and Penn, 1992; Hseuh, 1995 and references therein).
In other words, the fundamental shear-lag approximation is often taken as an acceptable approximation for
composite stress analysis. Here I will examine the suitability of shear-lag methods for analyzing stress
transfer and energy in axisymmetric fiber/matrix problems. The approach will be to begin with exact
elasticity equations for axisymmetric stress states with transversely isotropic materials and then to introduce
the minimum assumptions required to arrive at Cox’s (1952) equation. I am aware of two other attempts
at deriving shear-lag methods directly from elasticity equations by Nayfeh (1977) and McCartney (1992).
The approach here is a generalization of those papers to more explicitly state the required assumptions, to
handle a wider variety of problems (e.g., multiple concentric cylinders), and to consider shear-lag predictions
of strain energy.
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Besides Cox’s (1952) fundamental shear-lag assumptions, at least three additional assumptions must be
made to derive the equations typically used for shear-lag models. Furthermore, the elasticity analysis leads to
a shear-lag parameter, β, that is drastically different than the βcox proposed by Cox (1952). For two-cylinder
problems, the β derived here agrees with the β’s derived by Nayfeh (1977) and McCartney (1992). Using
the improved β, shear-lag methods give reasonable estimates of both stress transfer and energy in finite,
two-cylinder, fiber/matrix problems. The shear-lag method, however, does not work for low fiber volume
fractions (i.e., fiber in an infinite matrix), does not work well for displacement boundary conditions, and is
probably too qualitative for calculations of shear stress or energy release rate.

2. Theory

2.1. Exact Elasticity Results

Consider axisymmetric stress states and let u(r, z) and w(r, z) be the radial and axial displacements, respec-
tively. The hoop displacements (v) are always zero and the radial and axial displacements depend only on
the radial and axial coordinates, r and z. The axial and shear strains are given in terms of displacements by

εzz =
∂w

∂z
and γrz =

∂u

∂z
+
∂w

∂r
(9)

These strains are related to stresses by Hooke’s laws:

εzz =
σzz
EA
− νA
EA

(σrr + σθθ) + αAT and γrz =
τrz
GA

(10)

The axial and shear stresses must further satisfy the axial equilibrium equation

∂τrz
∂r

+
∂σzz
∂z

+
τrz
r

= 0 (11)

For brevity, only the axisymmetric elasticity equations used in this paper are quoted. The material has
been assumed to be transversely isotropic with the axial direction of the material aligned with the axial
direction of the stress state. EA and ET are the axial and transverse tensile moduli, GA is the axial shear
modulus, and νT is the transverse Poisson’s ratio. A thermal stress term is included to account for residual
stresses; αA is the axial thermal expansion coefficient and T = Ts−T0 is the difference between the specimen
temperature, Ts, and the stress-free temperature, T0.

From Lekhnitski (1981), the stresses and displacements for an axisymmetric stress state in a transversely
isotropic material can be written as (again quoting only what will be used):

σzz =
∂

∂z

(
c
∂2Ψ

∂r2
+
c

r

∂Ψ

∂r
+ d

∂2Ψ

∂z2

)
(12)

τrz =
∂

∂r

(
∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+ a

∂2Ψ

∂z2

)
(13)

u =
b− 1

2GT

∂2Ψ

∂r∂z
(14)

where the constants are

a =
−νA(1 + νT )

1− ν2
A
ET

EA

(15)

b =
νT − νAET

EA

(
EA

GA
− νA

)
1− ν2

A
ET

EA

(16)

c =
EA

GA
− νA(1 + νT )

1− ν2
A
ET

EA

(17)

d =
EA

2GT
(1− νT )

1− ν2
A
ET

EA

(18)
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and GT and νA are the transverse shear modulus and axial Poisson’s ratio. For a transversely isotropic
material, the transverse tensile and shear moduli are related by ET = 2GT (1 + νT ). The stress function Ψ
must satisfy the equation

∇2
1∇2

2Ψ = 0 (19)

where the operators are defined by

∇2
i =

∂2

∂r2
+

1

r

∂

∂r
+

1

s2i

∂2

∂z2
(20)

and the constants, s1 and s2 are

s21,2 =
a+ c±

√
(a+ c)2 − 4d

2d
(21)

The fundamental shear-lag assumption that ∂u/∂z = 0 implies that u is a function only of r. We can
consider the conditions for which the fundamental shear-lag assumption will lead to an exact solution. Let
u = g1(r) be a function only of r. Integrating Eq. (14) twice, the stress function must have the form

Ψ = f(z) + g1(r)z + g2(r) (22)

where f(z) is a function only of z and gi(r) are functions only of r. Substituting into Eq. (19), the differential
equations for the unknown functions in terms of r, z, and a set of constants, ki become:

f ′′(z) = −k1s
2
1s

2
2z

3

6
− k2s

2
1s

2
2z

2

2
+ k7z + k8 (23)

g′′1 (r) +
g′1(r)

r
=

k1r
2

4
+ k3 ln r + k4 (24)

g′′2 (r) +
g′2(r)

r
=

k2r
2

4
+ k5 ln r + k6 (25)

Using Eqs. (12) and (13) one quickly obtains

σzz = c

(
k21r

4
+ k3 ln r + k4

)
− d

(
k1z

2

2d
+
k2z

d
− k7

)
(26)

τrz =
r

2
(k1z + k2) +

1

r
(k3z + k5) (27)

Focusing on one value of r, say the interface between a cylindrical fiber and a matrix, σzz is quadratic
in z and τrz is linear in z; no other forms for σzz and τrz are possible when the fundamental shear-lag
approximation is correct. With the exception of elasto-plastic models, where τrz is assumed to be constant
and σzz is therefore linear, the exact solutions to stress transfer problems do not follow these simple forms
for σzz and τrz. Thus, as anticipated, shear-lag methods can only provide approximate analyses for stress
transfer problems. They can be expected to be good approximations in regions where τrz does not deviate
too far from linearity in z; they might be a poor approximations when τrz is non-linear in z.

2.2. Approximate Shear-Lag Analysis

The fundamental shear-lag assumption by itself is not enough to derive an approximate shear-lag analysis
of stress transfer; additional assumptions are required. The choices for the additional assumptions are not
unique. The goal here was to select a set of additional assumptions that are consistent with the bulk of the
shear-lag literature. The next key assumption is found be rewriting the form of the “exact” shear-lag shear
stress in a more general form

τrz =
f0(z)r

2
+
f1(z)

r
(28)

where fi(z) are functions of only z. In the “exact” shear-lag stress state, fi(z) are linear in z; in an approxi-
mate shear-lag analysis we relax this requirement and let fi(z) be arbitrary functions of z (McCartney, 1992).
A similar assumption or a similar form for the resulting shear stress is found in most shear-lag papers in the
literature.
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Now consider a hollow cylinder of a transversely isotropic material with the inner radius ri and the outer
radius ro. Let

τrz(ri) = τrz(ri, z) and τrz(ro) = τrz(ro, z) (29)

be the inner and outer surface shear stresses. These surface stresses are functions only of z. The functions
fi(z) can be expressed in terms of τrz(ri) and τrz(ro). The form of the shear stresses becomes:

τrz =
riro

(r2o − r2i )

[
τrz(ri)

(
ro
r
− r

ro

)
− τrz(ro)

(
ri
r
− r

ri

)]
(30)

The next step is to generalize a transform technique used by McCartney (1992) — equate τrz in Eq. (30) to
GA

∂w
∂r , multiply both sides by (A− r2), where A is a constant, and integrate by parts from ri to ro to get

〈w〉 (r2o − r2i ) =
riτrz(ri)

2GA
riτrz(ri)

(
Ar2o

r2o − r2i
ln
r2o
r2i
−A− r2o +

r2o + r2i
2

)
+ w(ri)(A− r2i )

− roτrz(ro)

2GA

(
Ar2i

r2o − r2i
ln
r2o
r2i
−A− r2i +

r2o + r2i
2

)
− w(ro)(A− r2o) (31)

where 〈w〉 is the average value of w defined by

〈w〉 =
2

r2o − r2i

∫ ro

ri

rw dr (32)

and w(ri) and w(ro) are the surface displacements. 〈w〉, w(ri), and w(ro) are all functions of only z.
To deal with 〈w〉, consider an averaged form of the axial Hooke’s law:

〈εzz〉 =
∂ 〈w〉
∂z

=
〈σzz〉
EA

− νA
EA
〈σrr + σθθ〉+ αAT (33)

where 〈f〉 denotes averaging over the cylinder as in Eq. (32). There is a problem — what can be assumed
about 〈σrr + σθθ〉. An assumption used in virtually all shear-lag analyses is to replace the correct axial
Hooke’s law with a one-dimensional version that ignores transverse stresses (e.g., Cox, 1952; Hseuh, 1988).
The implied, though normally unstated, assumption is that

〈σrr + σθθ〉 = 0 (34)

or more explicitly that ∣∣∣∣ νAEA 〈σrr + σθθ〉
∣∣∣∣ << ∣∣∣∣ 〈σzz〉EA

+ αAT

∣∣∣∣ (35)

Using this new assumption and differentiating with respect to z gives

∂2 〈w〉
∂z2

=
1

EA

∂ 〈σzz〉
∂z

=
2

EA(r2o − r2i )
[riτrz(ri)− roτrz(ro)] (36)

The latter part of Eq. (36) follows by integrating the axial equilibrium equation (Eq. (11)). Finally, differ-
entiating Eq. (31) twice and equating to Eq. (36) with A = r2i or A = r2o gives

w′′(ro) =
2

EA(r2o − r2i )
[riτrz(ri)− roτrz(ro)]−

r2i
2GA(r2o − r2i )

[
riτ
′′
rz(ri)

(
r2o

r2o − r2i
ln
r2o
r2i
− 1− r2o − r2i

2r2i

)

− roτ ′′rz(ro)
(

r2i
r2o − r2i

ln
r2o
r2i
− 1 +

r2o − r2i
2r2i

)]
(37)

w′′(ri) =
2

EA(r2o − r2i )
[riτrz(ri)− roτrz(ro)]−

r2o
2GA(r2o − r2i )

[
riτ
′′
rz(ri)

(
r2o

r2o − r2i
ln
r2o
r2i
− 1− r2o − r2i

2r2o

)

− roτ ′′rz(ro)
(

r2i
r2o − r2i

ln
r2o
r2i
− 1 +

r2o − r2i
2r2o

)]
(38)
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These two equations are the most fundamental starting equations for shear-lag analysis of axisymmetric stress
states. There are two equations and four unknown functions of z — w(ri), w(ro), τrz(ri), and τrz(ro). The
two equations can be solved for two of the unknown functions. When shear-lag analysis is used for composite
problems, the two remaining unknown functions will follow by boundary conditions or by continuity with
the stresses and displacements with a neighboring cylinder typically having different material properties.

Once τrz(ri) and τrz(ro) are known, the shear stress is known every place by substitution into Eq. (30).
Integrating the shear-strain Hooke’s law in Eq. (10) and using ∂u/∂z = 0, the axial displacement is known
every place by

w = w(ri) +
riro

2GA(r2o − r2i )

[
roτrz(ri)

(
ln
r2

r2i
− r2 − r2i

r2o

)
− riτrz(ro)

(
ln
r2

r2i
− r2 − r2i

r2i

)]
(39)

Integrating Eq. (11), the axial stress is

σzz =
2

r2o − r2i

[
ri

∫
τrz(ri)dz − ro

∫
τrz(ro)dz

]
+ g0(r) (40)

The axial stress is determined except for an unknown function of r. Most shear-lag papers either assume
σzz is independent of r, in which case g0(r) is a constant, or more generally deal only with the average axial
stress

〈σzz〉 =
2

r2o − r2i

[
ri

∫
τrz(ri)dz − ro

∫
τrz(ro)dz

]
+ 〈g0(r)〉 (41)

where 〈g0(r)〉 is a constant. In many problems 〈g0(r)〉 can be determined from the boundary conditions,
but in some problems it may remain undetermined. Using the assumption that 〈σrr + σθθ〉 = 0 and the
relation for transverse stress equilibrium, it is possible to derive the form of the transverse normal stresses.
It is unlikely, however, that the information buried this deep in the approximate shear-lag analysis will be
accurate. Shear-lag is thus best treated as a one-dimensional analysis method that is aimed at deriving σzz
and τrz, but is not suited for finding accurate information about transverse normal stresses.

The axial and shear stresses satisfy the axial equilibrium equation (Eq. (11)) and the axial displacement
satisfies the shear-strain Hooke’s law (Eq. (10) with ∂u

∂z = 0). The axial displacement, does not satisfy the
axial strain Hooke’s law (Eq. (10)), but the average axial displacement does satisfy the average axial strain
Hooke’s law (Eq. (33)). There is thus a final shear-lag assumption — σzz and w should be independent of
r. Because they, in general, will not be independent of r (see Eq. (39) and Eq. (40)), the final shear-lag
approximation is that σzz and w should only weakly depend on r.

In summary, derivation of the most basic shear-lag equations requires using four assumptions. The four
assumptions are: ∣∣∣∣∂u∂z

∣∣∣∣ <<

∣∣∣∣∂w∂r
∣∣∣∣ (42)

τrz =
f0(z)r

2
+
f1(z)

r
(43)∣∣∣∣ νAEA 〈σrr + σθθ〉

∣∣∣∣ <<

∣∣∣∣ 〈σzz〉EA
+ αAT

∣∣∣∣ (44)

and that σzz and w only weakly depend on r. These assumptions appear to be the minimum number of
assumptions required, but they are not a unique set of assumptions. This set was selected to be consistent
with as much of the literature as possible. The use of different assumptions may be appropriate for certain
problems. For example, Nayfeh (1977) considered shear-lag analysis of two concentric cylinders where the
transverse strain was assumed to be small instead of the sum of the transverse stresses. He derived equations
identical to those discussed in the next section, but his equations had modified coefficients. In other words,
the use of altered assumptions will not alter the fundamental form of the shear-lag equations and therefore
will not alter this assessment of the applicability of shear-lag methods to composite stress analysis.
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3. Analysis of Concentric Cylinders

3.1. Multiple Concentric Cylinders

Consider n concentric cylinders under total axial stress of σ0. Cylinder i extends from ri−1 to ri. The shear
stress on the inner surface of the first cylinder (which may be at r0 = 0) is zero (τrz(r0) = 0). The shear
stress on the outer surface of the last cylinder is zero (τrz(rn) = 0). The axial and shear moduli in cylinder

i are E
(i)
A and G

(i)
A .

A set of n − 1 equations for the n − 1 interfacial shear stresses between the n cylinders follows directly
from Eq. (38). The procedure is to equate w′′(ri) determined from the outer surface of cylinder i to w′′(ri)
determined from the inner surface of cylinder i+ 1. The result is:

2

[
ri−1τrz(ri−1)

E
(i)
A (r2i − r2i−1)

− riτrz(ri)

(
1

E
(i)
A (r2i − r2i−1)

+
1

E
(i+1)
A (r2i+1 − r2i )

)
+

ri+1τrz(ri+1)

E
(i+1)
A (r2i+1 − r2i )

]
=

+
r3i−1τ

′′
rz(ri−1)

2G
(i)
A (r2i − r2i−1)

(
r2i

r2i − r2i−1
ln

r2i
r2i−1

− 1 +
r2i − r2i−1

2r2i−1

)

− riτ ′′rz(ri)

[
r2i−1

2G
(i)
A (r2i − r2i−1)

(
r2i−1

r2i − r2i−1
ln

r2i
r2i−1

− 1 +
r2i − r2i−1

2r2i−1

)

+
r2i+1

2G
(i+1)
A (r2i+1 − r2i )

(
r2i+1

r2i+1 − r2i
ln
r2i+1

r2i
− 1−

r2i+1 − r2i
2r2i+1

)]

+
r3i+1τ

′′
rz(ri+1)

2G
(i+1)
A (r2i+1 − r2i )

(
r2i

r2i+1 − r2i
ln
r2i+1

r2i
− 1 +

r2i+1 − r2i
2r2i+1

)
(45)

The set of equations for i = 1 to n− 1 define n− 1 coupled, second-order differential equations for the n− 1
interfacial shear stresses. Once the interfacial shear stresses are found, the shear stress, axial displacement,
and average axial stress (to within a constant) follow from the results in the previous section. This analysis
assumed continuous displacements between cylinders and thus assumes perfect interfaces between all cylin-
ders. Imperfect interfaces could, in principle, be modeled by allowing displacement discontinuities at some
interfaces (Hashin, 1990); only perfect interfaces are considered here.

3.2. Two Concentric Cylinders

A common problem analyzed by shear-lag methods is a solid fiber cylinder of radius r1 embedded in a hollow
matrix cylinder with inner radius r1 and outer radius r2. A special case of the previous section (using n = 2
and r0 = 0) gives the single equation

∂2τrz(r1)

∂z2
− β2τrz(r1) = 0 (46)

where

β2 =
2

r21E
(1)
A E

(2)
A

 E
(1)
A V1 + E

(2)
A V2

V2

4G
(1)

A

+ 1

2G
(2)

A

(
1
V2

ln 1
V1
− 1− V2

2

)
 (47)

and V1 and V2 are the fiber and matrix volume fractions defined by

V1 =
r21
r22

and V2 =
r22 − r21
r22

(48)

Multiplying the axial equilibrium equation in the fiber by r and integrating from 0 to r1 gives

∂ 〈σf 〉
∂z

= −2τrz(r1)

r1
(49)
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where σf is σzz in the fiber (see Eq. (3) or Eq. (36)). Substitution into Eq. (46) and integrating once gives

∂2 〈σf 〉
∂z2

− β2 〈σf 〉 = constant (50)

Now, far away from stress transfer zone, the fiber axial stress will settle into the far-field stress, σf∞, and
the derivative term will be zero. The constant must therefore be −β2 〈σf∞〉. The final equation, which is
identical to Cox’s (1952) equation is

∂2 〈σf 〉
∂z2

− β2 〈σf 〉 = −β2 〈σf∞〉 (51)

The β2 term (Eq. (47)), however, is very different than the one derived by Cox (1952) (Eq. (2)). The β2

term here is identical to the one derived by Nayfeh (1977) and McCartney (1992).

3.3. A Specific Problem

Consider concentric fiber and matrix cylinders of length l with a total applied axial stress of σ0. The fiber
ends are treated as fiber breaks and therefore the fiber-end surfaces are stress free. The entire applied axial
stress is assumed to be applied uniformly over the matrix at a stress level of

σm =
σ0
V2

(52)

All boundary shear stresses are zero. For simplicity, thermal stresses are ignored or T = 0. Equation (51)
along with Hooke’s laws, force balance, and equilibrium are easily solved to give

〈σf 〉
〈σf∞〉

= 1− coshβz

cosh βl
2

(53)

τf
〈σf∞〉

=
rβ

2

sinhβz

cosh βl
2

(54)

〈wf 〉
〈σf∞〉

=
1

E
(1)
A

(
z − sinhβz

β cosh βl
2

)
(55)

〈σm〉
〈σf∞〉

=
σm∞
σf∞

+
V1
V2

coshβz

cosh βl
2

(56)

τm
〈σf∞〉

=
V1β

2V2

sinhβz

cosh βl
2

(
r22
r
− r
)

(57)

〈wm〉
〈σf∞〉

=
1

E
(2)
A

(
σm∞
σf∞

z +
V1
V2

sinhβz

β cosh βl
2

)
(58)

where τf is τrz in the fiber, wf is w in the matrix, σm is σzz in the matrix, σm∞ is the far-field σzz in the
matrix, τm is τrz in the matrix, and wm is w in the matrix. The origin for the z axis was placed in the
middle of the fiber which places the fiber ends or breaks at z = ±l/2. The interfacial shear stress, which is
continuous from the fiber to the matrix, is

τrz(r1)

〈σf∞〉
=
r1β

2

sinhβz

cosh βl
2

(59)

A complementary problem is when the entire axial load is carried by the fiber and the matrix ends have
zero stress. The fiber axial stress boundary condition is

σf =
σ0
V1

(60)
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Fig. 1. A plot of ∂u
∂z

, ∂w
∂r

, and γrz all evaluated by finite element analysis (dashed lines) compared to γrz evaluated
by shear-lag analysis (solid line). The results are plotted along the fiber matrix interface as a function of distance (in
fiber diameters) from the fiber break. All terms are plotted in percent strain. The modulus ratio was Ef/Em = 10,
the fiber volume fraction was V1 = 10%, and the total axial stress was adjusted to make σf∞ = 100 MPa.

This problem is appropriate, for example, for analysis of the fiber-pull out test (Jiang and Penn, 1992). The
solution to the pull-out problem can be recovered from the above fiber break problem by superposition with
the far-field stresses. For example, the average axial fiber stress in the pull-out analysis is

〈σf 〉
〈σf∞〉

= 1 +
〈σm∞〉V2
〈σf∞〉V1

coshβz

cosh βl
2

(61)

The stress transfer term is identical to the stress transfer term in the fiber break problem. Thus any
conclusions drawn about stress transfer analysis of the fiber break problem apply also to stress transfer in
the pull-out problem. The next section considers only the fiber break problem.

4. Results

This section describes a set of analyses for an isotropic fiber of radius 0.5 mm and length 10 mm embedded

in an isotropic matrix. The matrix properties were taken to be E
(2)
A = 2500 MPa and ν

(2)
A = 0.333. The

fiber properties were taken to be E
(1)
A = 2500(Ef/Em) and ν

(1)
A = 0.25. Because the materials are isotropic,

the shear moduli are

G
(2)
A = 937 MPa and G

(1)
A = 937

Ef
Em

(62)

The fiber/matrix modulus ratio, Ef/Em, and the fiber volume fraction, V1 were varied. Because of the
selected fiber radius, the distance units can be interpreted as distances in units of fiber diameters and the
fiber fragment has an aspect ratio of 10. The validity of the shear-lag assumptions and the accuracy of the
shear-lag results were evaluated by comparing shear-lag predictions to finite element analysis (FEA).

The FEA software was modified to plot ∂u
∂z and ∂w

∂r rather than plotting only their sum or the shear

strain, γrz. This modification was used to evaluate the fundamental shear-lag assumption that ∂u
∂z <<

∂w
∂r .



72 J. A. Nairn / Mechanics of Materials (1997) 63–80

0
0.0

1 2 3 4 5

Distance (Fiber Diameters)

0.2

0.4

0.6

0.8

1.0

<
σ

f>
/<

σ
f∞

>

V1 = 50%

V1 = 10%

V1= 1%

Shear-Lag

FEA

Fig. 2. A plot of 〈σf 〉 / 〈σf∞〉 evaluated by finite element analysis (dashed lines) and by shear-lag analysis (solid
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The results at the fibre/matrix interface as a function of distance from the fiber break when Ef/Em = 10
and V1 = 10% are given in Fig. 1. For these conditions, the bulk of the stress transfer occurs within the
first two fiber diameters from the fiber break. Over the entire stress transfer zone, the fundamental shear-
lag approximation is never valid. In fact ∂u

∂z and ∂w
∂r are similar in magnitude, although opposite in sign.

They combine to give a much smaller shear-strain. Despite the problems with the fundamental shear-lag
approximation, the shear-lag shear strain is much closer to the FEA shear strain than it is to ∂w

∂r . The
magnitude of the shear-lag shear strain, however, is too high by more than a factor of two. Furthermore,
the shear-lag shear strain peaks at the fiber break while the correct solution, as approximately seen in the
FEA solution, should be zero to satisfy the fiber surface stress-free boundary conditions.

The FEA software was further modified to plot average stresses. Figure 2 plots the average fiber stress
as a function of distance from the fiber break when Ef/Em = 10 and for volume fractions of V1 = 50%, 10%,
and 1%. Considering the problems with the fundamental shear-lag approximation, shear-lag analysis does
a surprising good job of predicting average axial stress in the fiber. The shear-lag equations always lead to
an exponential form for the stresses (or hyperbolic functions for finite length fibers). The observation that
the shear-lag predictions cross over the FEA calculations (see V1 = 1% in Fig. 2) show that stress transfer
is not precisely exponential.

To better judge the overall accuracy of shear-lag analysis, we defined a 50% transfer length, z50, as the
number of fiber diameters required for 〈σf 〉 to reach 50% of the far-field stress, 〈σf∞〉. By a shear-lag analysis

z50 =
l

2
− 1

β
cosh−1

(
1

2
cosh

βl

2

)
(63)

The shear-lag results are compared to FEA results in Fig. 3 for modulus ratios of Ef/Em = 100, 10, or 1
and for volume fractions over the range from V1 = 0 to 70%. A fiber volume fraction of V1 = 0 corresponds
to a fiber in an infinite matrix. Overall, shear-lag does a good qualitative job of predicting stress transfer.
The emphasis was intentionally placed on “qualitative.” While shear-lag predicts all the trends of stress
transfer, the absolute transfer rate is off by 10-20% for modulus ratios of 100 and 10 and off by up to 50%
for a modulus ratio of 1. It is interesting that at low fiber volume fraction, stress transfer gets slower as
the modulus ratio gets higher, but at high fiber volume fractions the reverse is true. There also appears
to be an “iso-transfer” fiber volume fraction where the stress transfer rate is independent of modulus ratio.
Shear-lag correctly predicts all trends in transfer rate with changing modulus ratio of fiber volume fraction,
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Fig. 3. The 50% stress transfer distance (in fiber diameters) as a function of the fiber volume fraction for various
modulus ratios. For each modulus ratio there are plots for shear-lag analysis (solid lines) and for FEA analysis (dashed
lines). The curve in the upper-right hand corner are the 50% stress transfer rate predictions using a shear-lag analysis
with the shear-lag parameter recommended by Cox (1952) (βcox).

but it predicts the iso-transfer volume fraction to be at V1 = 42% while the correct result (as calculated by
FEA analysis) is at V1 = 31%.

The curve in the upper-right hand corner of Fig. 3 is the shear-lag prediction of stress transfer for
Ef/Em = 10 assuming the shear-lag parameter is given by the Cox (1952) result (βcox in Eq. (2)) with
s = r2 instead of the shear-lag parameter derived here (β in Eq. (47)). The Cox (1952) shear-lag parameter,
βcox, is grossly in error; it should be abandoned in all shear-lag analyses of composites. A literal interpretation
of Cox’s (1952) analysis uses s = 2r2. Because

ln
r2
r1

=
1

2
ln

1

V1
and ln

2r2
r1

=
1

2
ln

4

V1
(64)

the use of s = 2r2 effectively scales the volume fraction axis (the x axis) by a factor of four. This expansion
causes the βcox predictions shift to the right and be even further in error than when using βcox with s = r2.

Shear-lag analysis has serious limitations when considering very low fiber volume fractions, or equivalently
when considering analysis for a fiber in an infinite matrix. Taking the limit as V1 → 0 gives

lim
V1→0

β = lim
V1→0

βcox = 0 (65)

which implies, from Eq. (63), that the stress transfer length becomes infinite. In a correct analysis, the stress
transfer rate should become independent of V1 for low fiber volume fractions and become equal to the stress
transfer rate for a fiber in an infinite matrix. Figure 4 plots the shear-lag and FEA stress transfer rates for
a modulus ratio of Ef/Em = 10 and for low fiber volume fractions. The shear-lag analyses asymptotically
approach an infinite transfer distance as V1 → 0. In contrast, the FEA analysis levels off at an asymptotic
transfer distance of about 1.8 fiber diameters. Clearly, shear-lag analysis breaks down for low fiber volume
fractions, or, in other words, shear-lag analysis gives no information about stress transfer from a fiber into
an infinite amount of matrix.

Shear-lag analysis in composites is often used to interpret results from single-fiber tests in which the
specimen is a single fiber embedded in a large amount of matrix. Because such specimens can be approx-
imated by analysis of a fiber in an infinite amount of matrix, shear-lag analysis should not be expected
to provide any information about stress transfer. The only acceptable use of shear-lag analysis on such
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specimens is to treat β as an adjustable parameter instead of a defined constant. Indeed, many researchers
have adopted just such an approach by defining an effective stress concentration cylinder in the matrix
(Lacroix, Tilmans, Keunings, Desaeger, and Verpoest, 1992; Feillard, Désermot, and Favre, 1994; Wagner,
Nairn, and Detassis, 1995). Stress transfer is determined by the fiber volume fraction within the effective
cylinder rather than within the entire matrix. Figure 4 illustrates a graphical procedure for finding the
effective fiber volume fraction for shear-lag analysis of a fiber in an infinite matrix. Using β in Eq. (47)
the effective fiber volume fraction for Ef/Em = 10 is about 0.6% which translates to an effective stress
concentration cylinder radius of r2/r1 = 12.9. When using effective volume fractions, it is even permissible,
as many researchers have done, to use the Cox (1952) shear-lag parameter (βcox). From Fig. 4 the effective
fiber volume fraction when using βcox for Ef/Em = 10 is about 3% which translates to an effective stress
concentration cylinder radius of r2/r1 = 5.8. The effective fiber volume fraction is a function of the modulus
ratio, but the result calculated here using βcox is similar to typical assumptions made in the literature also
based on βcox (Wagner, Nairn, and Detassis, 1995). Although it is formally acceptable to calculate effective
fiber volume fractions by using Cox’s (1952) shear-lag parameter (βcox), there is little incentive to do so
because there is never a situation in which βcox gives a correct prediction of stress transfer. Thus, even for
a fiber in an infinite matrix, the Cox (1952) parameter should be abandoned in favor of defining effective
stress concentration cylinders using β in Eq. (47).

Recent work on fiber breakage and interface effects has used energy methods or fracture mechanics instead
of stress failure criteria (Wagner, Nairn, and Detassis, 1995; Nairn and Liu, 1996). Energy analyses can be
developed using shear-lag equations, but, how accurate are shear-lag predictions for energy? Consider again
the fiber break problem for a fiber in a finite amount of matrix. The entire surface of this specimen is stress
free except for the uniform stress of σ0/V2 applied to the matrix ends. The total strain energy can thus be
found most easily by integrating the surface tractions and displacements. Integrating surface work over the
top and bottom matrix surfaces gives

U = 2× 1

2

∫ r2

r1

2πr
σ0
V2
wm(r, l/2)dr = πr22σ0 〈wm(l/2)〉 (66)

where 〈wm(l/2)〉 is the average axial displacement on the ends of the matrix. Equation (66) is an exact
expression for strain energy in the fiber-break specimen provided an exact result for 〈wm(l/2)〉 is known.
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Shear-lag analysis can be used to derive an approximate strain energy by substituting the shear result for
〈wm(l/2)〉 given by Eq. (58). The result is

U

U∞
= 1 +

E
(1)
A V1

E
(2)
A V2

tanh βl
2

βl
2

(67)

where U∞ is the energy in the absence of the fiber breaks or the energy when both the fiber and matrix
stresses equal their far-field stresses:

U∞ = πr22l
σ2
0

2Ec
(68)

Here Ec = E
(1)
A V1 + E

(2)
A V2 is the rule-of-mixtures axial modulus of the composite specimen. In deriving

Eq. (67), it was assumed than

σm∞ =
E

(2)
A

Ec
σ0 and σm∞ =

E
(1)
A

Ec
σ0 (69)

The above assumptions for Ec, σm∞, and σf∞ are not exact for two concentric cylinders with different
Poisson ratios, but they are in error from the exact concentric cylinder results (Christenson, 1979) by less
than 1%. These assumptions, thus will have no effect on the assessment of the accuracy of shear-lag analysis
for predicting energy.

A comparison for shear-lag predictions of total energy to FEA calculations of total energy for Ef/Em =
100, 10, and 1 and for fiber volume fractions from 0 to 70% is given in Fig. 5. To better compare results in
a single plot, Fig. 5 plots the relative change in energy, ∆U/U∞, and normalizes each plot by the modulus
ratio. The plot is thus for

Em
Ef

∆U

U∞
=
Em
Ef

(
U − U∞
U∞

)
(70)

Like average axial fiber stress, shear-lag analysis does a good qualitative job of predicting total strain energy.
Shear-lag predictions for ∆U are within 10% of FEA calculations for Ef/Em = 100. The errors in ∆U
get larger as Ef/Em gets smaller, but the shear-lag predictions for ∆U are always within 20% of the FEA
calculations.

An alternative fiber break problem is to replace the uniform stress over the matrix end surfaces by a
boundary condition of uniform displacements. A fixed-displacement boundary condition is more appropriate
for analysis of the fragmentation test (Nairn, 1996). In the fragmentation test, a single fiber embedded in
a matrix develops multiple, roughly periodic fiber breaks when subjected to axial stress (Wadsworth and
Spilling, 1968). The analysis of individual fiber fragments from such a specimen requires the use of uniform
end displacements to maintain continuity in displacements from one fiber fragment to the next (Nairn, 1996).
Formally, the shear-lag analysis developed here cannot solve the constant displacement boundary condition,
because the axial displacement depends on the radial coordinate. This radial dependence is evident in
Eq. (39). Nevertheless, many authors have used shear-lag analysis on the fragmentation specimen (Lacroix,
Tilmans, Keunings, Desaeger, and Verpoest, 1992; Feillard, Désermot, and Favre, 1994). The inconsistency
can be resolved by dealing only with average axial displacements (e.g., Eq. (58)) and average fiber and matrix
stresses. By this approach, the shear-lag analysis for constant stress and constant displacement boundary
conditions are identical. Thus Eqs. (53)–(58) are also the shear-lag predictions for stress transfer when the
matrix end displacement is given by a constant value of wm, provided that the far-field fiber stress is correctly
calculated from applied fixed displacement.

The FEA analysis under fixed displacement conditions is more complicated than under uniform stress
conditions. First, there are numerical difficulties at the fiber/matrix interface where the interface intersects
the free surface. These numerical difficulties make the local calculation of interfacial stresses unreliable.
Here, only the average fiber stress is considered and that stress is mostly considered away from the fiber
break (i.e., the stress transfer profile). The numerical difficulties should not strongly influence these stress
transfer predictions. Second, it is not possible to a priori select a fixed end displacement to give a convenient
far-field fiber stress of 100 MPa. The end displacement required to give a desired far-field fiber stress can only
be determined after solving the problem. The FEA analysis proceeded as follows. First, an arbitrary fixed
end-displacement was selected. Then, from the FEA solution the average stress over the entire specimen
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was evaluated as a function of distance from the fiber break. This average stress quickly converged to a
constant value which is the effective σ0 for the given end displacement. Next, the effective σ0 was input into
a concentric cylinder analysis (Christenson, 1979) to calculate σf∞. Finally, the evaluated σf∞ was used to
renormalize the FEA results to give an analysis with a far-field fiber stress of 100 MPa.

The average axial stress in the fiber as a function of distance from the fiber break for Ef/Em = 10 and
V1 = 10% is plotted in Fig. 6. The FEA results for uniform stress and uniform displacement boundary
conditions are different; the stress transfer is more rapid under fixed displacement boundary conditions than
it is under uniform stress boundary conditions. Physically this effect can be explained by considering the
average displacement on the fiber ends. If the matrix end displacement is plotted under uniform matrix stress
conditions, it can be observed that the fiber end retracts from the original surface. This fiber retraction
resembles fiber slip and allows the fiber to reduce its stress level or to accept stress transfer more slowly.
In contrast, a fixed displacement boundary condition reduces fiber retraction leading to higher local stress
levels and to more rapid stress transfer. Because shear-lag analysis is not influenced by the details of the
boundary conditions, it cannot predict the boundary condition effects. The shear-lag analysis presented here
agrees much better with the uniform stress boundary conditions than it does with the fixed displacement
boundary conditions. It might be possible to alter the basic shear-lag assumptions used here to develop a
shear-lag analysis appropriate for fixed-end displacements. The result of such an analysis would be a new
form for β. I am not aware of any attempts in the literature at a fixed axial displacement shear-lag analysis.
Perhaps one should be derived before shear-lag analysis is used for analysis of fragmentation specimens.

5. Discussion

Shear-lag methods provide an approximate analytical tool for analysis of axisymmetric stress states in com-
posites. The most basic shear-lag equations can be reduced to a set of second-order, ordinary differential
equations with constant coefficients. The coefficients can be determined explicitly from exact elasticity equa-
tions by making a minimum of four assumptions. One possible set of four assumptions, which is consistent
with most of the shear-lag literature, was discussed above.

For analysis of two concentric cylinders, the shear-lag equations reduce to a single, second-order differ-
ential equation with a single parameter β. In sample calculations, the shear-lag predictions for both average
axial fiber stress and total strain energy agree within 20% with FEA calculations. The agreement holds over
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a wide range of fiber matrix modulus ratios, Ef/Em, and fiber volume fractions, V1. The errors generally
increase as Ef/Em decreases. Thus shear-lag analysis works best when the fiber is much stiffer than the
matrix. Reasonable agreement with FEA calculations requires use of the β derived here and previously
derived by Nayfeh (1977) and McCartney (1992). The shear-lag parameter proposed by Cox (1952) gives
shear-lag predictions that are grossly in error with FEA calculations.

Shear-lag analysis does not work at low fiber volume fractions. The only recourse for shear lag analysis
of a fiber in a large amount of matrix is to treat β as an unknown parameter. Perhaps β could be measured
by comparison of shear-lag predictions to FEA calculations or by comparison to experimental results on
stress transfer such as by Raman spectroscopy (Melanitis, Galiotis, Tetlow, and Davies, 1992). When β is
treated as an adjustable parameter, or equivalently when the matrix is assumed to have an effective radius,
the resulting shear-lag analysis should not be confused with true stress transfer analysis. By this approach,
shear-lag analysis is simply representing the stresses as exponential in form. Because the exponential rate
constants, which determine the stress transfer rate, are unknown, shear-lag analysis is giving no information
about stress transfer rates.

Shear-lag analysis is often used to draw conclusions about the interfacial shear stress in composites. From
the results in Fig. 1 the errors in shear stress are much larger than the errors in average axial stress. The
larger errors in shear stress can be explained by Eq. (49). Interfacial shear stress is given by the z-derivative
of average axial stress. Differentiation of approximate results always magnifies any errors. Thus the 10–20%
errors in 〈σf 〉 lead to 50–100% errors in interfacial shear stress. Furthermore, the shear stress errors depend
on the specific values of Ef/Em, V1, and the distance from the fiber break. The interfacial shear stress
errors may be positive or negative; in other words, the shear-lag predictions for interfacial shear stress may
be either way too high or way too low.

The reasonable accuracy for total energy change (∆U) suggests that shear-lag analysis might be useful
in fracture mechanics analysis of single-fiber specimens. Most fracture mechanics methods, however, involve
evaluating an energy release rate and not total energy. Like the shear stress-average axial stress relation,
energy release rate is found by differentiating ∆U . Thus the 10–20% errors in ∆U should be expected to
give very unreliable calculations for energy release rate. Is it doubtful that shear-lag analysis has sufficient
accuracy for calculating energy release rates. An indirect fracture mechanics analysis of the fragmentation
specimen has been proposed which considers not an energy release rate, but rather the damage caused by
the total energy released when the fiber fractures (Wagner, Nairn, and Detassis, 1995). Such an analysis
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only uses ∆U and therefore shear-lag analysis is acceptable approach, albeit a qualitative one.
Some might argue that the shear-lag methods presented here can be improved by altering the four basic

assumptions. Indeed, it might be possible, and even desirable, to alter the assumptions to suit various
specific problems. The assumptions chosen here appear ideal for analysis of problems with uniform stress
boundary conditions; a revised set of assumptions might give an optimal β for analysis of fixed displacement
boundary conditions. But no set of assumptions will fundamentally alter the final form of the shear-lag
equations. No set of assumptions can escape the fact that the shear-lag stresses are exponential in form
while true stress transfer is nonexponential. The final assessment of an optimized shear-lag analysis for any
specific problem will certainly be that it gives acceptable predictions for integrated results, like average axial
stress or total strain energy, but that it gives unreliable predictions for shear stresses, transverse stresses,
and energy release rates.

The questions remains — what analytical tools can be used when information not provided by shear-lag
analysis is needed? There are some alternatives in the literature. Variational mechanics of stress transfer
requires only one assumption — that that axial stresses in the fiber and matrix only weakly depend on
r (Nairn,1992). Clearly such an analysis will improve on shear-lag methods, but it still has difficulties at low
fiber volume fractions (Leroy, 1996). McCartney (1989, 1993) has derived alternate approximate elasticity
equations for axisymmetric stress states. His analysis for two concentric cylinders (McCartney, 1989) ap-
pears mathematically equivalent to the variational mechanics analysis, but the elasticity techniques are
more easily extended to multiple cylinders (McCartney, 1993) than are the variational techniques. Fi-
nally stress function analyses using infinite Bessel-Fourier series have been developed for both the pull-
out test (Kurtz and Pagano, 1991) and the fragmentation test (Nairn, 1996). The suitability of these and
possibly other analytical tools will be assessed in a future publication.
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