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Abstract

An energy release rate model based on a generalized fracture mechanics of composites was developed for analyzing
the microbond test. This model, which extended a previous model, includes both friction at the fiber/matrix interface
and residual thermal stresses. A series of microbond tests on macroscopic specimens were carried out for evaluating
the model. In some specimens we could observe debond crack growth. These results could be interpreted with a
fracture mechanics R-curve which led to a measured interfacial fracture toughness. In many specimens, debond crack
growth could not be observed. We developed an approximate method for determining interfacial fracture toughness
even without knowledge of debond crack size. The macroscopic specimens were designed for studying the optimal
approach to analysis of microbond specimens. The geometry of the macroscopic specimens, however, could also be
used to measure the mode II toughness of adhesive bonds.

Keywords: B. Composites; C. Fracture Mechanics; C. Stress Analysis; D. Mechanical Properties of Adhesives; Microbond Test

1. Introduction

The microbond test is a potential method for studying fiber/matrix interfacial adhesion in composite
materials.1, 2 In a microbond test, a single cured matrix droplet is sheared from a fiber, and the stress
to cause fiber/matrix interfacial debonding is measured. The measured stress must then subsequently be
interpreted in terms of interfacial properties; this interpretation should be able to account for specimen
geometry, residual thermal stresses, and interfacial friction effects. The most common analysis of microbond
results is a simple average shear-stress failure criterion in which the average shear stress along the entire
interface is equated to the interfacial shear strength.1−7 An exact relation between the average interfacial
shear stress, 〈τrz〉, and the applied force on the fiber, F , is

〈τrz〉 =
F

2πrf l
(1)

where rf is the radius of the fiber and l is the length of a microbond specimen. Equating 〈τrz〉 to the interfacial
shear strength, τic, equation (1) predicts F to be linear in l with the slope being used to determine τic.1, 2

Recently, Scheer and Nairn,8−11 argued that a critical energy release rate criterion for predicting interfacial
failure is more realistic than the average shear stress failure criterion. They considered several frictionless-
interface models and found that a limiting solution for long droplet lengths was sufficiently accurate for all
experimental droplet lengths. Their frictionless-interface analysis lead to a simple analytical expression for
energy release rate for debond growth that is independent of debond length:

G =
rf
2

[
C33sσ

2
d + 2D3sσd∆T +

(
D2

3

C33
+
vm(αT − αm)2

vfA0

)
∆T 2

]
(2)
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Fig. 1. Debond force as a function of droplet length for a series of Epon 828 droplets on 21µm diameter E-Glass fibers.
The smooth lines are fits to the experimental results using the average shear stress failure criterion (equation (1))
with τic = 37 MPa or using the frictionless energy model (equation (2)) with Gic = 220 J/m2. The experimental
results are from Ref. 11.

where, σd = F/(πr2
f ) is the stress applied to the fiber, ∆T is the temperature difference between the test

temperature and the stress-free temperature, vf and vm are fiber and matrix volume fractions within the
droplet, αT is the transverse thermal expansion coefficient of the fiber, αm is thermal expansion coefficient
of the matrix, and C33s, D3s, D3, C33, and A0 are constants, defined in the Appendix , which depend only on
fiber and matrix properties and on specimen geometry.9, 11 The critical energy release rate model assumes
the droplet debonds when G = Gic, where Gic is an interfacial toughness. Note that equation (2) includes an
extra term in the ∆T 2 term that is not given in Ref. 11. The result in equation (2) is the correct frictionless
result for long droplets; the correction to Ref. 11 will be discussed further below.

Figure 1 shows some previous results for debonding of epoxy droplets from 21-µm-diameter E-Glass fibers
as a function of droplet length. The smooth lines in Figure 1 are predictions using the average shear stress
model (equation (1)) or the frictionless energy release rate model (equation (2)). The energy analysis fits the
experiments much better than the average shear stress analysis. The data, however, are highly scattered; the
results in Figure 1 were smoothed by taking running averages. Although we claim the experiments support
the benefits of an energy analysis over an average shear stress analysis, the experiments do not represent
experimental verification of the energy approach derived in Refs. 8–11.

To better clarify the energy or fracture mechanics analysis of the microbond test, we conducted a series
of experiments on macroscopic microbond tests using large cylinders of epoxy of various lengths molded
onto steel rods. By using macroscopic droplets we expected to reduce the scatter inherent in microscopic
specimens.2 Furthermore, by molding cylindrical droplets we could control the volume fraction of the fiber
within the matrix independent of the droplet length and could better match the geometry assumptions used
in the energy analysis.8−11

Examination of equation (2) (and the constants in the Appendix ) reveals that G is independent of droplet
length if the fiber volume fraction is held constant. In microscopic microbond tests, vf changes with droplet
length due to the natural shapes of droplets. This change in vf plays a major role in the variation in debond
force with droplet length.10, 11 In macroscopic specimens, however, we can mold constant-radius droplets
and keep vf constant. The prediction of equation (2) is then that the debond force will be independent
of droplet length. Our first experiments showed that the debond force for such specimens is not constant,
but rather increases with droplet length. We concluded that the frictionless energy analysis is incomplete.
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Table 1
Material properties of the steel rod and epoxy materials. The properties for the stainless steel rods are typical
stainless steel properties which we did not remeasure. The tensile modulus of Epon 828 was measured; its Poisson
ratio was estimated.

Property Steel Rod Epon 828 Epoxy

Modulus (EA, ET , or Em) (GPa) 100 2.6
Shear Modulus (GA or Gm) (GPa) 37.6 0.97
Poisson’s Ratio (νA, νT , or vm) 0.33 0.34
Thermal Expansion (αA, αT , or αm) 10−6◦C−1) 14 40

Instead of abandoning fracture mechanics methods, however, we modified the energy analysis to account for
friction along the interface.

This paper describes a new energy analysis that extends and corrects the results in Ref. 11; the new
analysis includes both friction and residual thermal stresses. We derived an analytical expression for energy
release rate for debond growth. This new result, G(a), depends on debond length when friction is present, but
reduces to equation (2) when friction is ignored. We used the new friction analysis to interpret experiments
on macroscopic specimens for which we were able to observe crack growth along the interface. We found that
all results as a function of debond length could be interpreted using fracture mechanics, provided the energy
release rate calculation included both friction and residual stresses. If either effect was ignored, the results
were poor. In microscopic specimens it is very difficult to observe interfacial crack growth. We thus also
explored interpretation of macroscopic specimens without knowledge of interfacial crack length. We suggest
the interfacial toughness can be estimated by assuming the peak debonding force corresponds to a debond
length that is approximately equal to the droplet length. In other words, it is assumed that the debond
propagates stably along the interface with increasing force and that a drop in force only occurs when the
debond reaches the end of the droplet. Finally, besides helping understand analysis of microscopic specimen,
the macroscopic specimen geometry itself is a possible method for measuring the mode II fracture toughness
of adhesive bonds.

2. Materials and methods

All experiments described in this paper were done using macroscopic specimens consisting of steel rods
embedded in an epoxy matrix. There are several advantages to using macroscopic specimens as model
specimens. First, a large specimen size reduces the scatter inherent in microscopic specimens.2 Second, in
contrast to microscopic specimens, one has control over the shape of the macroscopic matrix. Micro-droplets
naturally assume an elliptical shape. The diameter of the droplet, and hence the effective volume fraction
of the fiber within the droplet (defined as volume of embedded fiber divided by total volume of embedded
fiber and droplet) changes as the droplet length changes. Experimental observations show that fiber volume
fraction decreases at longer droplet lengths.11 In our macroscopic specimens, we molded cylinders of matrix
onto the steel rods. By keeping the radius of the matrix cylinder constant for a series of specimens, we could
keep the fiber volume fraction constant while varying the droplet length. Third, we were able to observe
debond growth along the interface in some specimens. These observations allowed us to get more information
from macroscopic specimens than possible from most microscopic specimens.

Stainless steel rods with diameters of 3.175 mm (0.125 in) were obtained in 3 m (10 ft) sections. The
surfaces of the as-received rods were not clean. The rods where therefore cut into 125-mm-long sections,
washed with detergent and distilled water, dried in air, and kept in covered containers prior to use. The
material properties for the steel rods are listed in Table 1. The embedding epoxy matrix was Epon 828.
Epon 828 consisted of a diglycidylether of bisphenol A (DGEBA) purchased from Shell Chemical Company
that was cured with 14 phr of an amine curing agent, meta-phenylene diamine (m-PDA), that was purchased
from the Aldrich Chemical Company. The material properties for cured Epon 828 are listed in Table 1.
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Fig. 2. A cross-section of the testing jig used for microbond tests on macroscopic specimens. The steel rod is thread
through a hole in the plate and the plate is secured to the lower jig which is mounted on the testing frame. The
testing-frame cross head pulls up on the end of the steel rod until the entire cylinder debonds.

The macroscopic specimens were prepared by suspending the steel rods through the center of a cylindrical
mold and filling the mold with epoxy resin. The epoxy system was cured at 75◦C for 2 hours and then post-
cured at 125◦C for 3 hours. A series of specimens with various lengths but constant fiber volume fracture
were prepared. The three specimen types all had steel rod radii of 3.175 mm (0.125 in) but had outer
matrix radii of 14.73 mm (0.58 in), 25.4 mm (1.0 in), and 28.58 mm (1.125 in). These three specimen types
corresponded to fiber volume fractions of 4.64%, 1.56%, and 1.23%, respectively. These specimen dimensions
were chosen to give fiber volume fractions in the range of 1-4% which is similar to the effective fiber volume
fractions found in microscopic microbond specimens.11 In this paper, the three specimen classes are denoted
as 0.125/0.58, 0.125/1.0, and 0.125/1.125, where the first number indicates the fiber radius (in inches) and
the second number indicates the matrix radius (in inches).

Figure 2 shows the testing jig for microbond tests on macroscopic specimens. The steel rod was threaded
through a hole in a steel plate with a diameter slightly larger than the rod diameter. The plate was mounted
to the jig in Figure 2, which was secured to the base of a 25 kN MTS 880 servohydraulic testing frame. Finally,
the rod was pulled while force vs. displacement was recorded and the specimen was observed for indications
of interfacial crack growth. All experiments were done at a constant displacement rate of 0.01 mm/sec. A
typical force-displacement plot is shown in Figure 3. The force always increased linearly at first but showed
some curvature before the peak. After the peak, the force dropped to a constant value which was caused by
friction as the debonded droplet slid along the steel rod.

We attempted to observe interfacial crack growth during all experiments. The dark color of the epoxy
prevented observation of crack growth in the larger specimens, but we were able to observe crack growth in the
0.125/0.58 specimens. In these specimens, the debond growth could be observed by eye with back-lighting.
We therefore modified the testing procedure for the 0.125/0.58 specimens. Instead of loading to complete
debonding, we loaded the 0.125/0.58 specimens until a small amount of debond growth was observed. We
then measured the debond size and removed the loaded. This same specimen was then reloaded until some
more debond growth occurred. Finally, we were able to run numerous experiments on a single specimen
and record the force required to extend the debond as a function of the debond length. Similar sets of
experiments were done on 0.125/0.58 specimens with lengths of 14.6 mm (0.575 in.), 29.5 mm (1.159 in.),
and 44 mm (1.734 in.).

3. Fracture mechanics analysis

A previous analysis of the microbond test (see equation (2)) began with an approximate thermoelastic stress
state and derived a result for energy release rate that included residual stresses but ignored friction.8−11 Here
we describe an alternative approach based on some new general fracture mechanics results for composites
with residual thermal stresses.12 In brief, we began with an exact energy release rate equation, introduced a
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Fig. 3. A Typical force-displacement plot. This result was from a steel rod/epoxy specimen. The rod was 3.175 mm
(0.125 in) in diameter, the matrix cylinder was 14.73 mm (0.58 in) in diameter and 27.97 mm (1.101 in) long.

few assumptions, and derived a thermoelastic energy release rate that depends only on the axial stress in the
fiber. We then substituted a shear-lag analysis for fiber stress to derive an analytical expression for energy
release rate including both residual stresses and friction. The energy release rate was found to depend on
debond length. We used this energy release rate result to directly interpret crack growth experiments, like
those on the 0.125/0.58 specimens, that recorded debond growth force as a function of debond length. We
also suggest an approximate method for using this energy release rate result to interpret results where the
debond length cannot be observed.

3.1. Energy Release Rate for Debonding

Reference 12 gives a general result for fracture analysis of composites containing residual stresses. That result
assumes linear thermoelasticity and rigorously accounts for all effects of residual stresses on fracture. During
crack growth, residual stresses contribute to energy release rate both by releasing thermal strain energy
and by causing external work due to changes in residual displacements on the traction-loaded surfaces.12

For traction-only loading conditions, the exact, thermoelastic energy release rate for an n-phase composite
derived in Ref. 12 can be written as

G =
d

dA

(
1
2

∫
S

~T 0 · ~u dS
)

+
V∆T

2

n∑
i=1

viα
(i) · dσ

(i)

dA
(3)

where ~T 0 and ~u are the surface tractions and displacements (both mechanical and thermal displacements),
∆T is the difference between the specimen temperature and the stress-free temperature, V is the total
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volume, vi is the volume fraction of phase i, α(i) is the thermal expansion tensor of phase i, and

σ(i) =
1
V vi

∫
Vi

σidV (4)

is the phase-averaged stress in phase i, where Vi indicates integration over the volume occupied by phase i.
Energy release rate is found by differentiation of the key terms with respect to total fracture area A. An
identical result for traction-only loading was also derived by Hashin.13

Figure 4 shows an idealized version of a microbond specimen. The droplet and fiber are considered as
two concentric cylinders. All applied loads are assumed to be traction loads applied uniformly over the top
surfaces of the fiber or matrix. If the total stress applied to the fiber (and recorded by the testing system)
is σd, then there is a balancing stress of −vfσd/vm applied to the top surface of the droplet. It is assumed
that the bottom and side surfaces are all stress free. Applying equation (3) to the idealized specimen and
allowing for an interfacial friction stress of τrz(rf , z) on the debond surfaces, the exact energy release rate
can be written as

G(a) =
rfσd

4
d

da

(
〈wf (a)〉 − 〈wm(a)〉

)
+

1
2
d

da

∫ a

0

τrz(rf , z)
(
wf (rf , z)− wm(rf , z)

)
dz

+
lrf∆T

4

(αA − αm)
dσ

(f)
zz

da
+ αT

d

da

(
σ

(f)
rr + σ

(f)
θθ

)
+
vm
vf
αm

d

da

(
σ

(m)
rr + σ

(m)
θθ

) (5)

Here the z-axis origin has been placed at the tip of the debond (see Figure 4). The first term in equation (5)
is the external work on the ends of the specimen, which is a function of the difference between the average
axial displacements on the fiber end, 〈wf (a)〉, and on the matrix end, 〈wm(a)〉. The second term accounts
for friction in the form of an interfacial shear stress multiplied by the axial displacement difference at the
interface, wf (rf , z) − wm(rf , z). The final term arises from the second term in equation (3); it accounts
for residual stress effects other than those already included in the residual stress contributions to axial
displacements in the first two terms. Note that the fiber has been assumed to be transversely isotropic, with
αA and αT being the axial and transverse thermal expansion coefficients. The matrix has been assumed to
be isotropic with thermal expansion coefficient αm. Finally, the term involving axial stress in the matrix
was eliminated using force balance.

Although equation (5) is exact for concentric cylinders with uniform end traction, it contains some terms
that cannot be determined analytically. Hence we introduced some assumptions. First, we divided the stress
analysis into the debonded zone (0 < z < a) and the intact, or bonded, zone (−(l−a) < z < 0) (see Figure 4).
In the debonded zone we assumed that the interfacial, friction shear stress is constant (τrz(rf , z) = constant)
and that the transverse stresses are negligible (σ(f)

rr = σ
(f)
θθ = σ

(m)
rr = σ

(m)
θθ = 0). By an exact equilibrium

analysis,15, 16 the average normal stresses in the fiber and matrix are then linear in z due to stress transfer
at the interface through friction. The debonded zone average axial stresses thus have the form

〈
σ(f)
zz (z)

〉
= σd + k(z − a) and

〈
σ(m)
zz (z)

〉
= −

vf

〈
σ

(f)
zz (z)

〉
vm

for 0 < z < a (6)

where angle brackets (〈·〉) denote averaging over the cross section of the fiber or matrix and k is the frictional
stress transfer rate defined by

k =
2τf
rf

(7)

where τf is the absolute value of the constant interfacial friction stress. With the assumed zero transverse
stresses, the average axial strains in the debonded zone, including thermal strains, are〈

ε(f)
zz (z)

〉
=

σd + k(z − a)
EA

+ αA∆T〈
ε(m)
zz (z)

〉
= −vf

(
σd + k(z − a)

)
Emvm

+ αm∆T

 for 0 < z < a (8)
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Fig. 4. The coordinate system used for the axisymmetric stress analysis of two concentric cylinders. The origin of
the z axis is placed at the debond tip. The zone 0 < z < a is the debonded zone. The zone −(l − a) < z < 0 is the
intact or bonded zone.

where EA is the axial modulus of the fiber and Em is the modulus of the matrix. Using the above stresses and
strains in the debonded zone, the first term in equation (5) can be approximately evaluated. The required
average end displacements are found by integrating the average axial strains:

〈wf (a)〉 =
∫ a

0

〈
ε(f)
zz (z)

〉
dz and 〈wm(a)〉 =

∫ a

0

〈
ε(m)
zz (z)

〉
dz (9)

The interfacial displacement discontinuity is more difficult to find because the above stress state only
gives the average stresses. We therefore introduced another approximation that the interfacial displacement
discontinuity is approximately equal to the difference in average displacements, or that

wf (rf , z)− wm(rf , z) ≈ 〈wf (z)〉 − 〈wm(z)〉 =
∫ z

0

(〈
ε(f)
zz (z)

〉
−
〈
ε(m)
zz (z)

〉)
dz (10)

Substituting all debonded zone approximations into the first two terms in equation (5) and doing the inte-
grations and differentiations (with verification using Mathematica14) gives

rfσd
4

d

da

(
〈wf (a)〉 − 〈wm(a)〉

)
+

1
2
d

da

∫ a

0

τrz(rf , z) [wf (rf , z)− wm(rf , z)] dz

≈ rf
2

(σd − ka)
(
C33s(σd − ka) +D3s∆T

)
(11)

where C33s and D3s are two terms that depend only on the fiber and matrix properties (see the Appendix ).
For the remaining terms in equation (5) we needed to evaluate the phase-averaged normal stresses which

additionally depend on the stresses in the intact or bonded zone (−(l− a) < z < 0). In the bonded zone, we
rewrite the normal stresses as

σ(f)
zz (r, z) = ψ∞ + σ(f)

zz,p(r, z)

σ(f)
rr (r, z) = σ∞ + σ(f)

rr,p(r, z)

σ
(f)
θθ (r, z) = σ∞ + σ

(f)
θθ,p(r, z)

and

σ(m)
zz (r, z) = −vfψ∞

vm
+ σ(m)

zz,p(r, z)

σ(m)
rr (r, z) = −vfσ∞

vm

(
1−

r2
f

vfr2

)
+ σ(m)

rr,p(r, z)

σ
(m)
θθ (r, z) = −vfσ∞

vm

(
1 +

r2
f

vfr2

)
+ σ(m)

rr,p(r, z)

(12)
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Here the first term in each stress is the far-field stress, or the stress far away from any end or debond tip
in infinitely long concentric cylinders. For the microbond specimen with balanced applied loads on the fiber
and matrix, the net axial load is zero. Thus, the far-field stresses are purely the residual stresses in two
infinitely long cylinders with different thermal expansion coefficients. Analytical results for the far-field axial
fiber stress and interfacial radial stress are

ψ∞ = −D3∆T
C33

and σ∞ =
vm
vfA0

(
A3D3

C33
− (αT − αm)

)
∆T (13)

where the constants A0, D3, and C33 depend only on fiber and matrix properties and are defined in the
Appendix .11 The second term in each stress is the perturbation stress, or the change in stress caused by
the debond tip or the specimen ends. In this approximate analysis, we assumed the transverse perturbation
stresses are negligible (σ(f)

rr,p(r, z) = σ
(f)
θθ,p(r, z) = σ

(m)
rr,p(r, z) = σ

(m)
rr,p(r, z) = 0). The average axial and

transverse stresses can then be written as〈
σ(f)
zz (z)

〉
= ψ∞

(
1− F (z − a+ l)

)
+ (σd − k a− ψ∞)F (−z)〈

σ(f)
rr (z) + σ

(f)
θθ (z)

〉
= 2σ∞〈

σ(m)
zz (z)

〉
= −

vf

〈
σ

(f)
zz (z)

〉
vm〈

σ(m)
rr (z) + σ

(m)
θθ (z)

〉
= −2vfσ∞

vm


for − (l− a) < z < 0 (14)

where F (z) is a solution for the average fiber stress in two concentric cylinders having axial fiber stress equal
to 1 and a balancing matrix axial stress of −vf/vm at z = 0 and all stresses 0 at z = l − a. The required
phase-averaged stresses in terms of average stresses can be evaluated using

σ
(m or f)
ij =

1
l

∫ a

−(l−a)

〈
σ

(m or f)
ij

〉
dz (15)

Evaluating all phase-averaged stresses (including contributions from both the bonded and debonded zones),
differentiation, and substitution into equation (5) together with the result in equation (11) results in

G(a) =
rf
2
C33s(σd − ka)2 +

rf
2
D3s

(
2 + C ′T (a)

)
(σd − ka)∆T

+
rf
2

[(
D2

3

C33
+
vm(αT − αm)2

vfA0
+

2D3D3s

C33
C ′T (a)

)
∆T 2 − kD3sCT (a)∆T

]
(16)

where CT (a) is a cumulative stress transfer function defined by integrating F (z) or

CT (a) =
∫ l−a

0

F (z) dz (17)

In the absence of friction (k → 0) and in the limit of long droplets (C ′T (a) → 0) this new result re-
duces exactly to equation (2), or the previous frictionless, long-droplet-limit result. In other words, equa-
tion (16) extends the previous fracture mechanics analysis of the microbond specimen to account for friction
at the interface. In the frictionless limit, there is one difference between this new result and the previ-
ous model in Refs. 8–11. This new result (see equation (2)) includes an extra term in the ∆T 2 term of
vm(αT − αm)2/(vfA0). An examination of the calculations in Refs. 8–11 revealed a minor error in the
energy calculations that neglected this term. The results quoted in equations (2) and (16) correct this error.

One final term remains before equation (16) can give an explicit result for energy release rate, namely the
cumulative stress transfer function, CT (a). We emphasize that equation (16) only makes a few assumptions,
all of which are expected to be accurate. Thus equation (16) should be accurate provided a sufficiently
accurate CT (a) is used. Here we evaluated CT (a) using a simple shear-lag model. We limited our analysis
to a shear-lag model because comparison to numerical results discussed below indicate the shear-lag solution
is sufficiently accurate. There remains, however, a potential for improved results simply by using improved
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results for CT (a). One could, in principle, even experimentally determine CT (a) by integration of fiber
stresses extracted from Raman experiments on microbond specimens.17 The point is that equation (16)
reduces the debonding energy release rate to the problem of determining stress transfer into the fiber.
Future models can focus on the stress transfer problem rather than the energetics of debonding.

A simple shear-lag analysis (see Ref. 15 for a recent discussion of the proper approach to shear-lag analysis
of fiber/matrix specimens) for two concentric cylinders with the boundary conditions discussed above for
F (z) quickly leads to

F (z) =
sinhβ(l − a− z)

sinhβ(l − a) (18)

where β is the shear-lag parameter defined by15, 16, 18

β2 =
2

r2
fEAEm

 EAvf + Emvm
vm

4GA
+ 1

2Gm

(
1
vm ln 1

vf − 1− vf
2

)
 (19)

Note that this shear-lag parameter is different than the Cox parameter19 commonly quoted in the literature.
The Cox parameter is incorrect while the parameter in equation (19), originally derived by Nayfeh,18 has
been shown to give correct results for finite specimens such as microbond specimens.15 Integration of F (z)
leads to

CT (a) =
1
β

[cothβ(l − a)− cschβ(l − a)] (20)

C ′T (a) = −1
2
sech2

(
β(l − a)

2

)
(21)

3.2. Comparison to Finite Element Analysis

The accuracy of the analytical model was verified by comparison to finite element calculations (FEA).
In brief, macroscopic specimens were analyzed using axisymmetric, 8-noded, isoparametric elements. The
energy release rate as a function of debond length was found by a modified crack closure technique.20 For
a wide range of specimen geometries and loading conditions (one of which in shown in Figure 5) we always
found excellent agreement between the analytical result in equation (16) and the numerical FEA results
provided the debond tip was in the central portion of the specimen. The analytical results and FEA results
did not agree when the debond tip was too close to either specimen end. The analytical result probably does
not correctly account for end effects; for example, the negative analytical results when a ≈ l are nonphysical.
We further note that the FEA results were very difficult when the debond tip was near either end. We
suggest that neither the analytical result nor the FEA result give accurate results near the ends, but that
both give accurate results away from the ends. More details on the comparison to FEA results are given in
Ref. 21.

The analytical model gives total energy release rate. In other words, the analytical model does not
partition the energy release rate into mode I and mode II energy release rates. The FEA calculations,
however, show that except for very short debond lengths (where accuracy is questionable), the debond crack
growth is nearly pure mode II fracture. We thus expect the microbond test to be producing predominantly
mode II fracture. Any toughness determined from microbond tests will be a mode II interfacial fracture
toughness.

4. Results and discussion

4.1. Specimens With Observed Debond Growth

In all 0.125/0.58 specimens, we were able to observe stable debond growth. By doing repeated loading
experiments with different initial debond lengths, we recorded the stress to cause debond growth, σd, as a
function of debond length, a. By coupling these experiments with equation (16) we can construct a crack
resistance or R-curve for interfacial fracture by plotting G(a) as a function of a; a G(a) calculated from
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Fig. 5. A comparison of the energy release rate calculated by equation (16) (smooth line) and by finite element
analysis (symbols). This sample calculation was for a 0.125 in diameter steel rod embedded in a 1.25 in diameter
matrix cylinder of length 100 mm. The fiber volume fraction was 1%. The loading conditions were σd = 100 MPa,
τf = 1 MPa, and ∆T = −95◦C.

experimental crack growth is a critical energy release rate or interfacial fracture toughness denoted here by
Gic. If our fracture mechanics analysis is a valid analysis for these specimens, the R-curve should be flat or
G(a) should be independent of a and equal to Gic. Alternatively, as observed in many materials, the R-curve
might have an initial rapid rise followed by a flat plateau.22 For such materials the plateau value is equated
to the toughness, Gic.

Figure 6 gives the results of analyzing experiments on a single 0.125/0.58 specimen four different ways.
The specimen considered had a length of 44 mm; the fiber volume fraction was 4.64%. To use equation (16),
we needed to input the thermomechanical properties of the fiber and matrix, the magnitude of the interfacial
friction (τf ), and the level of residual thermal stresses (∆T ). The assumed thermomechanical properties are
given in Table 1. The different curves in Figure 6 correspond to different assumptions about τf and ∆T .

Curve a in Figure 6 is an analysis that ignores both residual stresses and interfacial friction. This curve
is clearly a poor fracture mechanics result; it is never constant. Furthermore, the absolute values of Gic(a),
ranging as high as 1200 J/m2, are probably unrealistically high for a steel/epoxy interface. Curve b includes
residual thermal stresses, but ignores friction. This analysis is identical to the simple, frictionless energy
analysis described in Ref. 11 and equation (2). The residual thermal stresses were included by setting
∆T = −95◦C, which is close to the temperature difference between the post-cure temperature (125◦C) and
the testing temperature (room temperature). Curve b, like curve a, is a poor fracture mechanics result. It
is simply shifted to higher Gic values than curve a; the magnitude of the shift corresponds to the energy
released by the residual stresses.

Curves c and d (filled symbols in Figure 6) both include friction effects, but to include friction we needed
to input a value for τf . Our approach was to assume that the interfacial friction stress during debond growth
is equal to the interfacial friction after complete debonding. This later interfacial friction can be measured
from the force-displacement curve by dividing the sliding force after debonding by the total embedded fiber
area (2πrf l). Some alternative friction assumptions are discussed below. For the 0.125/0.58 specimens, the
post-debonded friction stress was 4.2 MPa. Curve c is an analysis that included both residual stresses and
friction. This curve is a good fracture mechanics result. There is evidence for an initial rise in Gic at short
debond lengths, but the R-curve soon levels out at an approximately constant value of aboutGic = 360 J/m2.
This value for Gic is a reasonable toughness for a steel/epoxy interface.
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Fig. 6. Crack-resistance curves for a single 0.125/0.58 specimen analyzed four different ways. Curve a ignores residual
stresses and friction; curve b includes residual stresses but ignores friction; curve c includes both residual stresses and
friction; curve d ignores residual stresses, but includes friction.

Curve c was a good result, but we calculated a fourth result in curve d to assess the role of residual
stresses in the fracture process. Curve d includes interfacial friction, but ignores residual stresses. Although
curve d looks relatively flat on the scale of Figure 6 it starts at a low Gic and gradually increases to Gic of
about 200 J/m2 without ever leveling off. The significance of curve d is its difference from curve c. That
difference illustrates the magnitude of the contribution of residual stress to debonding. The magnitude is
large; in fact, most of the energy released comes from residual stresses.

The stress state during debond growth is certainly much different than the stress state during post-
debonding sliding. A concern arises as to whether or not the post-debond frictional stress is an acceptable
input value for τf in the calculation of Gic. Curves b and c in Figure 6 differ only in the value used for τf .
We could similarly create a family of R-curves by varying τf . If we accept that the R-curve should be as
flat as possible, an alternative scheme to finding τf would be to vary τf until the R-curve is optimally flat.
We tried this approach for the data in Figure 6; the optimal value for τf was indistinguishable from the τf
value deduced from the post-debond sliding force. We thus claim that the post-debond sliding force is an
appropriate and accurate method for determining the magnitude of the friction stress during debonding.

A third alternative to inclusion of interfacial friction is to model friction as a Coulomb friction process
in which interfacial shear stress is proportional to interfacial radial stress

τrz(rf , z) = µσrr(rf , z) (22)

where µ is the coefficient of friction. Our global analysis method, however, does not accurately include
σrr(rf , z); in other words, explicit inclusion of Coulomb friction at the micromechanics level is not possible.
In a linear elastic analysis, σrr(rf , z) will be linearly related to boundary conditions. We could therefore
empirically include Coulomb friction by setting τrz(rf , z) proportional to σd. Such an analysis can be derived
from our analysis by setting τf = µeffσd, where µeff is an effective coefficient of friction. Such an approach
would not lead to an improved R-curve analysis of the our results. Within the accuracy of the experiments,
it is therefore acceptable to treat τf as a constant that describes the effective or perhaps average interfacial
friction stress throughout the debonding process. Furthermore, it is possible that interfacial shear stress in
the debond zone is not entirely caused by Coulomb friction but rather by other residual interfacial adhesion
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Fig. 7. Crack-resistance curves for three different 0.125/0.58 specimens with different length. The R-curves were
calculated using an analysis that includes both residual stresses and interfacial friction. The dashed line is drawn at
a plateau toughness of about Gic = 360 J/m2.

effects. An effective friction stress model can approximately account for such effects, while a Coulomb friction
model is tied in to a specific physical mechanism for interfacial shear stress.

Figure 7 shows the calculated R-curves for three 0.125/0.58 specimens with three different lengths. If
Gic is a material property, the R-curves from different length samples should be the same. There was
experimental scatter and only the data from the 44-mm-long specimen gave sufficient results to clearly show
a flattening R-curve. The shorter specimens, by necessity, could only include data with debond lengths
up to the total specimen length. We also noted that the data at the longest debond lengths (a near l)
were consistently low. This error was a consequence of the calculated G(a) being wrong and too low as
a → l (see Figure 5); we therefore ignored the last point with the longest a from each specimen. Despite
the limited data from the shorter specimens, we claim all results are consistent with there being a unique,
fracture-mechanics R-curve for the steel/epoxy interface. Furthermore, the previously determined plateau
toughness of Gic = 360 J/m2 is consistent with the results from the shorter specimens.

In summary, we get a reasonable fracture mechanics analysis of our macroscopic microbond specimens
provided we can measure debond force as a function of debond length and provided we interpret the results
using an energy release rate analysis that includes both residual thermal stress and interfacial friction.
The thermal stresses can be estimated from the difference between the curing temperature and the testing
temperature. The interfacial friction stress can be estimated from the post-debond sliding force in the force-
displacement results. If either residual stresses or friction are ignored, the resulting R-curve will not be
flat and a Gic calculated from any particular experimental result will be wrong. Notice also, that besides
providing model specimens for studying the microbond test, the concentric cylinder geometry, with the inner
cylinder being a substrate and the outer cylinder being an adhesive, could be used to measure the mode II
fracture toughness of adhesive bonds.
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4.2. Specimens Without Observed Debond Growth

In many microbond tests, it may be difficult or impossible to observe and measure debond growth. For
example, we were not able to observe debond growth in the 0.125/1.0 or 0.125/1.125 specimens, due in part
to the larger amount of epoxy and to the dark color of the cured matrix. Similarly, most experiments on
microscopic microbond specimens record only debonding force and are not able to observe debond growth.1−11

In this section we propose a potential scheme for evaluating interfacial fracture toughness from microbond
tests by using experiments that record only the peak debonding force as a function of total droplet length.
We judged the results by how well they could reproduce the toughness measured from the debond growth
specimens of Gic = 360 J/m2.

The analytical and numerical results in Figure 5 show that, in the presence of friction and at a constant
σd, the debonding energy release rate decreases as the debond grows. The consequence of this behavior is
that debond growth is predicted to be stable. This prediction agrees with our observations on the 0.125/0.58
specimens. When we connected our debond growth observations to the force-displacement plot, we noted
that force continued to increase as the debond grew and that the peak force corresponded to the point at
which the debond reached the end of the droplet. In other words, the peak debond force, which is easily
measurable, corresponds to a debond specimen with debond length, a, approximately equal to droplet length,
l, which is also easily measurable.

We propose that interfacial fracture toughness in specimens without observed debond growth can be
estimated by taking the debond stress, σd, from the peak force and evaluating the energy release rate as a
approaches l:

Gic = lim
a→l

G(a) (23)

A problem, arises, however, that when a ≈ l the analytical result is inaccurate and we additionally lack
confidence in the FEA results. We therefore developed an approximate alternative. Figure 8 shows some
sample plots of G(a) for various droplet lengths and for a limiting analysis as l → ∞. At short debond
lengths, G(a) is independent of l. This situation corresponds to the debond tip being far away from the
droplet end. As a → l, G(a) drops and, as discussed above, becomes inaccurate. We suggest that an
acceptable G(a = l) can be estimated by calculating G(a) from the energy release curve for a droplet that
has a much larger length than the actual droplet. In fact, we get well-behaved results simply by calculating
G(a) in the long-droplet limit or the limit as l→∞. The limits on the stress-transfer functions are

lim
l→∞

CT (a) =
1
β

and lim
l→∞

C ′T (a) = 0 (24)

The limiting energy release rate, G∞(a) = liml→∞G(a), is thus

G∞(a) =
rf
2

[
C33s(σd − ka)2 +D3s

(
2σd − k

(
2a+

1
β

))
∆T +

(
D2

3

C33
+
vm(αT − αm)2

vfA0

)
∆T 2

]
(25)

Figure 9 plots the calculated R-curve from the 0.125/1.0 and 0.125/1.125 specimens. G was calculated
using equation (25), with a equal to the droplet length and σd derived from the peak force in the force-
displacement plot. The dashed line through Figure 9 is for Gic = 360 J/m2 that was measured from the
0.125/0.58 specimens with observed debond growth. These results form a new R-curve. There is a rising
region at short droplet length, but the results level off in a plateau region that is consistent with the measured
toughness of Gic = 360 J/m2. There is more scatter in this estimated R-curve than in the more rigorous
R-curve in Figure 7. There also seems to be a consistent downward trend in the 0.125/1.0 specimens for
longer droplet lengths. There are two possible causes for this drop. First, there may be inaccuracies in the
approximate scheme of estimating G(a = l) from equation (25). Perhaps this method works best for shorter
droplet lengths. Second, friction becomes increasingly important for longer debonds or here for longer droplet
lengths. We, unfortunately, only made limited friction observations for the specimens in Figure 9. From our
few recorded results we estimated the friction to be 4 MPa in the 0.125/1.0 specimens and 5 MPa in the
0.125/1.125 specimens. It is possible that more accurate friction observations could both reduce the scatter
and eliminate the downward trend at long droplet lengths. The preferred approach for finding G without
observed debond growth is to record a specific friction result for each individual specimen.
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Fig. 8. Energy release rate as a function of debond length for steel/epoxy specimens calculated using the analytical
model with σd = 100 MPa, τf = 1 MPa, ∆T = −95◦C, and vf = 1%. The four curves are for three different droplet
lengths and the limiting results as l→∞.

Fig. 9. An approximate R-curve for the 0.125/1.0 specimens and the 0.125/1.125 specimens. G was calculated by
assuming the debond length was equal to the droplet length at the time of the peak force. G(a = l) was estimated
using equation (25).
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The observation that G(a) ≈ G∞(a) provided a << l allows us to assess the impact that our use of
shear-lag analysis has on the accuracy of G(a). From equation (25) we see that the only contribution of the
shear-lag terms to total energy release rate is the term 1/β which arises from the limiting value for CT (a). In
other words, the only result we require from shear-lag analysis is an estimation of the average axial stress in
the fiber. The results in Ref. 15 show that average axial stress calculated by shear-lag analysis is reasonably
accurate; it was found to always be within 10% of the correct result provided the fiber volume fraction is not
too low and provided one uses the correct β (as given in equation (19)). The error in CT (a), or the integral
of average axial fiber stress, will probably be even less than 10%. We concluded that detailed knowledge
of F (z) is not crucial to an accurate result for G(a). As corollaries, we claim that shear-lag analysis is a
sufficiently accurate tool for our energy release rate analysis and that efforts at improved stress analysis
results for F (z) should not have much effect on the calculated G(a).

4.3. Reanalyzing Literature Results

Many experimental microbond results have been reported in the literature; most have been analyzed using
the average shear stress failure criterion.1−7 Can that data be reanalyzed using the fracture methods of this
paper? The answer, unfortunately, is normally no. The fracture mechanics analysis requires experiments
that measure debond force as a function of droplet length, record the droplet diameter of each specimen (to
be used to calculate the effective fiber volume fraction in the droplet11), estimate friction from the post-
debonding sliding stress, and reports the expected level of residual stresses. Most literature results report
only the peak debond force and the total droplet length. One exception are the results in Ref. 11 which
reported all required terms except for the estimated friction stress. These results are the ones plotted in
Figure 1. We attempted reanalysis of these microscopic specimen experiments using the method proposed
in the previous section for specimens without observed debond growth.

Because we did not know the friction stress, we treated the friction stress as an adjustable parameter and
constructed R-curves as a function of τf . The result when τf = 0 corresponds to the analysis in Ref. 11 and
plotted in Figure 1 (although not as an R-curve). This analysis gave a toughness of Gic = 220 J/m2. The
resulting R-curve (plot not shown) was highly scattered and we could not judge whether or not it was flat.
As we increased friction, the calculated Gic decreased and there was no apparent improvement in the R-curve
plot. For example, a friction stress of 5 MPa led to a toughness estimation of Gic = 157 J/m2. We concluded
that it is impossible to verify the fracture mechanics approach to the microbond test by analysis of scattered
experimental data on microscopic specimens. If we accept the fracture mechanics analysis, however, we find
that an analysis that ignores friction gives an upper bound to the correct interfacial fracture toughness. The
calculated toughness always drops as τf increases; it will become equal to the physically correct toughness
only when τf is equal to the actual friction on the debond surfaces.

4.4. Recommended Microbond Test Procedure

Based on our experiments on macroscopic specimens, we can recommend test methods for microscopic
specimens. These recommendations could also be applied to other macroscopic specimens for measuring the
mode II toughness of adhesive bonds. The recommended experiments are to make a series of droplets with
different length droplets and record length and diameter for each droplet. The diameter of the droplet can
be used to estimate vf by assuming the natural droplet shape is elliptical for microscopic specimens11 or
cylindrical for macroscopic specimen. Each specimen should then be subjected to a standard microbond
test. If possible, one should observe debond growth and record the force required to extend the debond as a
function of debond length. If debonds cannot be observed, then one should record peak debond force. For all
experiments, the friction stress should be estimated from the post-debond sliding stress. The described set of
data is sufficient to calculate an R-curve and therefore to estimate a mode II interfacial fracture toughness.
If debond growth cannot be observed, the R-curve should be calculated using equation (25) with a for each
specimen equated to the droplet length. If debond growth can be observed, the R-curve should be calculated
using equation (16). Because equation (16) becomes inaccurate as a → l, the results at large a should be
ignored or they should be interpreted using the limiting result in equation (25) instead of equation (16).



74 C.-H. Liu, J.A. Nairn / International Journal of Adhesion & Adhesives 19 (1999) 59–70

Acknowledgements

This work was supported by a grant from the Mechanics of Materials program at the National Science
Foundation CMS-9713356.

Appendix

The defined Ai, Cij , and Di required for the calculations described in this paper are listed below:

vfA0 =
vm(1− νT )

ET
+
vf (1− νm)

Em
+

1 + νm
Em

(26)

A3 = −
(
νA
EA

+
vfνm
vmEm

)
(27)

C33 =
1
2

(
1
EA

+
vf

vmEm

)
− vmA

2
3

vfA0
(28)

C33s =
1
2

(
1
EA

+
vf

vmEm

)
(29)

D3 = −vmA3

vfA0
[αT − αm] +

1
2

[αA − αm] (30)

D3s =
1
2

(αA − αm) (31)

Here vf and vm are the volume fractions of fiber and matrix within the droplet. For the concentric cylinders
in macroscopic specimens

vf =
r2
f

r2
m

and vm =
r2
m − r2

f

r2
m

(32)

EA and ET are the axial and transverse moduli of the fiber, νA and νT are the axial and transverse Poisson’s
ratios of the fiber, Em is the modulus of the matrix, νm in the Poisson’s ratio of the matrix, αA and αT
are the axial and transverse thermal expansion coefficients of the fiber, and αm is the thermal expansion
coefficient of the matrix. The fiber is treated as transversely isotropic with the axial direction along the axis
of the fiber. The results for isotropic fibers are easily generated be setting EA = ET = Ef , νA = νT = νf ,
and αA = αT = αf where subscript f indicates thermomechanical properties of an isotropic fiber. The
matrix is here always considered to be isotropic.
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