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Abstract

We propose a new method for determining fiber-bridging, cohesive laws in fiber-reinforced composites and in natural fibrous
materials. In brief, the method requires direct measurement of energy released during crack growth, known as the R curve,
followed by a new approach to extracting a cohesive law. We claim that some previous attempts at determining cohesive
laws have used inappropriate, and potentially inaccurate, methods. This new approach was applied to finding fiber bridging
tractions in laminated veneer lumber (LVL) made from Douglas-fir veneer and four different adhesives. In addition, the LVL
specimens were subjected to moisture exposure cycles and observations of changes in the bridging cohesive laws were used to
rank the adhesives for their durability. Finally, we developed both analytical and numerical models for fiber bridging materials.
The numerical modeling was a material point method (MPM) simulation of crack propagation that includes crack tip prop-
agation, fiber bridging zone development, and steady state crack growth. The simulated R curves agreed with experimental
results.
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1. Introduction

Many materials develop process zones in the wake of crack
tip propagation including both synthetic composites [1, 2]
and natural materials such as bone [3], wood [4–6], or wood
composites [7–9]. For both fiber-reinforced composites and
fiber-based natural materials, a common type of process zone
is a fiber bridging zone. Such zones can be a significant com-
ponent of a material’s toughness because the zone size can
be comparable to, or larger than, the specimen size [8]. One
way to guide interpretation of experiments or to design struc-
tures that use fiber bridging materials is to model the process
zone with a cohesive law that gives crack surface tractions as
a function of crack opening displacement. The practical use
of such laws, however, requires methods to measure them.
This paper describes a new approach to measuring cohesive
laws with application to wood and wood composites. The
measured laws were used to characterize materials and were
implemented in a numerical model to validate their role in
modeling crack propagation.

A key concept for understanding crack propagation in the
presence of a process zone is that there are two crack tips
— the actual “crack tip” at the leading edge of the process
zone and the “notch root” at its trailing edge (see Fig. 1A).
When a crack propagation experiment begins, the crack tip
and notch root coincide at the “initial” crack tip. When load-
ing causes energy release rate for crack tip growth to exceed
the initiation toughness, the crack tip propagates, but the

notch root does not. Instead, a “developing” process zone
is left in the wake of the crack tip that grows as the crack
tip propagates. During this phase, the crack resistance, R,
increases, which is known as the material’s R curve. Eventu-
ally the crack opening displacement (COD) at the notch root,
δroot , exceeds the critical COD for the process zone, δc . Af-
ter δc is reached, the crack tip and the notch root propagate
together in a regime termed “steady state” crack growth. In
steady state crack growth, R is constant at a plateau called the
steady state toughness, Gss. In brief, the material’s R curve in-
creases until the notch root starts to propagate and thereafter
remains constant at Gss.

Figure 1A shows a contour Γ from the bottom crack surface
to the top surface that completely encloses the process zone.
When part of the crack within the contour is connected by a
bridging law, Bao and Suo [10] derived the J integral along
the enclosing contour, called here the far-field J integral or
Jff (δroot), as:

Jff (δroot) = Jt ip,c +

∫ δroot

0

σ(δ) dδ (1)

where σ(δ) is a traction law associated with the process
zone. But, as is known in J -integral analysis, this J is only
equal to the energy release rate when the crack growth is “self
similar” [11]. When a process zone is involved, self similar-
ity implies that the process zone length is constant during
crack growth and this condition only occurs in the steady



B. Mirzaei, A. Sinha, and J.A. Nairn / Composites Science and Technology, submitted (2015) 2

σ

δδroot

σ

δ

(σ1,δ1)

(σ2,δ2)
δc

WB (δroot)
(r)

Crack
TipNotch

Root

A: Initial Developing Steady State

B C

δroot δc

ΓInitial Notch
Root

Figure 1: A. Stages of crack propagation in the presences of a process zone,
which is defined by two crack tips — the actual crack tip and the notch
root. B. Schematic drawing for a cohesive law. The shaded region is the
energy dissipated in the zone and W (r)

B (δroot ) is the recoverable energy in
the zone (shown here as elastic recovery, but other types of recovery could
be modeled). C. A representation of fiber bridging tractions as a trilinear
traction law derived for modeling purposes.

state regime with constant R. Prior to steady state, the energy
required to propagate the crack needs to account for energy
required both to propagate the crack tip and to enlarge the
process zone. Nairn [12] has shown that in the region prior to
steady state where the crack tip is propagating but the notch
root is not, the increasing R curve should be found not from
Jff (δroot), but rather from:

R(δroot) = Jff (δroot)−W (r)
B (δroot)

= Jt ip,c +

∫ δroot

0

σ(δ) dδ−W (r)
B (δroot) (2)

where W (r)
B (δroot) is recoverable energy in the process zone,

which is non-zero when δroot < δc . The amount of recov-
erable energy will depend on the mechanics of the process
zone. A reasonable approximation for fiber bridging is that
the process zone is an elastic zone undergoing damage such
that recoverable energy is found by unloading back to the
origin or W (r)

B (δroot) = δrootσ(δroot)/2 (see Fig. 1B) [12].
Stated differently, Jff (δroot) is always the correct J integral,
but that single quantity cannot simultaneously give energy
release rate both for process zone development (where crack
tip propagates but notch root does not) and for steady-state
crack growth (where crack tip and notch root propagate to-
gether as self-similar propagation). The solution is to use
Eq. (2) to find the R curve. This calculation of R will dif-
fer from Jff (δroot) during process zone development, but will
equal it during steady-state crack growth.

Accepting the model that fracture with a fiber-bridging
process zone can be modeled using fracture mechanics and
a cohesive law, Eqs. (1) and (2) suggest three valid methods
for determining σ(δ). The first is to measure Jff (δroot) dur-
ing process zone development and then differentiate to get:

σ(δ) =
dJff (δroot)

dδroot
(3)

Unfortunately, in general it is not possible to measure
Jff (δroot) from typical fracture specimens because the calcu-
lated result depends on the cohesive law. One exception, as
pointed out by Rice [11], is a pure moment-loaded, double
cantilever beam specimen. Lindhagen and Berglund [2] used
such a specimen to measure cohesive laws in several glass
mat composites with random in plane fiber orientation and
observed monotonic softening behavior. Two drawbacks of
this approach are that it requires special fixturing to apply
a pure moment and it only works for one specimen geome-
try. This approach could never, for example, be used to probe
important questions about potential changes in cohesive laws
depending on specimen loading method. We also note that
although Jff (δroot), when it can be measured, can be used
to find σ(δ), it cannot be used to measure the material’s R
curve (if that is of interest). As seen in Eq. (2), the material’s
R curve (i.e.,R(δroot)) is not equal to Jff (δroot) prior to steady

state (because W (r)
B (δroot)> 0 in that phase).

A second, valid approach is to avoid measurement of
Jff (δroot) or R(δroot) by directly measuring displacements in
the arms of a double cantilever beam specimen and then
numerically solving the inverse problem to find the traction
law required such that the calculated and measured displace-
ments agree. This approach was used by Botsis and cowork-
ers [13–16]; they measured arm displacements using an em-
bedded Fiber Bragg Grating (FBG) sensor and used finite ele-
ment analysis to extract a cohesive law. The drawbacks of this
approach are that specimens with FBGs are expensive and the
technique is limited to synthetic composites where FBGs can
be embedded during fabrication. The approach could not be
used for studying fiber bridging in natural materials, such
as solid wood. Vasic and Smith [17, 18] developed a similar
method where cohesive law was found by numerically match-
ing finite element predictions to crack opening displacements
in wood measured in a scanning electron microscope.

A third option is to directly measure R(δroot) using en-
ergy tracking methods [4–9]. Differentiating this result us-
ing Eq. (2) and using an elastic approximation to WB(δroot)
(which is appropriate for fiber bridging), gives

dR(δroot)
dδroot

=
1
2

�

σ(δroot)−δroot
dσ(δroot)

dδroot

�

(4)

This differential equation can be solved for σ(δroot) to give
a new approach for finding cohesive law from R(δroot) [12]:

σ(δroot) = 2δroot

∫ ∞

δroot

R′(δ)
δ2

dδ (5)

Once a material reaches a critical crack opening displace-
ment, δc , the R curve will reach steady state toughness,
which implies R′(δ) = 0 for δ > δc . Using this result, the
upper limit in Eq. (5) can be replaced by δc . This method re-
quires direct energy tracking to measure the amount energy
released during crack propagation (actual R curve) along
with measurement of notch root opening displacement.

The goal of this work was to use information on cohesive
laws to characterize the ability of different adhesives to pro-
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duce moisture resistant laminated veneer lumber (LVL) from
made from Douglas-fir (Pseudotsuga menziesii) veneers and
various adhesives. In previous work, we measured R as a
function of crack length and then used changes in R caused
by exposure of the specimens to moisture cycling [19, 20]
to evaluate the adhesives. The hypothesis here is that using
the third option to find cohesive laws for each adhesive type
and as a function of exposure time will add new information
about the durability of those materials. The new results here
were to covert previously measure R(a) (R as a function of
crack length) to new data for R(δ) or R as a function of crack
opening displacement at the notch root. We then used the re-
sulting R′(δ) to find cohesive laws using Eq. (5) and this new
approach was compared to one prior method. The experi-
mentally measured cohesive laws were fit to a trilinear trac-
tion law form (see Fig. 1C) in an attempt to reduce the curves
to fewer material properties. The resulting trilinear law prop-
erties were examined to add insights into degradation due to
moisture exposure and to rank adhesives for durability. The
trilinear fits also provided a convenient and realistic traction
law for use in numerical modeling to predict the crack propa-
gation properties of LVL. Finally, an analytical model for fiber
bridging up to the peak cohesive stress was derived and used
to further interpret traction law parameters.

2. Materials and Methods

2.1. Wood Composite Materials

LVL billets were manufactured in the laboratory under con-
trolled conditions using all B grade Douglas-fir veneers. Each
LVL billet had dimensions 61× 91 cm (2× 3 ft), consisted of
11 plies (each 3 mm thick), and used one of the following
four adhesives: Wonderbond R© EL-35 Emulsion Polymer Iso-
cyanate (EPI), GP R© 421G83 RESI-MIX R© Phenol Formalde-
hyde (PF), CASCOPHEN R© LT-5210J/CASCOSET R© FM-6210
adhesive system Phenol Resorcinol Formaldehyde (PRF), and
a one-component Polyvinyl Acetate (PVA). For comparison,
experiments were also done on solid Douglas-fir specimens.
Detailed descriptions can be found in Refs. [19, 20].

Accelerated moisture exposure of LVL and solid wood was
carried out according to ASTM standards [21], but we ex-
cluded the steam exposure step. Fracture experiments were
done after selected number of cycles each of which consisted
of vacuum, pressure, soaking, and drying and denoted here
as VPSD cycles. All mechanical tests were done on specimens
after drying and after re-equilibrating in a conditioning room
(maintained at 21◦ C and 65% RH) to standard moisture con-
ditions (about 12% moisture content). Details on the VPSD
cycles for aging are given elsewhere [19, 20].

2.2. Fracture Experiments

The fracture experiments used double cantilever beam
(DCB) specimens in opening mode under displacement con-
trol at 2 mm/min. Dimensions of all DCB specimens were
35±2×35±2×300±5 mm3 and the initial, sawn pre-crack
was 100 mm. The crack plane at the edge of each specimen

was widened and loading was applied using angle irons in-
serted into the gap. The long direction of the DCB specimen
was the wood grain or longitudinal direction of the wood.
The crack plane may be cut either parallel to adhesive bond
planes in the LVL or cut to cross all adhesive bond lines. The
former is known as an RL fracture (because the normal to the
crack plane is in the thickness direction of the veneer, which
is the radial direction of solid wood for rotary peeled veneer),
while the later is called TL fracture (because normal to the
crack plane is in the tangential direction of the wood in the
veneers). The L in each fracture mode is for crack growth in
the longitudinal direction. Because TL cracks break all bond
lines, it has been observed that the adhesive plays a much
greater roll in TL fracture than in RL fracture [19]. Because
of this greater role of adhesive, all crack propagation exper-
iments reported here for LVL were in the TL direction. For
comparison, the solid wood specimens were also studied us-
ing TL fracture. In solid wood, a TL crack plane spans multi-
ple growth rings in the specimen.

The load and displacement data during fracture tests were
recorded using an Instron 5582 universal testing machine.
Crack growth data were collected using the 3D Digital Image
Correlation (DIC) technique [22]. For DIC data acquisition,
two 50 mm Pentax R© lenses (stereo system), attached to high
speed Correlated Solutions R© cameras mounted on a tripod,
were used to capture images during the tests. Images were
acquired at 1 Hz. DIC is a technique to map strains by track-
ing a small subset of pixels in deformed images. To facili-
tate the DIC analysis, a speckle pattern was applied by paint-
ing the surface black and then spraying a random pattern
of white dots. VIC 3D R© software analyzed the acquired im-
ages and calculated strains. The tensile strain normal to the
crack plane ahead of the crack tip was monitored through-
out the loading. This strain was high near the crack tip and
decreased as a function of distance away from the crack tip.
Figure 2 shows sample strain profiles for a solid wood speci-
men. Crack propagation was measured by observing shifts in
the position to reach 1% vertical strains between subsequent
images. All DIC strain-position data were exported to data
sheets for further processing. A Matlab script was written to
populate crack propagation data from DIC output based on
the 1% strain criterion. [20].

The fracture experiments consisted of multiple replicates
each for control (0 VPSD cycles) and after 8, 16, and 24 VPSD
cycles. The number of specimens used per treatment were
4±1 for solid wood, 8±2 for PVA, and 6±2 for all other ad-
hesives. Each experiment measured load and crack length as
a function displacement. These data were reduced for direct
energy calculation of R curves as a function of crack length
by methods described elsewhere [8, 12, 19]. An important
detail is that these experiments directly measured energy re-
leased without any need to impose assumptions about beam
or process zone mechanics. The results for all replicates were
averaged to get average R curves.

For evaluation of cohesive laws, it is necessary to deter-
mine R as a function of δroot instead of the more commonly
measured R as a function of crack growth. To measure δroot ,
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Figure 2: DIC analysis of a solid wood DCB specimen to monitor crack prop-
agation and determine δroot . The colors in the specimen image indicate
strain normal to the crack (with red as maximum strain at the crack tip).
The plot shows that strain and several time stages along a line though the
crack plane. As the crack propagates the strain plot shifts. The shifts be-
tween curves (e.g., shift of position to reach 1% strain) indicate the amount
of crack growth between the times corresponding to the two curves. Accu-
mulating such crack growths allows accurate tracking of crack growth and
was more accurate that attempting visual tracking of crack growth.

the same DIC data used to measure crack length were used
to place a virtual extensometer at the notch root of the speci-
men. In brief, two locations above and below the initial notch
root were selected and the net displacement difference be-
tween these locations was determined to find δroot . This
method is identical to the method used by Lindhagen and
Berglund [2] except that it used DIC data and VIC software to
measure δroot rather than a physical crack opening displace-
ment gage. These results were used to convert R(a) curves
to R(δroot) curves. Formally, R(δroot) found by this method
is only valid up to δc because after reaching δc , the process
zone edge moves and measuring zone δroot would require
moving the DIC detection locations along with the process
zone. Instead, our experiments always measured δ at the
initial notch root. After reaching δc , however, the material
enters steady state propagation with constant toughness Gss.
In other words, a true R(δroot) curve would increase until
δc and then remain at a fixed point with R(δc) = Gss and
δroot constant and equal to δc . Our experimental R(δroot)
curves are identical to true curves up to δc but then R(δroot)
remains constant at Gss while δ at the original notch root
location gets larger than δc . Fortunately, determination of
cohesive law from R(δroot) only requires information up to
the onset of steady state crack growth or up to δroot = δc .

2.3. Experimental Determination of Cohesive Laws

We determined cohesive laws for fiber bridging in LVL
wood composites and in solid wood from the directly mea-
sure R(δroot) curves described above by using Eq. (5). This
approach was proposed by Nairn [12], but has not previously
been used on real experiments. The first step is to locate
the steady state regime, which then determines δc . Given
R(δroot) up to δc , the cohesive laws were then found with a
Matlab script using the following algorithm:

1. Divide up experimental data from δroot = 0 to δroot =
δc into n intervals such that δi = iδc/n.

2. For each δi , pick a smoothing interval size, k, and do a
linear fit to all data from R(δi−k) to R(δi+k) and assign
the slope of that fit to be R′(δi) denoted here as Si .

3. The cohesive law is then calculated by taking σ(0) = 0
and:

σ(δi) = 2

�

Si −
δi

δc

�

Sn − n
n−1
∑

k=i

(Sk+1 − Sk) ln
k+ 1

k

��

(6)
This practical equation assumes that R′(δroot) is a piece-
wise linear function connecting the Si values and then
numerically integrates Eq. (5) using the n experimental
data points.

For example, consider a linear softening law of σ(δ) =
σc(1 − δ/δc). By Eq. (4) the resulting R(δroot) increases
linearly from Jt ip,c up to Gss at δc with slope of σc/2. In
other words, Si = σc/2 for i from 1 to n− 1 and Sn = 0. By
Eq. (6), the cohesive law is:

σ(δi) = σc

�

1−
δi

δc
n ln

n
n− 1

�

(7)

For a large number of data points (n → ∞), this equation
reduces exactly to the linear softening law.

2.4. Numerical Modeling

The numerical simulations used the material point method
(MPM) and the open-source software NairnMPM [23]. MPM
implements explicit cracks by defining a series of massless
particles that define the crack path and uses that crack path
to partition the analysis into velocity fields above and below
the crack plane [24, 25]. MPM can implement traction laws
on the crack surfaces by assigning a traction law to one or
more crack particles along the crack [12]. One use of such
traction laws is to simulate crack propagation and process
zone development in fiber-bridging materials [7, 8, 12].

Simulations that include both crack tip growth and forma-
tion of a cohesive zone require a method that can dynam-
ically create cohesive zones. In brief, the simulation starts
with an initial crack and no cohesive zone (this approach dif-
fers from the common finite element analysis (FEA) method
of pre-inserting cohesive elements at the start of the calcula-
tions). When the crack tip energy release rate exceeds, Jt ip,c ,
the crack tip propagates and a cohesive zone is inserted in its
wake. As the simulation proceeds, the crack tip continues to
propagate at Jt ip,c and the cohesive zone grows and devel-
ops. Eventually, δroot reaches δc causing the cohesive zone
to start failing and the propagation reaches steady state crack
growth. The simulated R curve is determined using Eq. (4).
MPM can handle this dynamic cohesive zone analysis as ex-
plained elsewhere [7, 8, 12].

One challenge in simulating crack propagation is dealing
with kinetic energy. In all numerical models of crack propa-
gation, crack growth is simulated by enlarging a crack, which
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can be by separating nodes in FEA or adding a new crack
tip particle in MPM. This change will cause a release of en-
ergy. In computational mechanics codes that correctly con-
serve energy, the energy released by changing crack length
will convert mostly to kinetic energy. As simulations pro-
ceed, the kinetic energy can dominate the results or cause
instabilities. Now, in real materials, the energy released is
mostly absorbed by the material in processes required to cre-
ate the new crack surfaces. One way to model real absorbed
energy is by adding damping to the numerical model, but it
is extremely difficult to add realistic damping. A recent pa-
per on crack propagation in MPM calculations has proposed
a new form of damping called PIC damping [26]. It selec-
tively damps out kinetic energy in regions of rapid variations
in velocity. It appears to work well for crack propagation by
damping out kinetic energy without over damping to cause
unrealistic results. All simulations here used the PIC damp-
ing method proposed in Ref. [26].

3. Results and Discussion

3.1. Experimental R(δ) Curves
Figure 3A shows R(a) curves for PVA LVL as a function of

number of VPSD crack cycles as a function of crack growth
(note that this crack growth was determined from propaga-
tion of the crack tip and not the notch root). For calculations
of cohesive laws, we replotted R(δ) curve as a function of
crack opening displacement at the notch root (see Fig. 3B).
R curves as a function of crack length, a, and converted to
be a function crack tip opening displacement, δ, for PVA LVL
as a function of number of VPSD cycles are shown in Fig. 3.
Both R(a) and R(δ) clearly show degradation as the num-
ber of VPSD cycles increased. The generic shapes are similar.
Both curves initiate at the same toughness and then increase
due to fiber bridging. At long crack length, the curves tend to
plateau at a steady state toughness. Note that the curvatures
or rate of approaching steady state differ for R(a) and R(δ).
The determination of σ(δ) uses the slope of the R curve and
requires those slopes to be found from R(δ) curves. Also note
that plateau values differ slightly between R(δ) and R(a). All
data were initially recorded as a function of time as the ref-
erence parameter for cross plotting. Because the averaging
process may include different ranges of a or δ, the average
R values showed some minor differences as well.

The algorithm for finding cohesive law depends on exper-
imental δc . In theory, δc is the point where R(δ) becomes
flat and equal to Gss, but in heterogeneous materials, includ-
ing wood based materials, the determination of δc can be
challenging. We approximated δc for PVA LVL as 6 mm and
for other materials as 3.5 mm. It is important to note that
solid wood does not actually reach Gss, but we assumed it is
close to 3.5 mm to have a reference point for determining its
bridging traction.

3.2. Experimental σ(δ) Curves
Fiber bridging cohesive laws (σ(δ)), determined as ex-

plained in Materials and Methods, for PVA LVL as a function
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Figure 3: R curves of PVA LVL as a function of the number of VPSD cycles:
A. R as a function of crack length. B. R as a function of the crack opening
displacement, δ.

of number of VPSD cycles are given in Fig. 4A. The bridging
stress profiles are characterized by an initial sharp increase
up to critical cohesive stress (σc) and then monotonic de-
crease down to zero stress at critical δc . While a similar shape
has been reported for bridging ceramics [27], prior valid co-
hesive laws for fiber reinforced polymer composites did not
report an initial rise [2]. The cohesive stress for PVA LVL
is well correlated with aging and decreased as the number
of VPSD cycles increased. The post-peak, or softening re-
gion, of the cohesive laws were less affected by aging. Fig-
ure 5 gives bridging stress profiles for all other adhesives and
for solid wood as a function of VSPD cycles. All σ(δ) had
similar generic shapes, but unlike σ(δ) for PVA-LVL, the ef-
fects of VPSD cycles on other materials were less apparent.
Vasic and Smith [17, 18] previously determined a cohesive
law in spruce, but their results were very different. Their
peak cohesive stress was 0.597 MPa and critical crack open-
ing displacement was 32 µm. The differences could be due
to species (unlikely) or to specimen size. Their expeirments
were limited to very small specimens and small amounts of
crack growth (for work in a scanning electron microscope).
With more crack growth, we see much higher cohesive stress
up to much higher crack opening displacement. Both ap-
proaches show softening behavior.

Figure 6 compares bridging tractions of solid wood and
LVLs made with various adhesives for control specimens or
for 0 VPSD cycles. Comparing the different LVL specimens,
PVA and PRF had the largest and smallest bridging stresses,
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Figure 4: σ(δ) curves of PVA LVL as a function of the number of VPSD cycles:
A. σ(δ) found using Eq. (5). B. σ(δ) found using R′(δ).

respectively. Comparing LVL to solid wood, the cohesive
stress due to bridging fibers in solid wood (filled black curve)
is far below the cohesive stresses for all LVL specimens. This
observation implies that fiber bridging is not simply stress
carried by wood fibers bridging the crack, but is rather a
more complex interaction between wood and adhesive. The
adhesive either reinforces the bridging fibers, making them
stronger, or allows a greater number of bridging fibers. Im-
ages for fracture surfaces in solid wood and PVA LVL are given
in Fig. 7. While the fracture surfaces of solid wood were rel-
atively smooth, LVL fracture surfaces exhibited many broken
fibers and fiber bundles. These pictures emphasize the role
of fiber bridging in enhancing LVL toughness and are con-
sistent with the considerable difference of bridging tractions
between solid wood and LVL seen in Fig 6.

The cohesive laws measured here used a new method
inherent in Eq. (5). Because most prior work has simply
equated σ(δ) to R′(δ), two questions that arise are — how
to evaluate prior methods and how to judge their accuracy?
The first step in evaluating prior work is to assess how they
measured R during process zone development. Did they
directly track energy or did they use simple fracture equa-
tions based on end load (or displacement) and crack length
(e.g., beam theory on DCB specimens where the beam theory
cannot account for fiber bridging before the bridging law is
known [11])? Only direct methods can give actual R curves.
The methods used here are acceptable. Another acceptable
approach could be to use an experimental compliance cali-
bration method [1]. Basic linear elastic fracture mechanics
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Figure 5: σ(δ) curves as a function of the number of VPSD cycles calculated
using Eq. (5): A. PF LVL. B. PRF LVL. C. EPI LVL. D. Solid wood Douglas-fir.
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Figure 6: σ(δ) curves of all LVL types compared to solid wood Douglas-fir
for control specimens (or 0 VPSD cycles).

Figure 7: Fracture surfaces for DCB specimens of solid Douglas-fir wood
(top) and PVA LVL (bottom) [19].

equations (e.g., R = P2a2/(BEI) for DCB where P is load,
a is crack length, B is thickness, E is modulus, and I is mo-
ment of inertia) are never correct. For the special case of
pure moment loading, such equations do give Jff (δroot), but
that is not R during process zone specimen. For the more
common end-loaded specimens, the simple equations give
neither R nor Jff (δroot). The next evaluation step is to see
how the R results were converted to σ(δ). For those who
measured the actual R curve, the cohesive law must be de-
termined from Eq. (5) (assuming their process zones could be
approximated by an elastic damage mechanism). The preva-
lent use of σ(δ) = R′(δroot) is, at best, inaccurate, and, po-
tentially, a serious error. For those who correctly used beam
theory to determine Jff (δroot) (which only applies to pure
moment loading), the cohesive law can be derived from sim-
ple derivative in Eq. (3). For those who measured neither R
nor Jff (δroot), no method can extract a valid cohesive law.

Lastly, what is the consequence of finding σ(δ) from
R′(δ), which the above fracture mechanics analysis of a co-
hesive zone suggests is not correct and should be replaced
by Eq. (5). Fig. 4B shows σ(δ) from R′(δ) using the same
R(δ) that was used to find σ(δ) from Eq. (5) in Fig. 4A.
While general softening behaviors are seen in both methods,
the σ(δ) details are different. The new method (Fig. 4A)
shows increases up to the cohesive stress, while it was diffi-
cult to detect an increasing regime by the R′(δroot) method
(Fig. 4B). The peak cohesive stresses by the two methods

differ by nearly a factor of 2. The overall softening shapes
appear to be more smoothly monotonic in the new method
compared to the R′(δroot) method. Finally, the areas under
the cohesive should be equal to total bridging toughness de-
fined by GB = Gss−Jt ip,c . Mathematically, integration of both
Eq. (5) and R′(δ) leads to GB. Using the curves in Fig. 4, on
both new and R′(δroot) methods are reasonably close to GB
with average error of 5-10%. In other words, examining the
area under a cohesive law is not a good method for judging
validity of that law. Sorenson et al. [14] similarly compared
their FBG method described in the introduction for directly
finding σ(δ) to the R′(δ) method (but we note their mea-
sured R(δ) was found by fracture mechanics equation that
gives neither R nor Jff (δroot)). Although they claimed both
approaches are correct and described the two results as sim-
ilar, they had differences in cohesive stresses (also a factor
of 2). We suggest such differences mean the two methods
are different and only σ(δ) from their FBG method should
be considered as correct.

3.3. Representation as Trilinear Traction Law

Because comparing cohesive law curves (especially when
they overlap) is challenging, we next attempted to reduce the
fiber bridging properties for different adhesives and different
exposure times to a smaller number of parameters by fitting
the cohesive laws to a characteristic function. All cohesive
laws in Figs. 4 to 6 show non-linear softening. We first fit to
exponential softening, but that did not work well. Instead, all
results could be reasonably represented by a trilinear traction
law (see Fig. 1C). A trilinear traction law, depends on five
properties — (δ1,σ1) and (δ2,σ2) breakpoints and a critical
δc . The total toughness of the modeled process zone is the
area under the traction law curve, which is given by:

Jc =
1
2
(σ1δ2 +σ2(δc −δ1)) (8)

A potential interpretation of a trilinear law is that it is mod-
eling two physical mechanisms. The first failure mecha-
nism can be identified with the area under the first peak
and bounded by the dotted line in Fig. 1C. Its toughness is
J1 = (σ1δ2 +σ2δ1)/2 and is likely associated with strong
and short bridging fibers close to the crack tip. The second
mechanism is the remaining area (J2 = σ2δc/2) and is likely
associated with longer and weaker bridging fibers. The rea-
sons for reduction of data to a trilinear traction law were
twofold: 1. To reduce to fewer experimental variables that
can be examined to give insights about effects of moisture cy-
cling. 2. To provide a convenient form for input of a cohesive
law into numerical models (see next section).

Trilinear fits for cohesive laws in control specimens are
given in Fig. 8. It was not possible to accurately determine all
five trilinear law properties. We decided to fix δ1 = 0.1 mm
and δ2 = 1.0 mm, use δc from above analysis. Next, a Mat-
Lab script was written to find non-linear best fits to exper-
imental σ(δ) by varying the two cohesive stresses, σ1 and
σ2, and the two energies, J1 and J2, subject to the constraint
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Figure 8: Application of trilinear cohesive law to control PVA, PF, EPI, PRF,
and DF. The dashed lines are experimental results and solid lines are the
trilinear fits

that J1 + J2 matched the measured steady-state toughness.
The resulting trilinear parameters for all specimen conditions
are in Table 1. The last two columns give degradation rate
(per cycle) for that property and correlation coefficient for
the linear fit. Overall, only a few properties showed degra-
dation and were well correlated. Those properties with cor-
relation coefficient above 0.8 are indicated in bold. For PVA,
all properties degraded with cycles. For EPI and PRF, the ini-
tial peak is not affected, but theσ2 and J2 terms did degrade.
Comparing J2 (orσ2) degradation rates, PRF degraded faster
than EPI. For both PF and DF, the traction laws were uncor-
related with VPSD cycles. These results suggest that PF is
the most durable adhesive, followed by EPI, PRF, and PVA, in
that order. This ranking is identical to the rankings derived by
Mirzaei et al. [20] that were done by observations of R curve
changes. The fact that PVA was the only material showing
correlated degradation of σ1 and J1 might be potentially ex-
plained by adhesive penetration. PVA penetrated the least of
all four adhesives into the wood cells [20]. The penetration
of other adhesives may have protected the fibers associated
with the first peak while they are left open to degradation in
PVA composites. Because VPSD cycles are known to affect DF
toughness [19], the lack of correlations for DF indicates that
moisture affects the initiation toughness much more than the
fiber bridging properties.

3.4. Fiber Bridging Model
To gain physical insight into the cohesive stress, we at-

tempted to derive an expected cohesive law as a function of

0 xb lb

δ

0 lbx

δ+δ(x)
2

δ-δ(x)
2

Ff sin α

α

Ff

A Bδ(x)

β

Figure 9: A. Fiber bridging zone shows fibers on both surfaces. B. A single
bridged fiber from the notch root (at x = 0) to location x on the bottom. δ
is the crack opening displacement at the notch root and δ(x) is the opening
at x . F f is the force on the single fiber and α and β indicate two key angles.

the bridging fiber strength, fiber area, and number of bridg-
ing fibers. Figure 9A shows a fiber bridging zone with fibers
bridging from the zone edge (at x = 0) to the opposite sur-
face. The location xb is the point at which the bridged fiber is
no longer peeled from the opposite surface or has elongated
to the fiber’s breaking strain, which ever gives a larger xb.
The force due to bridging fibers at x = 0 will be sum of forces
from all fibers from xb to lb where lb is current length of the
bridging zone. This analysis is restricted to small zones and
small openings and is thus aimed at finding cohesive stress
only in the initial phase or up to the peak cohesive stress, σc .
In this initial phase, it is assumed that the fibers between xb
and lb have remained intact and have formed at some con-
stant bridging rate (bridged fibers per unit length). Figure
9B focuses on a single fiber starting on the top surface and
ending on the bottom surface at position x . The fiber strain
is approximately:

ε f =

p

x2 + (δ+δ(x))2/4
p

x2 + (δ−δ(x))2/4
− 1≈

k2r
2(1− r)2

(9)

where δ and δ(x) are crack opening displacements at the
edge of the zone and at x , and r = 1− x/lb. For this small
displacement condition, it is assumed crack opening displace-
ment is linear (δ(x) = k(lb − x)) and that its slope (k) is
small. Using the small k result of sinα= k(1+ r)/(2(1− r)),
the total force in the y direction per unit length at x = 0 due
to all bridging fibers ending at x is

Fy(x) =
E f A f Nbk3

4(lb − xb)
r(1+ r)
(1− r)3

(10)

where E f is fiber modulus, A f is fiber area, and Nb is total
number of bridged fibers at x = 0 (which are assumed to
have the opposite ends spread out uniformly from x = xb to
lb). The total force at x = 0 is found by integrating Fy(x)
from xb to lb. Converting to an integral over r and dividing
that force by unit area, the cohesive stress is

σ(δ) =
E f A f ρbk3

4rb

∫ rb

0

r(1+ r)
(1− r)3

dr

=
E f A f ρbk3

4

�

2rb − 1
(1− rb)2

−
ln(1− rb)

rb

�

(11)

where ρb is the bridged fiber density (number of bridged
fibers per unit area) and rb = 1− xb/lb.
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Table 1: Fiber bridging properties for all LVL materials and for solid wood Douglas-fir. The stresses (σ1 and σ2) are in kPa, the toughnesses (J1 and J2) are
in J/m2; the bridging zone lengths at peak stress (lb) are in mm, and the bridging densities (ρb) are in mm−2).

Matl. Value 0 8 16 24 Slope R2

PVA

σ1 661 491 302 257 -17.5 0.94
J1 321 238 144 123 -8.7 0.94
σ2 187 154 147 141 -1.8 0.82
J2 533 439 418 403 -5.1 0.82
lb 6.7 5.3 6.4 6.5
ρb 40-111 24-66 17-49 15-42

EPI

σ1 579 334 427 554 0.23 0.00
J1 281 158 206 271 0.24 0.00
σ2 177 170 144 117 -2.6 0.94
J2 291 281 238 193 -4.2 0.94
lb 8.5 6.1 6.6 8.5
ρb 44-124 18-51 26-71 42-119

PRF

σ1 319 235 297 449 5.7 0.42
J1 150 109 143 220 3.1 0.46
σ2 192 163 104 81 -4.9 0.97
J2 316 269 172 133 -8.1 0.97
lb 5.6 4.1 6.1 7.4
ρb 16-45 9-24 16-45 30-84

PF

σ1 599 718 620 700 2.5 0.20
J1 291 353 299 340 1.2 0.15
σ2 176 122 228 190 1.9 0.19
J2 290 201 377 314 3.1 0.19
lb 4.6 6.6 6.0 6.7
ρb 25-70 42-119 34-94 42-118

DF

σ1 57 7 69 149 4.2 0.55
J1 27 2 347 74 2.2 0.55
σ2 25 34 166 3 -1.0 0.68
J2 42 56 26 5 -1.7 0.68
lb 4.4 5.2 5.8 6.3
ρb 2-6 0.3-1 4-10 8-24

If xb is determined by breaking strain of the fiber, it is
found by solving for r at which ε f = ε f ,b:

rb = 1+φ2 −φ
Æ

2+φ2 where φ =
k

2
p

ε f ,b
(12)

Substituting rb into Eq. (11) and expanding as a series in k,
and using k = δ/lb leads eventually to:

σ(δ) =
A f ρb

2lb
σ f bδ+O[k2] (13)

where σ f ,b = E f ε f ,b is the bridging fiber strength. If peeling
controls xb, then solve for r such that the individual fiber
force leads to energy release rate for peeling [28] that equals
the peeling toughness, Gc , for the fiber

Gc =
F f

Wf

�

1− cos(α+ β)
�

=
A f E f

4Wf

k4r
(1− r)4

(14)

where Wf is width of the peeling surface. Although solving
this 4th order polynomial equation and expanding as a series

in k is difficult by hand, it can be done easily in Mathematica
[29] with the result:

σ(δ) =
A f ρb

2lb

√

√

√

E f Gc

r f
δ+O[k2] (15)

where fibers have been approximated as cylindrical (A f =
πr2

f and Wf = πr f ). It is tempting to extend this approach
beyond the peak stress, but at higher δ, it is likely that some
bridging fibers become damaged or broken (causing E f , Nb,
and maybe more terms to no longer be constant), and that
opening becomes large (causing k to be too large and δ to be
nonlinear). We claim this type of analysis is only appropriate
during linear rise up to the maximum cohesive stress.

In principle, given properties of the bridging fibers, we can
calculate the bridging density, ρb. Although many bridging
fiber properties are not known, we can propose a rational
range of properties. First, we looked at the amount of crack
growth required to reach the peak cohesive stress, which is
equal to lb. The results for all materials in Table 1 ranged
from 4 to 8 mm. This range is close to the range for individual
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wood fibers, known as tracheid cells, typically found in soft-
wood Douglas-fir (1.7-7 mm) [30], suggesting that bridged
fibers leading to peak cohesive stress may be similar to tra-
cheid fibers. The properties for individual tracheid fibers can
be estimated as σ f = 648 MPa , E f = 40 GPa [31], and
r f = 20 µm [30]. On the other hand, the bridged fibers may
be multiple tracheid fibers bound together (naturally of by
the adhesive) and have properties closer to solid wood, such
as σ f = 100 MPa, E f = 10 GPa [32], and r f = 200 µm
(i.e., 10 tracheid fibers in the radius of the bundle). The peel
out toughness likely ranges from close to initiation tough-
ness for Douglas-fir (200 J/m2) to some lower value (e.g.,
50 J/m2). Substituting these values into Eqs. (13) and (15)
with δ = 0.1 mm for all materials gives a range in bridged
fiber density from 10 to 120 mm−2 for LVL and from 0.3 to
24 mm−2 for solid Douglas-fir (all ranges are in Table 1). In
all calculations, the peeling mechanics determined the co-
hesive stress, but the differences between peeling and fiber
breaking were small.

3.5. Validation — Numerical Modeling

The previous sections presented a new approach to exper-
imental determination of the cohesive law for fiber bridging
in composites and reduction of those laws to a form suitable
for use in modeling (a trilinear traction law). One use for
such laws is to insert them into numerical models to pre-
dict fracture properties in the presence of fiber bridging. To
validate our experimental curves, we used them in an MPM
model for crack growth in which propagation of the crack tip
at a crack tip toughness (Jt ip,c) leaves a cohesive zone in its
wake. The notch root of the bridging zone debonds when the
crack opening displacement reaches the critical value for the
bridging law. During process zone development, the crack tip
propagates while the notch root remains fixed. Once crack
growth reaches steady state, the crack tip and notch root
propagate in parallel. The validation goal was to determine
if simulated R curves as a function of crack length derived us-
ing the experimentally determined σ(δ) laws will reproduce
the experimentally determined R(a) results.

The details on the MPM simulation of crack growth are
given in the materials and methods section. We input the tri-
linear cohesive law properties in Table 1 for each LVL product,
used actual specimen geometry and loading conditions, and
numerically propagated the crack tip and bridging zone up to
steady state conditions. Comparisons of simulated R curves
(solid lines) to experimental results for control specimens of
each (with the error bars) are given in Fig. 10. The experi-
mental results are from Ref. [20]. In general, the simulations
do a good job of matching experimental results, thus demon-
strating self-consistency of experiments, the method to find
σ(δ), and the numerical model for R curves. The simulated
curves do not match all details of the experiments because
the use of trilinear fits, as opposed to more complex laws,
will numerically smooth over those details.
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Figure 10: Experimental R(a) curves of all control LVL materials (symbols
with error bars) compared to simulated R curves using MPM modeling. A.
PF LVL. B. EPI LVL. C. PRF LVL. D. PVA LVL.
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4. Conclusions

We explained why many prior methods that determined
cohesive laws from R′(δ) need to be rethought; in most cases,
the specimens that were used are not suitable for simple dif-
ferentiation of R(δ). We replaced that prior method with the
new method in Eq. (5). In brief, the experiments must di-
rectly measure energy released to calculate an actual R(δ)
curve and then find cohesive law from Eq. (5). The new ap-
proach was used to determine cohesive laws for a series of
Douglas-fir LVL specimen with different adhesives and after
exposure to moisture exposure cycles. Examination of the
cohesive laws was used to rank adhesives for their ability to
provide durable LVL products and that ranking agreed with
a prior ranking determined by other methods [20]. Finally,
analytical and numeral modeling methods were used to gain
insights into fiber bridging mechanics and to demonstrate an
MPM numerical model that can propagate cracks, develop
fiber bridging zones, and reach steady state propagation. The
MPM numerical modeling results agreed with experimental
R(a) curves.
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