
Coupling Transport Equations to Mechanics in the Material Point Method
Using an Approximate Full Capacity Matrix InverseI

John A. Nairn∗

Wood Science and Engineering, Oregon State University, Corvallis, OR 97330, USA

Abstract

Coupling solutions of one or more transport equations to mechanics modeling in the material point method
(MPM), extends MPM to a platform for solving multi-physics problems. Unfortunately, the standard MPM
approach to transport equations using a lumped transport capacity matrix is prone to large oscillations in
particle values especially near interfaces, cracks, or rapid changes in transport value. Switching from lumped
capacity matrix methods to an approximate full capacity matrix approach can eliminate those oscillations.
Although this switch can cause unwanted numerical diffusion, that problem can be suppressed using periodic
or blending options. Several examples illustrate the new methods for heat conduction, solvent transport,
poroelasticity, and phase field fracture simulations. In thermal calculations, the new methods improve
accuracy for tracking thermodynamics state functions.

Keywords: Material Point Method, Transport Analysis, Computational Mechanics

1. Introduction

The material point method (MPM) is a computational mechanics tool [1, 2] with potential advantages
for modeling large deformations, explicit cracks [3], contact [4, 5], and history-dependent materials. MPM
extends to full-physics simulations by coupling solutions of mechanics and transport equations. This exten-
sion by standard MPM methods is straightforward [6, 7]. Some applications are to model plastic heating,
crack tip heating, and frictional heating at interfaces [4].

In standard MPM transport analysis, some transport value (e.g., temperature for heat conduction) is
tracked on each particle. Each MPM time step extrapolates transport content (e.g., heat energy for heat
conduction) to the grid, solves the transport equation, and then extrapolates a transport “rate” back to the
particles [6] using lumped transport-capacity matrix calculations. The particle state is then updated using
the so-called FLIP (FLuid Implicit Particle) method [8, 9] that increments particle transport value using
extrapolated rate. This mapping back and forth between particles and the grid with FLIP particle updates
is standard practice in MPM, but is prone to noise caused by null-space in the particle to grid mappings.
Because the number particles is normally greater than the number of nodes, particles can develop values
that extrapolate to zero on the grid (e.g., balanced oscillations within a grid cell). Such null-space values
are transparent to the grid where equations are solved and thus act as noise that misrepresents the desired
solution on the particles.

Methods for managing null-space noise and stabilizing MPM mechanics modeling are available [10, 11].
Null-space effects in transport modeling, however, can be more severe then in mechanics modeling. A typical
observation is that FLIP methods get excellent grid values, but particle values develop very large oscillations
near edges, interfaces, or other discontinuities. This behavior means modeling cannot implement features
that depend on a particle’s transport value (e.g., temperature-dependent material properties). One approach
is to use particle values for solving transport equations, but when particle value is needed for some other
feature, extrapolate it from grid values [6]. A better approach is to replace FLIP with a method that
eliminates oscillations such that particle values and grid values match and both are accurate. This option

IComputer Methods in Applied Mechanics and Engineering, 420, 116757 (2024). DOI: 1010.1016/j.cma.2024.116757
∗Corresponding author: john.nairn@oregonstate.edu, Tel: +1-541-737-4265, Fax: +1-541-737-3385

Preprint submitted to Elsevier March 11, 2024



restores MPM’s advantage for modeling history-dependent materials because the particle transport history
becomes a reliable value.

This paper applies recent full mass matrix methods for MPM mechanics, known as FMPM(k) [11], to
derive a full transport-capacity matrix method for solving transport equations. The “Numerical Methods
for Heat Transport” section first solves one specific transport equation for modeling thermal conduction.
The “Other Transport, Boundary Conditions, and Coupling” next generalizes transport methods to include
solvent diffusion, poroelasticity, and phase field diffusion. This section also describes boundary conditions
and methods to handle transport-mechanics coupling terms (e.g, stresses causing temperature changes),
residual stresses caused by transport (e.g., thermal expansion), proper thermodynamics calculations (e.g.,
heat energy and entropy), and the disparate time steps needed when modeling both mechanics and transport.
The “Results and Discussion” section shows that FMPM(k) for transport eliminates all oscillations and when
done correctly is more accurate than FLIP.

2. Numerical Methods for Heat Transport

The transport equation for flow of heat energy, τ (in J), can be cast as:

cθ
∂θ

∂t
= −∇ · q(x) + q̇(x) (1)

where θ is temperature, cθ is constant-volume heat capacity (in J/(K·m3)), q(x) = −k∇θ is heat flux (in
J/(sec·m2)), and q̇(x) is a source term (in J/(sec·m3)). In the flux term, k is thermal conductivity tensor
(in W/(m·K)).

Solving Eq. (1) in the weak form starts with [2]:∫
V

(
cθ
∂θ

∂t
+∇ · q(x)− q̇(x)

)
w(x) dV = 0 (2)

where w(x) is an arbitrary weighting function. This form reduces to MPM equations by using generalized
interpolation material point analysis or GIMP [1, 6, 7]. In outline form, the steps are: 1. Use divergence
theorem to eliminate divergence term in Eq. (2) [2]. 2. Expand transport terms in a particle basis:

cθ
∂θ

dt
=
∑
p

CΘ,p
∂Θp

dt
χp(x), q(x) =

∑
p

Qpχp(x), and q̇(x) =
∑
p

Q̇(g)
p χp(x)

where χp(x) is a particle basis function [1]. Note that particle quantities are denoted with uppercase letters
while transport equation and grid quantities (below) use lowercase letters (e.g., θ and Θ for temperature,
cθ and CΘ for heat capacity, q and Q for flow, etc.) and subscripts p indicate a quantity for particle p.†

Particle source terms are divided into Q̇p = Q̇
(g)
p + Q̇

(p)
p where Q̇

(g)
p is source extrapolated to the grid (done

above) and Q̇
(p)
p is source added below during particle update. Although Q̇

(g)
p is used in prior MPM heat

condition [6, 7] and included here for generality, a new recommendation below is that all particle sources

should be in Q̇
(p)
p leaving Q̇

(g)
p = 0. 3. Expand weight function and its gradient using grid shape functions

(typically linear or spline shape functions [11]):

w(x) =
∑
i

wiNi(x) and ∇w(x) =
∑
i

wi∇Ni(x)

where subscripts i indicate a quantity for node i. 4. Substitute into the weak form and use arbitrary nature
of w(x) to derive an equation for each node:∑

p

VpCΘ,p
∂Θp

dt
Spi =

∑
p

VpQp ·Gpi +
∑
p

VpQ̇
(g)
p Spi −

∫
δV

(Ni(x)q(x)) · n̂ dS (3)

†MPM equations refer to timestep j, but for simplicity, superscripts (j) (e.g., C
(j)
Θ,p) have been omitted

2



where Vp is particle volume and Spi and Gpi are MPM shape functions and gradients [1]:

Spi =
1

Vp

∫
V

χp(x)Ni(x) dV and Gpi =
1

Vp

∫
V

χp(x)∇Ni(x) dV

These equations are for Cartesian coordinates; extension to axisymmetry is straight forward [6].

2.1. MPM Grid Equations

For compactness, this section introduces vectors or matrices of quantities on particles (upper case letters)
or on nodes (lower case letters) and for shape functions. We define a vector for nodal heat energy extrapolated
from the particles using:

τ = STCΘ (4)

where C = diag(C) is a diagonal matrix with Cp = VpCΘ,p on the pth diagonal and Θ is a vector of particle
temperatures (Θp). Extrapolating τ to the grid is analogous to extrapolating momentum in MPM mechanics
modeling. Nodal temperatures, θ, are related to heat energy by:

θ = c̃−1τ where c̃ = STCS

(
i.e., (c̃)ij =

∑
p

VpCΘ,pS
T
ipSpj

)

is a full heat-capacity matrix analogous to a full mass matrix in MPM mechanics [2, 11].
The nodal heat equation in Eq. (3) becomes:

dτ

dt
= f + s (5)

where

f = GTVQ+ STVQ̇ and si = −
∫
δV

(Ni(x)q(x)) · n̂ dS (6)

are heat forces (in J/sec or watts). Here V is a diagonal matrix with Vp on the pth diagonal, while Q

and Q̇ are vectors of particle values Qp and Q̇
(g)
p , respectively. The gradient shape function matrix has

(GT )ip = Gpi as row vectors. Nodal f are internal forces while s are forces at object surfaces due to flux
boundary conditions.

Particle fluxes, Qp (column vectors for each element of Q), are found from temperature gradient on each
particle:

Qp = −kp∇Θp

where kp is the particle’s thermal conductivity tensor. Rather than track particle fluxes, they are calculated
each time step by extrapolating grid temperature back to the particles using:

∇Θ = Gθ = Gc̃−1τ (7)

Giving these fluxes, Eq. (5) is solved by explicit Euler’s method to give updated nodal energy:

τ+ = τ +
(
f + s

)
∆t and θ+ = c̃−1τ+

where ∆t is time step and superscript “+” indicates an updated grid energy in the current time step.

2.2. Particle Updates

Because inverting the n× n c̃ matrix is impractical (where n is number of active nodes), all prior MPM
transport methods simplified this analysis by assuming a diagonal lumped heat capacity matrix, c = diag(cL)
(without a tilde), where diagonal elements are given by the vector cL:

cLi =
∑
j

c̃ij =⇒ cL = STC

(
i.e., (cL)i =

∑
p

VpCΘ,pS
T
ip

)
(8)

3



When using a lumped matrix, lumped nodal temperatures and their updates become:

θL = c−1τ or θLi =
τi
cLi

and θL+ = c−1τ+ or θL+
i = θLi +

(fi + si) ∆t

cLi

Given these nodal temperatures, all prior MPM for transport [6, 7] updated particle values using the FLIP
method [8, 9] with a transport velocity, v(θ), extrapolated from the grid or:

Θ+ = Θ + Sv(θ)∆t+ dΘ(ad) where v
(θ)
i =

∆θLi
∆t

=
fi + si
cLi

(FLIP) (9)

and dΘ(ad) is vector of adiabatic source terms arising from Q̇
(p)
p on the particles (see below). This FLIP

approach gets good grid temperatures, θL+, but particle temperatures, Θ+, can develop problematic oscil-
lations.

Oscillations can be eliminated by switching to a new method. Replacing the lumped heat capacity matrix
with the full heat capacity matrix, updated particle temperatures can be found from:

θ+ = c̃−1τ+ =⇒ Θ+ = Sc̃−1τ+ + dΘ(ad)

Because particle temperatures are replaced by temperatures extrapolated from the grid, this approach re-
moves null-space noise. Because inverting c̃ remains infeasible, the approach here is to approximate c̃−1

by expanding it in a series and then keeping enough terms. Following full-mass matrix methods for MPM
mechanics [11], c̃ can be cast as:

c̃ = cSΘS = c
(
In − (In − SΘS)

)
= c
(
In − A

)
where SΘ = c−1STC, In is an n × n identity matrix, and A = In − SΘS. Note that S is a matrix of shape
functions that maps grid temperatures to particles while SΘ is a matrix that maps particle temperatures to
the grid as lumped nodal temperatures θL = SΘΘ. With perfect mapping, the product SΘS would be In
and A would be zero. With suboptimal mapping caused by both non-square mapping matrices and lumped
heat capacity matrix approximations in SΘ, a non-zero A characterizes lumping error. When A is sufficiently
small, the full heat capacity matrix inverse can be usefully expanded in a Taylor series that should converge
fast:

c̃−1 = (In − A
)−1

c−1 = (In + A + A2 + A3 + · · · )c−1

We define c̃−1
k as the full heat capacity matrix inverse expanded to k terms (last term is Ak−1) and FMPM(k)

as a new approach to MPM transport using c̃−1
k in place of c̃−1. Expanding powers of A leads to [11]:

c̃−1
k =

kIn +

k−1∑
`=1

k−1∑
j=`

(−1)`
(
j

`

)(
SΘS

)` c−1 =

(
k∑
`=1

(−1)`+1

(
k

`

)(
SΘS

)`−1
)
c−1 (10)

Next define FMPM(k) grid temperatures using

θ(k) = c̃−1
k τ

+ =

(
k∑
`=1

(−1)`+1

(
k

`

)(
SΘS

)`−1
)
θL+ (11)

Particle update equations for FLIP and FMPM(k) become:

Θ+ =

{
Θ + Sv(θ)∆t+ dΘ(ad) FLIP

Sθ(k) + dΘ(ad) FMPM(k)
(12)

FMPM(1) reduces to c̃−1
1 = c−1 and θ(k) = θL+, which is equivalent to the PIC (for Particle In Cell) method

[12] that replaces particle temperatures on each time step with new temperatures extrapolated from the grid
using a lumped heat capacity matrix. Although PIC eliminates oscillations, it causes undesirable numerical

4



Table 1: Physical terms for transport equation when modeling transport of temperature (T ), concentration potential (c̄), pore
pressure (σ), or a damage phase field (ξ). The notation used is: ρ is density, Cv is constant-volume heat capacity per unit mass,
QB is Biot poroelasticity modulus [13], k is thermal conductivity tensor, D is diffusion tensor, K is Darcy’s law permittivity, η
is pore fluid or phase field viscosity, Gc is toughness, and ` is phase field length scale.

Property Temp. Conc. Pot. Pore Press. Phase Field

Content τ Energy (J) Volume (m3) Volume (m3) Energy Time (J·sec)

Value θ T (K) c̄ (none) σ (Pa) ξ (none)

Capacity cθ ρCv
(

J
K·m3

)
1 (none) 1

QB
(Pa−1) η (Pa·sec)

Diffusion κ k
(

W
m·K

)
D
(

m2

sec

)
K
η

(
m2

Pa·sec

)
Gc`I (N)

diffusion and must be rejected. Examples below show that FMPM(k) with k > 1 provides a method that
eliminates problems in FLIP and, when done correctly, causes no significant numerical diffusion.

Equation (7) finds gradients on the particles using the full heat capacity matrix. In FLIP, this equation is
replaced by ∇Θ = GθL. In FMPM(k), one is tempted to replace c̃−1 with c̃−1

k , but that approach does not
converge unless the time step is reduced as order k is increased. Fortunately, a hybrid method using lumped
temperatures to get particle gradients (∇Θ = GθL) while using FMPM(k) to update particle temperatures
both converges well and eliminates oscillations seen in FLIP.

This implementation is a large-deformation method provided particle heat capacity, volume, and thermal
conductivity all adjust for the current particle deformation. The τ extrapolation conveniently reduces to
Cp = VpCΘ,p = VpρpCV = mpCV where ρp is current particle density, mp is particle mass, and CV is
constant volume heat capacity in J/(kg·K). The mpCV form is independent of particle deformation. Particle
thermal conductivity should use current conductivity if it changes with deformation. Finally, source terms,
Q̇p, and surface fluxes, si, should reflect current particle deformation. All examples in this paper are small
deformation examples.

3. Other Transport, Boundary Conditions, and Coupling

The heat equation (Eq. (1)) can be generalized to modeling various other transport properties by general-
izing the physical terms in the equation. Each transport process involves a conserved quantity, τ , connected
to a transport value θ. The heat capacity changes to a transport capacity, cθ, defining τ per unit change
transport value per unit volume. The flux term is flow of τ in units m-(cθ units)-(θ units)/sec and that
flow is controlled by replacing thermal conductivity tensor, k, with a transport “diffusion” tensor, κ, with
units of m2-(cθ units)/sec. The q̇(x) source term changes to units τ per unit volume per sec or units (cθ
units)-(θ units)/sec. For specific examples, Table 1 lists the changes from heat energy equation needed to
model solvent diffusion, poroelasticity [13, 14], or a diffusive fracture phase field [15, 16], These examples
replace modeling of temperature with methods to track concentration potential (c̄), pore pressure (σ), and
a fracture phase field (ξ). Some elaboration on each one follows:

In solvent diffusion, the flow term, q(x), is found from the gradient in chemical potential, µ:

q(x) = − c

RT
D∇µ

The chemical potential is:

µ = µ	 +RT ln a = µ	 +RT ln
γc

cref

where µ	 is chemical potential in a reference state where activity is a = 1 (c = cref/γ), and γ is an activity
coefficient. Taking gradient of chemical potential, the diffusion equation transforms to

∂c

∂t
= ∇ ·

(
cref
γ

D∇ γc

cref

)
+ q̇(x)

If concentration is in mass (or moles) per unit volume, this equation is for flow of τ corresponding to conserved
mass (or moles) of solvent. It is preferable, however, to recast this equation in terms of a dimensionless

5



concentration potential. If cref and γ are independent of position, diffusion analysis reduces to Eq. (1) with
θ = c̄ = c/cref and q(x) = −D∇c̄ (keeping diffusion tensor D inside the divergence allows it to depend
on position or on particle state, such as its deformation). The term c̄ is referred to here as “concentration
potential.” The conserved quantity τ becomes volume but it refers to reference volume related to conserved
amount of solvent and to not material point volume that may expand or contract due to stresses or the
presence of solvent. Modeled source terms must be converted to concentration potential per sec.

Additional changes are needed in problems where cref/γ within a single material model depends on x
(note that if γ depends on concentration, it implicitly depends on position whenever concentration depends on
position). Allowing cref/γ to depend on x and normalizing by a constant, baseline reference concentration,

c
(0)
ref , gives:

∂c̄

∂t
= ∇ ·

(
cref (x)

γ(x)c
(0)
ref

D∇ γ(x)c

cref (x)

)
+ q̇(x) = ∇ ·

(
crelD∇

c̄

crel

)
+ q̇(x) (13)

where c̄ = c/c
(0)
ref is a revised concentration potential, crel = cref (x)/(γ(x)c

(0)
ref ), q(x) = −crelD∇(c̄/crel)

(i.e., gradient of activity with a scaled diffusion tensor), and source terms must be converted to revised
concentration potential per sec. Physically, c̄/crel = a(x)/cref (x) = ā is an “activity potential.” Note that
MPM implementation of Eq. (13) must extrapolate both c̄ and ā to the grid. The first is needed to track
concentration potential while the later is only needed to find q(x).

The reason for using both γ and cref are to keep c̄ dimensionless and to handle a common problem
when modeling composites where γ = 1 in each phase. For example, when modeling moisture transport
into composites, each material type could set cref to its saturation concentration. Equation (13) within
each material type then reduces to the standard concentration potential equation based on each material’s
cref and D. Equilibrium would correspond to constant c̄ when all phases are at the same fraction of their
saturation concentration and flow stops because ∇c̄→ 0.

Early poroelasticity modeling noted an equivalence of the poroelasticity equation to the heat energy
equation by redefining terms as in Table 1 [17]. This equivalence even extends to an “adiabatic” source term
defined below. Like solvent diffusion, the flow quantity, τ , as volume is a stand-in for conserved amount of
water in the material.

The phase field equation referenced in Table 1 is specific to variational fracture mechanics modeling
[18, 19]. Prior finite element modeling [15, 16, 20] and MPM modeling [21–23] has implemented variational
fracture mechanics modeling by coupling a diffusive fracture phase field to energy flow in the mechanics
modeling. In the absence of energy driving fracture propagation, the phase field around any pre-existing
crack should evolve to a narrow band with characteristic phase field length scale, `. The full phase field
diffusion equation has ubiquitous source terms in q̇(x) that control both a diffusive crack field’s shape
and its propagation (see below). Phase field methods are also used for non-fracture methods, such as
electrodeposition [24, 25], by changing properties and altering the source term to model different physics
[25].

3.1. Transport Boundary Conditions

Transport analysis boundary conditions either impose transport values on the grid or set transport flux
on particle surfaces. Grid boundary conditions are straight-forward, but require attention to detail to handle
both FLIP and FMPM(k). The recommended steps are:

1. After extrapolating content to the grid and finding θL, copy θLi for any node with a boundary condition

and replace it with that node’s transport-value boundary condition θ
(BC)
i . Find transport gradients

with ∇Θ = GθL using the modified grid values. The point of this step is to make sure gradients
respond to grid boundary conditions. When modeling solvent diffusion with activity coefficients that
depend on position this step changes to finding gradients of ā — see the appendix for details. After
getting gradients, restore copied θLi to return θL to its initially extrapolated values.

2. After updating grid values to θL+, replace θL+
i for any node with a boundary condition with θ

(BC)
i

and calculate the rate change this replacement implies from:

∆v
(θ)
i =

θ
(BC)
i − θL+

i

∆t

6



The net rate on each boundary condition node becomes:

v
(BC)
i = v

(θ)
i + ∆v

(θ)
i =

θ
(BC)
i − θLi

∆t

which is the rate needed to move the initially extrapolated value to the boundary condition value.
These corrected rates are needed because a FLIP update extrapolates grid rates to the particles.

3. Grid boundary conditions cause transport flow into or out of the object to maintain grid values. The
net flow at each boundary condition is potentially useful information and given by:

Q
(BC)
1 = cLi ∆v

(θ)
i

or the net “force” needed to convert θL+
i to θ

(BC)
i .

4. When using FMPM(k) for k > 1, θ(k) is calculated from θL+ after step 2, but these θ(k) may causes
a change at nodes with boundary conditions. To fix this issue, replace θi(k) for any node with a

boundary condition with θ
(BC)
i and calculate a new net flow:

Q
(BC)
2 = cLi

θ
(BC)
i − θi(k)

∆t

No rate adjustments are needed because subsequent FMPM(k) updates do not use them.

5. Net flow at a collection of boundary conditions (such as one edge of a sample set to constant value) is

found by summing Q
(BC)
1 for FLIP or FMPM(1) or Q

(BC)
2 for FMPM(k ≥ 2).

Transport flux boundary conditions are applied on particle surfaces by the same methods used for traction
boundary conditions in MPM mechanics [6] except traction T is replaced by a scalar flux Φ = q(x) · n̂ where
n̂ is normal to the particle surface. Φ > 0 or Φ < 0 is for inward or outward flux. Surface fluxes translate
into nodal fluxes by:

si =
∑
∂p

Φp,s

∫
As

Ni(x) dS (14)

where ∂p = {p, s : particle p has flux Φp,s on surface s} and As is the deformed area for surface s of particle
p (s = 1 to 4 surfaces for 2D particles or 1 to 6 surfaces for 3D). Reference [6] explains how to integrate
shape functions over particle surfaces. A large deformation implementation should integrate over deformed
surfaces.

3.2. Coupling to Mechanics

The motivation for solving transport equations in MPM is not to solve transport equations alone, which
can be done by many methods, but rather to couple transport quantities to MPM computational mechanics.
Three coupling mechanisms are:

1. Mechanisms where particle state changes transport value. These terms are best modeling as particle
source terms in dΘ(ad).

2. Mechanisms where transport value affects particle mechanics (e.g., strains induced by temperature
changes) or affects other coupled transport phenomena.

3. Modeling materials whose properties depend on transport value (e.g., moisture dependent wood prop-
erties).

Type #1 coupling occurs whenever particle deformation state induces a change in transport value. Such

coupling terms are handled by adding to particle source term Q̇
(p)
p . For example, volume changes in elastic

materials cause temperature to change. Poroelastic materials have a corresponding phenomenon where
volume changes cause pore pressure to change. For isotropic thermoelastic and poroelastic materials, these
coupling terms are:

Q̇(p)
p ∆t = −αVKbulkTp

∆V

V
and Q̇(p)

p ∆t = −QBαB
∆V

V
(15)

7



where αV is volumetric thermal expansion coefficient, Kbulk is bulk modulus, Tp is current particle temper-
ature, αB is Biot–Willis fluid/solid coupling coefficient, and ∆V/V is volumetric strain increment. Besides,
these reversible terms in coupled thermoelasticity or poroelasticity, modeled materials might generate trans-
port property changes by other mechanisms. Some examples are temperature changes due to dissipated
energy by plasticity, frictional contact [4], or crack tip propagation.

In fracture phase field modeling, Eq. (1) captures the divergence term while the rest of the phase-field
evolution equation is interpreted as a particle source term given by:

Q̇(p)
p ∆t = −Gc

`
ξ − g′(ξ)Hp (16)

where Gc is toughness, ` is phase-field length scale, and Hp is an energetic history variable tracked on each
particle that promotes fracture [15, 16]. The transport property is the phase field ξ that varies from 0 for
undamaged material to 1 for a crack surface. In the absence of input Hp energy, the steady-state fracture
phase equation reduces to:

Gc
`

(
`2∇2ξ − ξ

)
= 0

Solving this equation, ξ decays exponentially from 1 on crack planes to zero with exponential decay rate
of 1/` and cracks remain static. With loading, non-zero Hp provides an energy source that promotes crack
propagation while g(ξ) is a “softening law” that models degradation in mechanical properties. g(ξ) is
typically set to g(ξ) = (1 − ξ)2 [15, 16] because linear g′(ξ) = −2(1 − ξ) facilitates linear finite element
methods. Allowing g(ξ) to have nonlinear forms enables modeling of materials with new softening behaviors.
Fortunately, the transport approach to phase field modeling neither requires nor benefits from a linear g′(ξ).

Particle source terms Q̇
(p)
p could be treated instead as Q̇

(g)
p and extrapolated to the grid in Eq. (6). Such

extrapolation, however, would cause some non-physical diffusion to nearby particles. A better approach is
to store them for addition to particle values during particle updates. The increments needed by updates (see
Eq. (12)) can be cast as:

dΘ(ad)
p =

∑
source terms

∆t

cθ

(
Q̇(p)
p (reversible) + Q̇(p)

p (irreversible)
)

(17)

where (ad) standards for “adiabatic” source terms. In general transport analysis, “adiabatic” means change
in transport value in the absence of flux. In heat conduction, it means temperature change in the absence
of heat flow. In poroelasticity, it means a pressure change without fluid transport, which is called an
“undrained” response. Separation into “reversible” and “irreversible” source terms is only relevant for heat
conduction and used below for entropy calculations. Other transport modeling would not use this separation.

Type #2 coupling is when a change in transport value causes expansion or shrinkage leading to residual
stresses. For heat conduction, solvent diffusion, and poroelasticity, linear residual strain increments are:

∆εthermal = α∆T, ∆εsolvent = βcref∆c̄ and ∆εpore pressure =
αB

3Kbulk
∆σ (18)

where α and β are linear thermal and solvent expansion coefficients and cref accounts for diffusion modeling
using a concentration potential c̄. The transport property increments needed for these strains (e.g., ∆T , ∆c̄,
and ∆σ) can be determined in the particle update. But, in FLIP methods, particle value oscillations would
make such increments inaccurate. A method required for FLIP is for each particle to track two transport
values — one derived in the FLIP update and a “smoothed” value derived by extrapolating lumped grid
values (adjusted for boundary conditions) to the particles:

Θ
+

= SθL+ (19)

Whenever particle transport value is needed, calculations should use the smoothed transport value [6]. For
example, the transport value increment between two time steps should be found from:

∆Θ = Θ
+ −Θ

instead of from particle transport values. Finally, to model residual stresses caused by initial particle values
differing from a reference value Θref (such as a stress-free temperature in conduction modeling), Θ should

8



be initialized to Θref on each particle rather than the particle’s initial value. By this approach, ∆Θ for first
time step is the transport value change between reference conditions and the initial particle value. In explicit,
dynamic simulations, applying such a potentially large change in the first time step might cause numerical
artifacts. A better approach is to start all particles at Θref and then slowly increment each particle’s value
to desired initial values in a separate task.

Although smoothed transport value tracking is essential for FLIP, FMPM(k) does not need it. In

FMPM(k), smoothed values change to Θ
+

= Sθ(k) = Θ+; in other words “smoothed” values and par-
ticle values are equal. Similarly, transport increments can be found from particle transport values: ∆Θ =

Θ
+ −Θ = Θ+ −Θ.

Transport increments are found during the particle update, but they are not used until the next particle
constitutive law calculations. They can be stored on each particle until then. For small-strain, linear elastic
materials, an incremental stress-strain, constitutive law is

dσ = C(dε− dεres) = Cdεeff

where C is the stiffness tensor. In other words, incremental strains due to transport properties are sub-
tracted from the current step’s incremental strain to find an effective strain increment (an effective strain
approach easily extends to small-strain, plasticity materials as well). Large-deformation analysis can divide
deformation gradient, F, into two steps — deform by transport-induced strains and then by mechanical
loading.

Type #3 coupling is when modeling materials whose properties depend on transport value (e.g., temp-
erature-, solvent-, or damage-dependent properties) or its increment for other calculations (e.g., energy dissi-
pation in phase-field fracture materials). Modeling such materials simply requires finding those properties as
a function of the current particle transport value and its increment. To avoid numerical artifacts caused by
transport value oscillations, transport-dependent mechanical properties for FLIP must use smoothed particle
value Θ (see Eq. (19)). FMPM(k) can use particle values.

3.3. Thermodynamics (Heat Energy Only)

Good heat energy modeling can track thermodynamic state functions. Each particle should track work
energy, Wp, heat energy, Qp (not to be confused with Q fluxes or Q̇p sources), and entropy Sp (all per
unit mass to best handle large deformation). Work energy increment is dWp = (1/ρ)σ · ∇v∆t where ∇v is
velocity gradient in each time step. Heat energy and entropy are updated as follows:

1. Particle sources are divided into isoentropic (no heat flow or q = 0) reversible temperature changes:

dTp,q=0 =
Q̇

(p)
p (reversible)∆t

cθ

and irreversible energy dissipation dΦp = (1/ρ)dQ
(n)
p (irreversible). When these changes occur, dTp,q=0+

dΦp/Cv is added to dΘ
(ad)
p in Eq. (17), and the particle entropy change is due only to the irreversible

temperature increase:

∆Sp = Cv ln
T p +

dΦp

Cv

T p

This calculation uses smoothed T p for FLIP or particle value for FMPM(k). These local, adiabatic
changes correspond to zero change in particle heat energy (dQp = 0). A particle experiences no heat
energy change until it exchanges heat with neighboring particles by conduction.

2. During particle updates, particle heat energy increment due to conduction is found from dQp =

CvdT
(cond)
p where dT

(cond)
p = T

+

p − T p is “smoothed” temperature change due to heat exchange be-
tween particles by conduction only (or just particle temperature change when using FMPM(k)). The
entropy increment due to conduction alone is:

∆Sp = Cv ln
T

+

p

T p
(20)

9



Note that dT
(cond)
p on the first time step should be relative to the particle’s initial temperature (T

(i)
p )

and not the stress-free temperature (T0) resulting in heat and entropy change from initial particle
state. To convert to heat and entropy change relative to all particles at T0, each particle should be

initialized with heat and entropy needed to change them from T0 to T
(i)
p .

This approach relies on all adiabatic heating being in dΘ
(ad)
p (i.e., all source terms in MPM heat conduc-

tion modeling must be in Q̇
(p)
p and must have Q̇

(g)
p = 0). When true, particle temperature change dT

(cond)
p in

step #2 above is temperature change resulting only from heat exchange between particles. This temperature
change corresponds to changes in heat energy. Once that calculation is done the adiabatic change, dT adp , is
added to particle temperature and by definition that change has no effect on heat energy.

MPM simulations coupled to conduction using the above tracking steps provides full-physics modeling
of coupled momentum and heat equations. If the modeled structure is adiabatic (i.e. exchanges no heat
with the exterior, which in MPM means no thermal boundary conditions), total heat energy will be zero and
all entropy will be irreversible entropy. If a simulation has thermal boundary conditions, total heat energy
may increase or decrease due heat exchange with the exterior. Following Kondepudi and Prigogine [26], an
entropy increment can be written as dS = deS+diS where deS is entropy change due to heat exchange with
the exterior (it is reversible and can be positive or negative) and diS is entropy change in the interior (it is
irreversible and can only be positive). MPM can track and spatially resolve both reversible and irreversible
entropy. Total reversible entropy may increase or decrease, but irreversible entropy can only increase.

Isothermal calculations are done by turning off conduction calculations, setting all particles to constant
temperature T0, revising step #1 in thermodynamics tracking, ignoring step #2 (which never occurs when
conduction is off), and calculating dTp,q=0 and dΦp but never adding them to particle temperature. When
a material model finds dTp,q=0 and dΦ, change particle heat energy by using dQp = −CvdTp,q=0 − dΦp. In
effect, this tracking assumes temperature increases are expelled to the exterior as heat and decreases are
compensated by heat input from the exterior. Because dQp is exchanged with the exterior, it contributes to
reversible entropy, but dΦp causes irreversible entropy. Total particle entropy change becomes:

dSp = deS + diS =
dQp

T p
+
dΦp

T p
= −CvdTp,q=0

T p

Isothermal modeling in MPM, or in other methods, implies that heat energy instantaneously exchanges with
the exterior. This assumption is unrealistic for any real material modeled on typical dynamic-mechanics
simulation time scales. Nevertheless, isothermal methods provide simplified modeling (i.e., no need to
solve the heat equation) and allow for comparison to analytical solutions (which usually ignore temperature
changes).

By tracking Wp, Qp, and Sp, a simulation can track and spatially resolve other thermodynamics functions.
For example, internal energy would be Up = Wp +Qp and Helmholz free energy would be Ap = Up−TpSp =
Wp + Qp − TpSp (note that for isothermal, dAp = dWp − dΦp). In general, these tracked thermodynamics
values have no influence on MPM simulations, but they may have uses. Two examples are the Mie-Grüneisen
equation of state [27], where the constitutive law depends on internal energy, and phase field fracture, where
Helmholz free energy tracks dissipated fracture energy well.

3.4. Transport-Specific Details

Each transport process corresponds to a physical process that might impose some restrictions on the
transport solution. This section considers three transport-specific details.

Concentration potential should never go negative and updates should therefore disallow negative values.
When modeling a composite with cref set to each phase’s saturation concentration, concentration potential
becomes a relative concentration. It should never exceed 1 and updates should enforce that limit. When
cref is an arbitrary reference concentration, concentration potential may have any non-negative value.

Poroelasticity derived by Biot [13] models materials saturated in fluid (usually water) where changes in
volume induce changes in pore pressure and pore pressure is always positive. The above transport modeling,
however, does not restrict transport values to positive numbers. Pore pressure could, for example, turn
negative in problems where outward-directed flux boundary conditions are given enough time to drain all
fluid. Because partially-saturated materials should have zero pore pressure (and not negative pressure),
special handling is needed. These changes appear to work:

10



1. Solve the pore pressure transport equation, including the particle source term in Eq. (15), for positive
and negative σ.

2. Whenever σ > 0, it corresponds to pore pressure and changes in pore pressure (∆σ) cause residual
strains by Eq. (18).

3. Whenever σ < 0, the pore pressure is zero and ∆σ is set to zero to eliminate residual strain coupling.
Drained space volume while σ < 0 can be approximated by −σ/QB .

A fracture phase field tracks damage state that can only increase and cannot exceed fully cracked state
of ξ = 1. If an update causes phase field to decrease, that change is ignored or phase field is left unchanged.
If an update exceeds 1, it is truncated to 1.

3.5. Disparate Time Steps

When simultaneously modeling mechanics and transport by explicit updates, the time step must be set
to minimum of the mechanics (∆tM ) and any transport time steps (∆tΘ):

∆t = min (∆tM ,∆tΘ) where ∆tM = fM
∆x

vmax
and ∆tΘ = fΘ

∆x2

2

CΘ

κmax

Here ∆x is cell size, vmax and κmax are the maximum wave speed and diffusion tensor in the problem, fM
is a CFL time-step factor for mechanics equations, and fΘ is a time-factor applied to von Neumann stability
criterion for the transport equation (fM and fΘ must be less than 1 for convergence). The time step ratio
is:

R∆t =
∆tΘ
∆tM

=
fΘ

fM

vmaxCΘ∆x

2κmax
(21)

Unless ∆x is very small, typical modeling will have vmax >> 2κmax/(CΘ∆x), R∆t > 1, and ∆t = ∆tM .
Because transport will be using the same time step, its effective fΘ becomes:

f
(eff )
Θ = ∆tM

2κmax
∆x2CΘ

(22)

3.6. Computational Cost

A task-oriented transport analysis process for MPM is in the appendix. Each task loops over particles
and thus computational cost for FLIP updates is NC0 where N is number of particles and C0 is the complete
time step cost per particle. For FMPM(k) updates, each time step must additionally evaluate Eq. (10), which
requires an additional k− 1 particle loops for a computational cost of N(k− 1)Cx where Cx is the time per
particle for one FMPM(k) loop. The total FMPM(k) calculation time relative to FLIP is thus:

Relative Time = 1 + (k − 1)F (23)

where F = Cx/C0 is the fraction of a time step spent within one FMPM(k) loop.

4. Results and Discussion

4.1. Heat Conduction

Large oscillations and their elimination are demonstrated by this simple problem in heat conduction:
consider a 1 m3 cube with material left of the centerline starting at TL = 250K and material to the right
starting at TR = 350K. Conduction within this cube was modeled by 2D MPM using 50 mm cells, four
particles per cell, and transport time step factor fΘ = 0.5. This analysis used a “transport-only” mode
that solves only the heat conduction equation. The only isotropic material properties needed were k =
1000 W/(m-K), ρ = 1 g/cm3, and Cv = 1 J/(kg-K). Figure 1 shows the temperature profile after 200 ms.
The solid, square symbols show severe oscillations in particle values near the initial interface when using
FLIP. Despite these poor particle values, FLIP grid values are smooth (see solid “Grid” line in Fig. 1).

FLIP oscillations in particle temperatures are caused by a disconnect between grid temperatures and
rates and particle temperatures and rates. The reason oscillations can persist while maintaining a good grid
solution is null-space noise made possible by the non-square mapping from particles to the grid (see Eq. (4)).

11



Position (mm)

Te
m

pe
ra

tu
re

 (K
)

0 100 200 300 400 500 600 700 800 900 1000 260

 270

 280

 290

 300

 310

 320

 330

 340

FLIP

FMPM(k≥2)

Interface

Grid
FMPM(1)

Figure 1: Temperature profile after 200 ms for a 1000 mm×1000 mm box with material left of the centerline starting at T = 250K
and material to the right starting at T = 350K. The symbols are particle temperatures for FLIP (filled squares), FMPM(1)
(diamonds), or FMPM(k ≥ 2) (circles) simulations. The solid line labeled “Grid” plots smoothed or grid temperature by FLIP.

Distance (mm)

C
on

ce
nt

ra
tio

n

0 2 4 6 8 10 12 14 16 18 20 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

FMPM(1)

FMPM(2)

FLIP and FMPM(k≥3)

Exact (dotted line)

FMPM Order k

RM
S 

Er
ro

r

2 4 6 8 10 12 14 10-3 

 10-2 

FLIP Error

FMPM(k) Error

Figure 2: Diffusion after 5 seconds into an 80× 10 mm strip with c = 0.5 at x = 0 and D = 10 mm2/sec. The curves are MPM
simulations done using FMPM(1), FMPM(2), FMPM(k > 3), and FLIP. The dotted line is the analytical solution. The inset
plot shows RMS error for FMPM(k) as a function of k (circles) compared to FLIP error (horizontal dashed line).

FMPM(k) was derived to approximate the full capacity matrix. An alternate interpretation is that it filters
out null-space noise by replacing particle values on each time step with new values extrapolated from the
grid (see Eq. (12)). Indeed, FMPM (1) (open, diamond symbols in Fig. 1) eliminated all oscillations, but
unfortunately caused numerical diffusion leading to results with too much thermal conduction. Fortunately,
FMPM(k) for any k ≥ 2 (open circles in Fig. 1) eliminated oscillations while avoiding unwanted numerical
diffusion.

This example provides a useful check on heat and entropy tracking. By running long enough, all particles
approached Tf = 300 K. This irreversible heat flow has zero net heat energy (heat is transferred from one
side to the other, but none is exchanged with the exterior). Total entropy, however, should increase due to
heat flow from the right to the left:

∆S = ∆SL + ∆SR = ρCv
V

2
ln

(
Tf
TL

)
− ρCv

V

2
ln

(
Tf
TR

)
=

1

2
ρCvV ln

(
T 2
f

TLTR

)
= 14.0854 J/K

When using FMPM(k ≥ 2), the above entropy tracking methods returned this value to 6 significant figures.
In contrast, FLIP underestimated entropy change by 5.3%.

4.2. Diffusion

The following diffusion example evaluates accuracy, numerical diffusion, and convergence by comparing
simulations to an analytical solution. Consider “transport-only” analysis of diffusion into an 80×10 mm strip

12



fΘ Time Step Factor

R
M

S 
Er

ro
r

10-3 10-2 10-1 100 10-3 

 10-2 

 10-1 

FMPM(1)

2

3
4

5
8

12

FLIP

A

FMPM order k

f Θ
(m

ax
)

0 2 4 6 8 10 12 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

Little or no
Numerical Diffusion

Numerical
Diffusion

B

Figure 3: A. RMS error for diffusion calculations as a function of fΘ and FMPM(k) for k from 1 to 12. The horizontal line is

the FLIP RMS error, which was independent of fΘ. B. Plot of f
(max)
Θ (k) defined as fΘ when FMPM(k) and FLIP RMS errors

are equal in A.

using 1 mm cells, four particles per cell, and transport time step factor fΘ = 0.5 for an isotropic material with
D = 10 mm2/sec and cref = γ = 1. All particles started at zero concentration. Grid boundary conditions
set c̄ = 0.5 on the left edge (x = 0) and c̄ = 0 on the right edge (x = 80). The numerical diffusion solution
was compared to an analytical solution:

c(x, t) = 0.5

(
ξ + 2

∞∑
n=1

(−1)n

nπ
e−λ

2
nt sin(nπξ)

)
(24)

where ξ = (80− x)/L and λn = (nπ/L)
√
D.

Figure 2 shows concentration as a function x after 5 seconds for FLIP, FMPM(1), FMPM(2), and
FMPM(k ≥ 3). The dotted line plots the analytical solution summed to 20 terms. FMPM(1) (or PIC)
caused significant numerical diffusion and is unacceptable. Both FLIP and FMPM(k > 1) were close to the
analytical solution. The inset plot shows RMS error

RMS error =

√√√√ 1

Np

Np∑
p=1

(
cp − c(xp, 5)

)2
for FMPM(k) as a function of order k. Here Np is number of particles, cp is particle concentration, and
c(xp, 5) is theoretical result from Eq. (24) evaluated at particle location for t = 5 sec. The horizontal line
is RMS error using FLIP. Using just FMPM(2) reduced the error compared to FMPM(1) by an order of
magnitude. All FMPM(k ≥ 3) were more accurate than FLIP

The above results using fΘ = 0.5 and FMPM(k ≥ 3) eliminated numerical diffusion. But when MPM
calculations are coupled to mechanics calculations, typical properties lead to ∆tM << ∆tΘ resulting in small

f
(eff )
Θ . To check for numerical diffusion at small fΘ, Fig. 3A plots RMS error as a function of fΘ for FLIP

and FMPM(k) for k from 1 to 12. A decrease in fΘ means that a 5 second simulation has more time steps.
Even if FMPM(k) causes only a small amount numerical diffusion on each time step, with enough time steps,
FMPM(k) simulations can degrade compared to non-diffusive (albeit oscillation-prone) FLIP simulations.
Figure 3A shows that FMPM(1) (or PIC) and FMPM(2) are more diffusive than FLIP for fΘ ≤ 1. FMPM(3)

to FMPM(12) improve on FLIP, but cross over FLIP if fΘ is too small. Figure 3B plots f
(max)
Θ (k) defined

as fΘ when FMPM(k) and FLIP RMS errors are equal. This plot provides a map for acceptable fΘ values.
The region left of the curve will show numerical diffusion while the region to the right will show negligible
diffusion (assuming FLIP represents negligible numerical diffusion).

The question remains — how should FMPM(k) be used for transport modeling when ∆tM << ∆tΘ? The

answer is determined by calculating f
(eff )
Θ in Eq. (22). If f

(eff )
Θ > f

(max)
Θ (k), then FMPM(k) calculations can

13



Fraction FMPM(k)

R
M

S 
Er

ro
r (

X 
10

3 )

0.0 0.2 0.4 0.6 0.8 1.0
 1.2

 1.4

 1.6

 1.8

 2.0

 2.2

 2.4

3

5

8

Periodic

Blended
FLIP

A
Steps from last FMPM(5) step to the end

R
M

S 
Er

ro
r (

X 
10

3 )

0 5 10 15 20 1.40

 1.45

 1.50

 1.55

 1.60

 1.65

 1.70

Blended

Every 20th step

Periodic Averaged

B

FLIP

Figure 4: A. RMS error for diffusion calculations as a function of fraction FMPM(k), ψ, for k = 3 , 5, or 8. The symbols are
for periodic FMPM(k) every m = 1/ψ. The dashed lines used blended FLIP/FMPM(k). The horizontal line is the FLIP RMS
error. B. RMS error for periodic FMPM(5) using m = 20 as a function of number of time steps between the last FMPM(5) time
step and the end of the simulation. The horizontal lines gives RMS errors for FLIP, blended FLIP/FMPM(5) with ψ = 0.05,
and averaged for all periodic FMPM(5) simulations.

be done every time step, but if f
(eff )
Θ < f

(max)
Θ (k), FMPM(k) calculations should change. Two approaches

are to use FMPM(k) calculations periodically (use them every mth time step while all other time steps
use FLIP) or to blend FLIP and FMPM(k) (using a fraction ψ of FMPM(k) on every time step). Both

methods define a third time-step factor, fX ≥ f
(max)
Θ (k). For periodic FMPM(k), the step interval would

be m & int(fX/f
(eff )
Θ ); for blending, the fraction FMPM(k) would be ψ . f

(eff )
Θ /fX . Blending FLIP and

FMPM(k) requires some modifications. First, particle updates and the separately-tracked “smoothed” values
become:

Θ(+∗) = ψΘ+ + (1− ψ)
(
Θ + Sv(θ)∆t

)
+ dΘ(ad)

Θ
(+∗)

= ψΘ+ + (1− ψ)Θ
+

Second, transport value increments are found from the revised smoothed values (∆Θ = Θ
(+∗)−Θ

(∗)
). Third,

implement grid boundary conditions as explained above being sure to only adjust rates when modifying θL.
If net flow at boundary conditions is needed, the above flow terms are blended:

Q
(BC)
tot = (1− ψ)Q

(BC)
1 + ψQ

(BC)
2

Figure 4A compares RMS error for periodic FMPM(k) (symbols) and blended FLIP/FMPM(k) (dashed

lines) when using f
(eff )
Θ = 0.1 and k = 3, 5, or 8. These simulations varied fX from 0.1 to 100; the results are

plotted as a function of ψ = 1/m = 0.1/fX . For k = 3 or 5 the errors were higher than FLIP when fraction
FMPM(k) is too high, but became lower for ψ < 0.08 (fX > 1.25) or ψ < 0.25 (fX > 0.4), respectively.

The transitions to lower errors were when fX was higher than f
(max)
Θ (3) and f

(max)
Θ (5) in Fig. 3B. For k = 8

the errors were always lower than FLIP because f
(max)
Θ (8) ∼ f

(eff)
Θ = 0.1 in these calculations. Although

using high k works, it is computationally expensive. The best practice is to use low k ≥ 2 and pick fX to
eliminate unwanted diffusion.

Periodic and blended methods were similar, but not identical. One reason is that these simulations used
exactly 1001 time steps and periodic FMPM(k) calculations choose m to always be divisor of 1000. Thus,
all periodic results had an FMPM(k) step on the penultimate time step. Each FMPM(k) time step replaces
all particle transport values with filtered values that can remove oscillations even when done infrequently.
When RMS error is calculated soon after this replacement, it is low but the intervening FLIP steps may
cause it to increase. Figure 4B compares RMS error for FMPM(5) done every 20 times steps, but with the
FMPM(5) time steps shifted to vary the number of time steps between the last FMPM(5) time step and
the end of the simulation. The error was smallest for shift of zero and increased as the shift increased. The

14



Cell Size Δx (mm)

R
M

S 
Er

ro
r

10-1 100 101

 10-3 

 10-2 

 10-1 

m=1

fX = 0.5

fX = 2

FLIP

Slope = 1.54

Figure 5: Spatial convergence of diffusion calculations for FLIP (dots), FMPM(4) done every time step (m = 1) or periodic
FMPM(4) using fX = 0.5 or fX = 2. All calculations used a constant time step ∆t = 1.5625 ms. The dotted line is power-law
slope of 1.54.

“Periodic Averaged” line is average error for all possible shifts and it was nearly identical to the blended
FLIP/FMPM(5) error using ψ = 0.05. Both periodic or blended methods had lower errors than using FLIP
alone.

Based on Fig. 4, periodic FMPM(k) and blended FLIP/FMPM(k) appear equally effective when f
(eff )
Θ <

f
(max)
Θ (k) providing one uses fX > f

(max)
Θ (k). An advantage of periodic FMPM(k) is increased efficiency

because the computational cost in Eq. (23) changes to 1 + (k − 1)F/m (i.e. computational cost of FMPM
only occurs every mth time step). In contrast, blended FLIP/FMPM(k) incurs full computation cost of
FMPM regardless of whether ψ = 1 or ψ = 0.01. A disadvantage of periodic FMPM(k) is that error varies
with a large decrease happening after each FMPM(k) time step. Simulations that are sensitive to changes
in transport value (∆Θ) could be adversely affected by periodic FMPM(k). Using blended FLIP/FMPM(k)
is a potential alternative to eliminate those issues.

Neither FLIP nor FMPM(k) benefit from time steps below shorter than needed for convergence. Both
methods, however, converge further by reducing cell size as shown in Fig. 5. These calculations repeated the
above diffusion calculations using a constant time step ∆t = 1.5625 ms based on fΘ = 0.5 for the smallest cell

size of ∆x = 0.25 mm. For larger cells, the time step was kept constant by setting f
(eff )
Θ = 0.5 ∗ (0.25/∆x)2,

which decreased to f
(eff )
Θ = 0.00125 for 5 mm cells. FLIP (dotted line) converged in proportional to ∆x1.54.

The three solid lines correspond to FMPM(4) calculations every time step (m = 1) or to periodic FMPM(4)
using fX = 0.5 or fX = 2. When done every time step, calculations for large cell size have too small
a time step and therefore RMS error increased. Using periodic FMPM(k) resolved this issue resulting in

convergence similar to FLIP. These calculations were repeated using blending with ψ = f
(eff )
Θ /fX and the

results were virtually identical to the periodic method.

4.3. Poroelasticity

Figure 6 shows a Biot column containing a porous material saturated with fluid and surrounded on two
sides by impenetrable walls and on the bottom by a porous wall. This column was compressed with an
impenetrable piston to constant displacement or constant load and then held. If the bottom wall is kept
closed, this compression causes pore pressure to increase. If the bottom wall is opened after compressing,
fluid can escape. At constant displacement, axial compression stress should decrease while at constant load,
plunger displacement should increase. This section models Biot column experiments on Ruhr sandstone
filled with water. Unlike previous “transport-only” examples, poroelasticity modeling is always coupled to
mechanics modeling.

Ruhr sandstone modeled as an isotropic, poroelastic material has three mechanical properties — bulk
modulus K = 13 GPa, Poisson’s ratio ν = 0.12, and density ρ = 2.5 g/cm3 — and four poroelasticity prop-
erties — undrained bulk modulus Ku = 30 GPa, Biot-Willis coefficient αB = 0.65, Darcy’s law permittivity

15



Time (ms)

Ax
ia

l S
tre

ss
 (M

Pa
)

0 500 1000 1500 2000 2500 250

 300

 350

 400

 450

 500
Undrained

Drained

A. Fixed Displacement

L

Time (ms)

Pl
un

ge
r M

ov
em

en
t (

m
m

)

0 500 1000 1500 2000 2500 0.35

 0.40

 0.45

 0.50

 0.55

 0.60

 0.65

 0.70

Undrained

Drained

B. Fixed Load

Figure 6: The middle shows a Biot column that compresses a porous material with a plunger while a porous bottom allows
fluid to escape. A. Average axial compression stress in the Ruhr sandstone for 100×40 mm column compressed by 1 mm and
then held. B. Plunger displacement for the same column compressed with constant compression stress of 200 MPa.

k = 0.2 millidarcys, and pore water viscosity η = 1 cP [14]. The Biot modulus used in transport equations is
QB = (Ku −K)/α2

B = 40.2 GPa. The column was L = 100 mm long and 40 mm wide and modeled by 2D,
plane strain methods using 5× 5 mm cells with four particles per cell. The column was initially compressed
to a constant displacement of dz = 1 mm or to a constant compressive stress of σz = 200 MPa over the time
for stress waves to travel column length 50 times (about 1.45 ms for tensile wave speed of 3400 m/s) and
then held for twice the load time. The goal was to quasi-statically apply initial displacement or load. After
the hold phase, the bottom was opened by setting grid boundary conditions along the column’s bottom to
zero pore pressure.

Fixed displacement and fixed load simulation results using FMPM(2) with fX = 2 are in Fig. 6. At fixed
displacement, the stress initially increased to about 475 MPa. Over 2500 ms of holding, the average stress
gradually decreased to about 300 MPa. At fixed load, the initial plunger movement was about 0.42 mm. As
fluid leaked out the bottom, the plunger movement increased toward 0.65 mm. The plotted “drained” limits
are the final compressibility results derived in Biot [13] as:

σz =
dz
aL

and dz = aσzL where a =
(1 + ν)

3K(1− ν)

The plotted “undrained” limits are the initial compressibility results derived in Biot [13] as:

σz =
dz
aiL

and dz = aiσzL where ai =
a

1 + α2
BaQ

Both simulations correctly reached “undrained” results after initial quasi-static loading and then approached
“drained” limits over time.

FMPM(k) can be used for mechanics analysis (see Ref. [11]), transport analysis (as derived here), both,
or neither. Repeating these simulations using neither (i.e., FLIP for both mechanics and transport analysis)
was always unstable. These calculations required FMPM(k) for mechanical stability. For simulations using
FMPM(2) for mechanics, the transport analysis method affected the results. Using FLIP gave reasonable
global results, but local pore pressures developed significant oscillations. Using FMPM(2) on every time step
(with m = 1) approached the drained limit too fast. This numerical diffusion was because the mechanics
time step was much shorter than the transport time step. Numerical diffusion was eliminated by using either
periodic or blended FMPM(2) with fX = 2 for transport analysis.

Another challenge in poroelasticity modeling is the disparity in time scales between stress waves and pore
pressure evolution, especially in low permeability materials. For Ruhr sandstone, the stress wave speed is
3400 m/s while pore fluid velocity in the constant displacement simulation was about vf = (k/η)dp/dy ∼

16



0.01 m/s. On the time scale of pore fluid transport, all mechanics is quasi static. An option to speed up
calculations, therefore, is to scale time by multiplying both sides of Eq. (5) by tref . The net effect is a
new equation in reduced time (tred = t/tref ) for a material with permittivity and flux boundary conditions
both increased by factor of tref . The simulation output then multiplies simulation time by tref to get low-
permittivity results for actual time. The simulations in Fig. 6 used tref = 10. The displacement control
simulations were identical in the range of tref = 10 to 1000. A real-time simulation (tref = 1) eventually
developed numerical artifacts near the bottom drain that degraded the results. The load control simulations
were identical for tref = 1 to 100. Simulations with tref = 1000 gave similar displacement change rate but
the displacement oscillated around the lower tref results.

4.4. Fracture Phase Field Diffusion

An example modeling crack propagation by coupled phase-field diffusion analysis, as termed a “viscous
regularization” method [16], was a 1 × 1 × 1 mm specimen with a 0.5 mm single-edge notched loaded in
tension on top and bottom (SENT) at a constant displacement rate slow enough to model quasi-static
loading [15, 16]. The MPM model used 0.01 mm cells with 4 particles per cell. The initial 0.5 mm crack was
modeled as an explicit MPM crack [3]. The material properties were modulus E = 210 GPa, Poisson’s ratio
ν = 0.3, and density ρ = 8 g/cm3. The material fracture properties were Gc = 2700 J/m2, ` = 0.02 mm,
and g(ξ) = (1− ξ)2. Miehe et. al [16] recommend ` to be at least 4 finite element lengths to resolve phase
field shape near a crack. MPM calculations similarly need ` to be at least 4 particle diameters (as set in this
example). The phase field viscosity, η, is ideally small. This example first picked η such that the mechanics
and transport time steps matched, which by Eq. (21) is:

ηmin =
fM
fΘ

2Gc`

vmax∆x

In this example, using fM = 0.25 and fΘ = 0.5 gave ηmin = 0.3134 Pa · sec.
Figure 7 shows phase field calculations when the crack has propagated half way to the specimen’s edge.

Using standard FLIP methods for transport gave poor results and extensive oscillations (seen as checkerboard
patterns in Fig. 7A). Modeling crack planes, which are always near interfaces, is an example that shows
MPM transport methods that rely on FLIP are unable to model phase-field fracture by coupled transport
calculations. In contrast, using periodic FMPM(2) for transport with fX ≥ 2 to avoid unwanted diffusion
completely removes all oscillations and provides a valid phase-field fracture method (see Fig. 7B).

Fracture mechanics calculations for an SENT specimen under displacement control show that energy
release rate increases with crack length implying that crack growth, once initiated, should be rapid and
unstable. Simulation results should reach a peak and then phase field should propagate close to wave
speed of the material. Simulated force-displacement results in Miehe et al. [15, 16] all have that behavior.
FMPM(2) (with fX ≥ 2) also has that behavior and results are virtually identical to Miehe et al. [15, 16]
(hence judged as sufficiently converged for purposes of this paper). The checkerboard phase field distribution
when using FLIP caused force to rise too high before failure and crack propagation to be too slow. Although
FLIP phase field on the grid was reasonable, the oscillations in particle values made FLIP unacceptable for
fracture phase field calculations.

Alternate phase-field fracture implementations in MPM directly solve the phase field equation (i.e.,
equation with η = 0) on each time step using linear finite element methods [21, 22] or conjugate gradient
methods [23]. While these approaches work and avoid transport modeling oscillation problems, they have
two drawbacks. First, they are inefficient. Repeating the above SENT specimen calculations with a grid-
based finite element analysis on each time step on the same computer was 36 times slower than the coupled
transport analysis method. Second, a reliance on linear finite element methods to solve for phase field limits
the modeling to linear g′(ξ) = c1 + c2ξ. More general material modeling benefits from modeling methods
that can handle nonlinear g′(ξ).

When using “viscous regularization,” η must be small enough for reliable results. For example, Fig. 8
plots displacement at the midpoint of the post-peak rapid drop to zero force as a function of η. This geometry
had consistent results for η < 1 Pa · sec. For η > 1 Pa · sec, the slowed phase-field diffusion delays the failure
initiation thereby shifting the displacement when the load drops. The dotted line shows ηmin used above.
While this value is acceptable, it was selected simply by matching time steps. More complete calculations
should always verify η is acceptable.

17



A B

Figure 7: Plots of phase field when the crack has propagated about half way from initial crack tip to the specimen’s edge. The
10 contours are for ξ = 0 0 (remote from the cracks in black) to ξ = 1 (near the propagating crack path in red) in increments of
0.1. A. Phase field diffusion solved using FLIP methods. B. Phase field diffusion solved using periodic FMPM(2) with fX = 2.

η (Pa-sec)

D
is

pl
ac

em
en

t a
t L

oa
d 

D
ro

p 
(µ

m
)

10-1 10-0 101
 6.0

 6.1

 6.2

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

FMPM(2) with fX=2

ηmin

Figure 8: Displacement when the load has dropped to half the peak value as a function the η using the phase-field transport
equation. The vertical dotted line is value of η such that transport time step matches the mechanics time step.

18



Finally, the point of including fracture phase field diffusion in this paper was neither to recommend
nor denigrate phase field methods for fracture modeling. Rather, this example suggests that a viscous
regularization method [16] the couples mechanics to a diffusive phase field and uses FMPM(k) for the phase
field diffusion is the preferred method for implementing phase field fracture methods in MPM. The diffusion
approach is much faster than prior MPM phase field fracture methods [21, 22] and permits modeling with
nonlinear g′(ξ). A successful diffusion approach, however, requires inclusion of FMPM(k > 2) for transport
to eliminate the phase field oscillations that corrupt any modeling based on FLIP transport methods.

4.5. Thermodynamics

The “Thermodyanamics” in section 3.3 provides methods for tracking and spatially resolving thermody-
namic state variables. Validating this tracking in solid mechanics is difficult because the effects are small
and few exact solutions are available. One validation option is to simulate an ideal gas. For an ideal gas,
the current pressure, volume, and temperature follow:

PV

T
=
P0V0

T0

where P0, V0, and T0 are for a reference state. MPM codes typically work with specific Cauchy stress, which
for an ideal gas reduces to:

σ

ρ
= −P

ρ
I where

P

ρ
=

P0

ρ0T0
T

Here ρ and ρ0 are current and reference state gas density. The internal energy of an ideal gas depends on only
temperature. This response can be modeled by converting all work to a reversible adiabatic temperature
rise dTp,q=0 = dWp/Cv. This material implemented in MPM is stable provided the gas is confined to a box
(i.e, free gas expansion into a vacuum is unstable).

Imagine a gas confined to a box with a moving piston that slowly (i.e., reversibly) applies an axial strain
εxx such that volume has changed to V = V0(1 + εxx). For adiabatic compression (or expansion), the
expected results [26] averaged over all particles are:

P =
Pinit

(1 + εxx)γ
, T =

Tinit
(1 + εxx)γ−1

, W = U = Cv(T − Ti), and Q = S = 0

and γ = 5/3 and Cv = 3P0/(2ρ0T0) for monoatomic gas or γ = 7/5 and Cv = 5P0/(2ρ0T0) for diatomic gas.
For isothermal compression, the expected results [26] are:

P =
Pinit

1 + εxx
, T = Tinit, −Q = W = −PinitV0 ln(1 + εxx), U = 0, and S =

P0V0

T0
ln(1 + εxx)

Coupled heat conduction and mechanics modeling were run in adiabatic and isothermal modes and thermo-
dynamics values were tracked following section 3.3. All expected results accurately matched above analytical
results (the “uninteresting” plots are not provided). Although modeling an ideal gas in MPM is uncommon,
it is a good material model for validating thermodynamics calculations.

5. Conclusions

One motivation for MPM is to model materials with history-dependent response. Because the entire solu-
tion and material history is tracked on the particles, MPM handles such materials well. By extending MPM
to couple transport equations, MPM becomes a good platform for multi-physics problems. The problem with
straight-forward FLIP transport methods, however, is that particle values often develop oscillations. The
oscillations are usually near interfaces or rapid changes in value and can be large. Although the grid solution
remains accurate, particle values are unreliable. In short, standard MPM methods to couple transport with
mechanics lose the advantage of tracking accurate information on the particles.

The FMPM(k) method derived here completely resolves these issues. It removes all oscillations and
returns particle values to accurate transport values. Constitutive laws that depend on these values can then
use them in calculations. When the characteristic transport time step is much longer than the mechanics

19



time step, FMPM(k) can cause unwanted numerical diffusion. This issue can be resolved by using higher
k, by using periodic FMPM(k), or by blending FLIP with FMPM(k). The most efficient method is to use

low k ≥ 2 and periodic FMPM(k) with fX ≥ f (max)
Θ (k). If the periodic method causes bothersome periodic

variations, the next best method is to use blended FLIP/FMPM(k) with low k and fraction FMPM(k)

ψ ≤ f (eff )
Θ /f

(max)
Θ (k).

The first two examples showed how FMPM(k) can eliminate large oscillations in temperature values and
can improve accuracy. These examples were not coupled to mechanics. The examples on poroelasticity and
phase field fracture are always coupled to mechanics. These examples were unstable or inaccurate using
standard FLIP methods. Both became stable and accurate when doing transport by FMPM(k) methods.

Acknowledgements

I thank Murata Manufacturing Co., Ltd., for sponsoring a project that depended on coupling three
transport phenomena in MPM and Grant Smith for finding issues in the project needing improvement for
MPM to be a robust, multi-physics platform.

Appendix

These steps outline tasks for implementing FMPM(k) transport analysis in an MPM time step:

1. Extrapolate Particle Properties to the Grid: Loop over particles calculating nodal content, τi, lumped
transport capacity, cLi , and a relative content, τi,rel, using Eqs. (4) and (8) or:

τi =
∑
p

SpiVpCΘ,pΘp, cLi =
∑
p

SpiVpCΘ,p, and τi,rel =
∑
p

SpiVpCΘ,p
Θp

crel,p

When done, lumped nodal values are θLi = τi/c
L
i ; save a copy in θL0

i for use below in boundary
conditions. τi,rel is only needed for materials with position-dependent activity; if needed, find activity
potential from āLi = τi,rel/c

L
i .

2. Particle Gradients: Change θLi on any node with a boundary condition to θ
(BC)
i . Use these revised,

lumped nodal values and Eq. (7) to get transport gradients on the particles by:

∇Θp =
∑
i

Gpiθ
L
i

When done, restore θLi to θL0
i . Note that when concentration is modeling activity, this calculation needs

to get gradient of activities by changing āLi on any node with a boundary condition to āLi c̄
(BC)
i /θLi (i.e.,

scale the concentration potential BC by extrapolated activity coefficient γi = āLi /θ
L
i ). Once relative

activities are revised, find the needed gradients instead from:

∇Θp =
∑
i

Gpiā
L
i

3. Grid Forces: Loop over particles and extrapolate particle flows and grid source terms to the grid using
Eq. (6) or:

fi =
∑
p

(
−GpiVpκp∇Θp + SpiVpQ̇

(g)
p

)
Add si due to any flux boundary conditions to fi using Eq. (14). Note that grid source terms, Q̇

(g)
p ,

are normally not used.

4. Update Grid Values: Find transport rate on each node by lumped methods in Eq. (9) and then update
lumped transport value using

θL+
i = θLi + v

(θ)
i ∆t

Change θL+
i on any node with a boundary condition to θ

(BC)
i and increment v

(θ)
i on that node by

(θ
(BC)
i − θL+

i )/∆t such that v
(θ)
i is the consistent transport rate that updates from θLi to θ

(BC)
i .

20



5. FMPM(k) Calculations: When using FMPM(k) on the current time step, calculate new transport
values on the grid from updated lumped values using Eq. (11), which for implementation is recast as

θ(k) =

k∑
`=1

(−1)`+1θ(`), θ(1) = kθL+, and θ(`) =
k − `+ 1

`
SΘSθ(`−1)

A single subroutine to calculate θ(`) can be called recursively to implement FMPM(k). When done,

change θi(k) on any node with a boundary condition to θ
(BC)
i , but do not increment v

(θ)
i on those nodes.

This task is the only extra task needed to implement FMPM(k); more FMPM(k) implementation
information is given in Refs. [10] and [11].

6. Particle Updates: Particle updates for FLIP and FMPM(k) using Eq. (12) are:

Θ+
p =

{
Θp +

∑
i Spiv

(θ)
i ∆t+ dΘ

(ad)
p FLIP∑

i Spiθi(k) + dΘ
(ad)
p FMPM(k)

For FLIP, evaluate Θ
+

p and find value increment by ∆Θp = Θ
+

p − Θp. For FMPM(k) find value
increment by ∆Θp = Θ+

p − Θp (but change Θp to Θref on the first time step). When using blended
FLIP/FMPM(k) combine these calculations by the chosen fraction FMPM(k). When doing heat
conduction modeling, increment heat energy and entropy as explained in section 3.3 by the temperature
change caused only by conduction.

7. Particle Stresses, Strains, and Thermodynamics: In MPM mechanics using FMPM(k), the recom-
mended place to implement constitutive laws is after the particle updates [11]. When coupled to
transport modeling, this task takes ∆Θp as input for modeling residual stresses caused by changes
in transport value. The constitutive law calculations should also calculate and buffer any modeled

adiabatic changes to transport value, dΘ
(ad)
p , to be added in the next particle update. When doing

heat conduction modeling, these adiabatic changes should be divided into reversible and irreversible
effects and added to heat energy and entropy as explained in section 3.3.

References

[1] S. G. Bardenhagen, E. M. Kober, The generalized interpolation material point method, Computer
Modeling in Engineering & Sciences 5 (2004) 477–496.

[2] D. Sulsky, Z. Chen, H. Schreyer, A particle method for history-dependent materials, Computer Methods
in Applied Mechanics and Engineering 118 (1) (1994) 179 – 196.

[3] J. A. Nairn, Material point method calculations with explicit cracks, Computer Modeling in Engineering
and Sciences 4 (6) (2003) 649–664.

[4] J. A. Nairn, S. G. Bardenhagen, G. S. Smith, Generalized contact and improved frictional heating in the
material point method, Computational Particle Mechanics 5 (3) (2018) 285–296. doi:10.1007/s40571-
017-0168-1.

[5] J. A. Nairn, C. C. Hammerquist, G. Smith, New material point method contact algorithms for improved
accuracy, large-deformation problems, and proper null-space filtering, Computer Methods in Applied
Mechanics and Engineering 362 (2020) 112859.

[6] J. A. Nairn, J. E. Guilkey, Axisymmetric form of the generalized interpolation material point method,
Int. J. for Numerical Methods in Engineering 101 (2015) 127–147.

[7] J. A. Nairn, Modeling heat flow across material interfaces and cracks using the material point method,
Computational Particle Mechanics 6 (1) (2019) 133–144.

[8] J. U. Brackbill, H. M. Ruppel, FLIP: A method for adaptively zoned, particle-in-cell calculations of
fluid flows in two dimensions, Journal of Computational Physics 65 (2) (1986) 314 – 343.

21



[9] J. Brackbill, D. Kothe, H. Ruppel, FLIP: A low-dissipation, particle-in-cell method for fluid flow,
Computer Physics Communications 48 (1) (1988) 25 – 38.

[10] C. C. Hammerquist, J. A. Nairn, A new method for material point method particle updates that reduces
noise and enhances stability, Computer Methods in Applied Mechanics and Engineering 318 (2017) 724–
738.

[11] J. A. Nairn, C. C. Hammerquist, Material point method simulations using an approximate full mass
matrix inverse, Computer Methods in Applied Mechanics and Engineering 337 (2021) 113667.

[12] F. Harlow, The particle in cell computing method for fluid dynamics, Methods in Computational Physics
3 (1964) 319.

[13] M. A. Biot, General theory of three dimensional consolidation, J. Appl. Phys. 12 (1941) 155–164.

[14] E. Detournay, A.-D. Cheng, Fundamentals of poroelasticity, in: C. Fairhurst (Ed.), Comprehensive
Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, Pergamon
Press, 1993, pp. 113–171.

[15] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically-consistent phase field models of fracture:
Variational principles and multi-field FE implementations, International Journal for Numerical Methods
in Engineering 83 (10) (2010) 1273–1311.

[16] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation:
Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics
and Engineering 199 (2010) 2765–2778.

[17] J. R. Rice, M. P. Cleary, Some basic stress diffusion solutions for fluid-saturated elastic porous media
with compressible constituents, Reviews of Geophysics and Space Physics 14 (227-241).

[18] B. Bourdin, G. A. Francfort, J.-J. Marigo, The variational approach to fracture, J. Elasticity 91 (2008)
5–148.

[19] G. Francfort, J. Marigo, Revisiting brittle fracture as an energy minimization problem,, ournal of the
Mechanics and Physics of Solids 46 (1998) 1319–1342.

[20] M. Hofacker, C. Miehe, Continuum phase field modeling of dynamic fracture: variational principles and
staggered fe implementation, Int J. Fract. 178 (2012) 113–129.

[21] E. G. Kakouris, S. P. Triantafyllou, Material point method for crack propagation in anisotropic media:
a phase field approach, Arch Appl Mech 88 (2018) 287–316.

[22] E. G. Kakouris, S. P. Triantafyllou, Phase-field material point method for brittle fracture, Int J Numer
Meth Engng. 112 (2017) 1750–1776.

[23] J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, C. Jiang, Cd-mpm: Continuum damage material point
methods for dynamic fracture animation, ACM Trans. Graph. 38 (4) (2019) 119.

[24] L. Chen, H. W. Zhang, L. Y. Liang, Z. Liu, Y. Qi, P. Lu, J. Chen, L.-Q. Chen, Modulation of dendritic
patterns during electrodeposition: A nonlinear phase-field model, Journal of Power Sources 300 (2015)
376–385.

[25] G. S. Smith, J. A. Nairn, An MPM-based phase-field simulation of plating and stripping of lithium with
a solid electrolyte interphase, Journal of the Electrochemical Society (2023) Submitted.

[26] D. Kondepudi, I. Prigogine, Modern Thermodynamics, John Wiley & Sons, 1998.

[27] M. L. Wilkens, Computer Simulation of Dynamic Phenomena, Springer-Verlag, New York, 1999.

22


