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Abstract: This paper presents the principles and algorithms for simulation of dynamic 
crack propagation in elastic bodies by the material point method (MPM), from relatively 
simple two-dimensional cases to full three-dimensional, mixed-mode crack propagation. 
The paper is intended to give a summary of the latest achievements on simulation of 
three-dimensional dynamic crack propagation, which is essentially an unexplored area. 
Application of the methodology presented in this paper to several dynamic crack 
propagation problems has shown that the MPM is a reliable and powerful approach for 
simulating three-dimensional, mixed-mode crack propagation. 
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1 Introduction 

Numerical simulation of dynamic crack propagation is an extremely important research 
subject not only for academic interest but also for the establishment of a safety design 
methodology that prevents structures from catastrophic failures. Numerical simulation of 
dynamic crack propagation, however, remains a challenging problem due to various 
inherent difficulties. Even though a variety of methods are available for using fracture 
mechanics in two-dimensional dynamic crack propagation analysis, much less progress 
has been made on three-dimensional dynamic fracture simulation. 
The major numerical techniques currently used in fracture mechanics are the finite 
element method (FEM) and the boundary element method (BEM). The suitability of 
those techniques for crack propagation simulation depends on the complexity and 
versatility of handling crack evolution, computational accuracy and efficiency. For mesh 
methods, such as FEM, additional techniques are usually needed to simulate crack 
propagation since the crack is part of the discretized material body. A commonly used 
technique is the nodal release method (Chen and Wilkins (1977); Kishimoto and Sakata 
(1987); Ivankovic and Williams (1995)). The major disadvantage of nodal release is that 
the crack propagation path is limited to pre-existing mesh lines. It may therefore have 
severe limitations for modeling mixed-mode crack propagation (where cracks may 
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propagate in unknown directions), and presents even more challenges for modeling three-
dimensional propagation. Basically, the node-release method is only reliable for two-
dimensional self-similar crack propagation. A second frequently used technique is the 
moving mesh method developed by Nishioka et al. (1990, 1997), and extended by Koh, 
Lee and Haber (1988), Gallego and Dominguez (1992), and Koh et al. (1995). The 
method seems difficult for modeling arbitrarily curved crack growth since excessive 
mesh distortion might occur, and its versatility is still questionable. 
FEM and BEM can be adapted to handle arbitrary crack propagation simulations by using 
remeshing techniques after each increment of crack propagation, which involves 
implementation of some automatic remeshing scheme (Swanson and Ingraffea (1988); 
Bittencourt et al. (1996)). The disadvantages are obvious: remeshing is complicated and 
takes time. The situation only gets worse when considering arbitrary three-dimensional, 
mixed-mode crack propagation problems. 
The extended finite element (XFEM) was developed to avoid some FEM issues by 
representing the crack independently of the mesh (Belytschko and Black (1999); Moës et 
al. (1999)) and adding enriched shape functions near crack tips and crack planes. The 
need to remesh is replaced by the need to alter shape functions and to make assumptions 
about crack tip displacements that make modeling of plastic materials a challenge. 
Furthermore, XFEM cannot handle interacting cracks, such as two cracks propagating 
through the same element. 
The challenges faced by FEM crack methods might explain the limited progress made in 
numerical crack propagation, most importantly in three-dimensional crack propagation 
simulation. The question arises, can some meshless method, such as the smooth particle 
hydrodynamics (SPH) method (Monaghan (1992)), the element free Galerkin (EFG) 
method (Belytschko, et al. (1994)), or the material point method (MPM) (Sulsky et al. 
(1994)) provide an alternate to FEM for problems involving crack propagation? In 
meshless methods, a crack is treated as an independent entity, which may provide greater 
potential in crack propagation simulations, especially for three-dimensional problems. 
This paper focuses on the MPM particle-based method for crack modeling with an 
emphasis on three-dimensional explicit cracks. MPM is a numerical method to solve 
dynamic solid mechanics problems (Sulsky et al. (1994), Sulsky, et al. (1995), Sulsky 
and Schreyer (1996)). The motivation for MPM development was to simulate problems 
with history-dependent internal state variables, contact, impact, penetration/perforation, 
and metal forming without needing master/slave nodes or global remeshing. For 
modeling cracks, MPM was extended to handle explicit cracks by a method called 
CRAMP (for CRAcks in MPM) (Nairn (2003)), which was shown to provide excellent 
results for crack-front fracture parameters such as J integral (Guo and Nairn (2004, 
2006)). CRAMP can be described as an “extended'” MPM, but it is a more 
straightforward extension MPM than XFEM is of FEM. It does not require addition of 
"enriched shaped" functions that depend on crack tip stress state and can handle two 
interacting cracks in the same background grid cell (Nairn and Aimene (2016)). As a 
consequence, MPM may have advantages for some fracture problems. Some examples 
are problems with crack contact, cracks in inelastic, large-deformation materials, and 



 3 

crack fronts propagating up to and intersecting with or passing through other cracks 
(Nairn and Aimene (2016)). 
In brief, in 2D CRAMP, an explicit crack is described by a series of massless particles 
connected by line segments, with the first and last particle being the crack tips. Like 
MPM particles, crack particles are not tied to the background grid. Crack propagation is 
modeled by adding a new particle ahead of the current crack tip and that propagation can 
move and propagate in any direction. Each time step in MPM involves extrapolating 
particle state to the grid, solving the equations of motions on the grid, and then updating 
the particles. When explicit cracks are present, geometric relations between particles, 
crack planes, and nodes are used to subdivide the extrapolated grid velocity into two 
separate velocity fields describing motion “above” and “below” the crack plane. By 
tracking these two fields, the standard MPM algorithm can be extended to model the 
crack and implement contact laws on crack surfaces (Nairn (2003), Guo and Nairn 
(2004)). In 3D CRAMP, a crack is discretized into a set of triangular elements instead of 
line segments, but otherwise the 3D algorithm is essential the same as the 2D one (Guo 
and Nairn (2006)). A major difference in 3D CRAMP is for crack propagation problems. 
Rather then dealing only with two crack tips, 3D crack propagation requires analysis of 
the entire crack front and propagation of that front can be predicted by 3D J integral 
methods. 
This paper presents the principles and algorithms to simulate arbitrary dynamic crack 
propagation with the material point method (MPM). MPM has previously been used to 
model explicit, 2D crack propagation in wood (Nairn (2007)), crack growth with 
cohesive zones (Nairn (2009); Bardenhagen, Nairn, and Lu (2011)) or fiber bridging 
(Matsumoto and J. A. Nairn (2009)), fracture during cutting (Nairn (2015, 2016)), and 
geomechanical modeling of hydraulic fracturing (Aimene and Nairn (2014, 2016)). This 
paper summarizes CRAMP and J integral methods as a 3D crack modeling tool. Two 2D 
examples are discussed and directly compared to FEM and experiments, but the emphasis 
of this paper is on the extra work needed for simulation of mixed-mode, 3D crack 
propagation. Two examples show 3D crack propagation in a bar and around the 
circumference of a hollow tube. 

2 Numerical Methods 

2.1  Stress Analysis of Cracks in MPM 

The numerical methods for stress analysis of cracks with the material point method 
(MPM) have been developed by the authors of the paper for two-dimensional (Nairn 
(2003)) and three-dimensional problems (Guo and Nairn (2004)). Here we give a brief 
summary as a 3D problem for completeness of description. 
In MPM, a material body is discretized into a set of particles, as shown in Figure 1. A 
particle carries all the information of the material body at that position, such as mass, 
volume, velocity, strains, and stresses during the simulation. There is no geometrical 
connection among the particles; they interact through a background grid, which is 
typically a regular mesh of orthogonal elements. When modeling cracks using CRAMP, 
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the material point description of the object is supplemented by one or more explicit crack 
planes. In 2D, each crack plane is divided into a set of massless points connected by line-
segments (Nairn (2003)) as shown in Fig. 1. In 3D, each crack surface is described by a 
collection of massless points connected by triangular elements (Guo and Nairn (2006)).  
     During each MPM time step, particle information is extrapolated to the background 
grid, which is used to solve the momentum equation. In the absence of cracks, particle 
momenta are extrapolated to a single velocity field resulting in discretized momentum 
equation for time step n of: 

dp(n)
i

dt
= f (n)

i + f (n)
i,T  (1) 

where pi
(n), fi

(n) and fi,T
(n) on momentum, internal force, and external traction force on node 

i (Sulsky, et al. (1994), Bardenhagen and Kober (2004)). But such an update enforces a 
continuous deformation field that cannot describe displacement discontinuities at crack 
planes. The extension of CRAMP is to introduce two velocity fields to represent motion 
on opposite sides of the crack plane (Nairn (2003)). Let each node accommodate one or 
two velocity fields. When cracks are present, each CRAMP time step starts by assigning 
a set of crack velocity fields, v(p,i) = 0 or 1, to each particle p – node i pair. These fields 
are determined by tracing a line from the particle to the node to see if it crosses any crack 
plane. Field 0 is when the line crosses no crack (particle and node on same side of the 
crack) or field 1 is when it crosses one crack (particle and node on opposite sides of the 
crack). This calculation is best done during the initialization phase of the MPM time step. 
Note that two velocity fields on each node can handle any number of cracks, but assumes 
non-interacting cracks such that no node “sees” a line crossing for more one crack. An 
extension to explicitly handle two cracks by allowing up to four velocity fields per node 
is give elsewhere (Nairn and Aimene (2016)). This paper limits discussion to one crack 
or non-interacting crack problems. 
Because v(p,i) has to look at all possible particle–node pairs, it is the most time 
consuming task of the CRAMP algorithm. Although it appears to scale as N*n*c where N 
is number of particles, n is number of nodes, and c is number of cracks and therefore to 
be very expensive for large calculations, the scaling can be made much better. First, by 
exploiting the local nature of shape functions, only a small number of nodes (which does 
not increase with problem size) near each particle need to be checked. The CRAMP 
algorithm thus scales with N*c (or just N for a constant number of cracks). Second, its 
efficiency can be greatly improved by screening out the vast-majority of crack-crossing 
calculations by describing the crack plane using a hierarchical binary tree. The methods 
are analogous to hidden line removal methods in 3D graphics (Kay and Kajiya (1986)). 
Once all v(p,i) are found, the remaining MPM tasks are similar to standard MPM (Sulsky, 
et al. (1994), Bardenhagen and Kober (2004)) except that they must solve the equations 
in each crack velocity field, resolve crack contact situations at nodes with more that one 
crack velocity field (Nairn (2003, 2013)), and update positions of crack surfaces. The 
revised MPM explicit update for momentum, by solving Eq. (1) for each velocity field, 
becomes: 
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p(n+1)
i,j = p(n)

i,j + (f (n)
i,j + f (n)

i,j,T )�t (2) 

where subscript j indicates velocity field j on node i. The momenta and forces are given 
by slightly modified MPM extrapolations: 

p(n)
i,j =

X

p

p(n)
p S(n)

ip �j,v(p,i)
 (3) 

f (n)
i,j =

X

p

 
�mp

⌧ (n)
p ·G(n)

ip

⇢0
+mpS

(n)
ip bp + F (n)

p S(n)
ip

!
�j,v(p,i)

 (4) 

f

(n)
i,j,T = �j,v(p,i)

Z

ST

Ni(x)T p dS
 (5) 

where Sip
(n) and Gip

(n) are the GIMP shape functions and shape function gradients 
(Bardenhagen and Kober (2004)), mp is particle mass, τp

(n) is particle Kirchoff stress, ρ0 is 
undeformed particle density, bp is particle body force, Fp

(n) is external force on the 
particle, and Ni(x) is nodal shape functions on the grid, and Tp is traction applied to a 
particle’s surface. These extrapolations are modified from standard MPM extrapolations 
by the Kronecker δj,v(p,i) that selects the appropriate crack velocity field on each node (i.e., 
standard MPM extrapolations omit δj,v(p,i) and drop subscript j). 
Once the grid momenta are updated, the forces and velocities on the grid are used to 
update the particle velocities (vp) and positions (xp) using: 

v(n+1)
p = v(n)

p + a(n)
g!p�t (6) 

x

(n+1)
p = x

(n)
p + v

(n+1)
g!p �t� 1

2
a

(n)
g!p(�t)2

 (7) 

where ag®p
(n) and vg®p

(n) are accelerations and velocities extrapolated from the grid to the 
particle. But, these extrapolations must use the appropriate velocity fields: 

a(n)
g!p =

X

i

f (n)
i,v(p,i) + f (n)

i,v(p,i),T

m(n)
i,v(p,i)

S(n)
ip

 (8) 

v(n+1)
g!p =

X

i

p(n+1)
i,v(p,i)

m(n)
i,v(p,i)

S(n)
ip

 (9) 

where mi,j
(n) is nodal mass extrapolated from the particles: 

m(n)
i,j =

X

p

mpS
(n)
ip �j,v(p,i)

 (10) 
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This particle update can be extended to include various damping schemes as explained in 
Nairn (2015). The reader is referred to standard MPM papers for more details on these 
basic equations, without cracks (Sulsky et al. (1994), Bardenhagen and Kober (2004)) or 
with cracks (Nairn (2003), Guo and Nairn (2004)) 
An additional task need for MPM simulations with cracks is to move the crack plane 
according to the velocities fields on the two sides of the crack. An improvement over the 
initial development of CRAMP, which moved crack particles in the center-of-mass 
velocity field (Nairn (2003)), is for each crack particle to track its’ position as well as 
locations for the crack surfaces above and below the crack plane. The locations on top 
and bottom crack surfaces are moved in velocity field associated with that surface. In 
other words, the crack surfaces move by 

x

(n+1)
s = x

(n)
s + v

(n+1)
g!s �t (11) 

v

(n+1)
g!s =

X

i

p

(n+1)
i,v(s,i)

m(n)
i,v(s,i)

N⇤
i (x

(n)
s )

 (12) 

Here subscript “s” indicates side of the crack (0 or 1) being updated and vg®s
(n) is velocity 

extrapolated from the grid to the location for that surface of the crack. It is similar to the 
velocity extrapolation for particle updates (see Eq. (9)) except that is uses velocity field 
v(s,i) appropriate for the surface location s – node i pair, which is determined by same 
methods used to determine v(p,i). 
Note that the GIMP shape function, Sip

(n), in Eq. (9) is replaced by a grid shape function 
Ni

*(xs
(n)). This replacement occurs because GIMP shape functions integrate over particle 

domain. Because crack particles are massless with no domain, they should use GIMP 
shape functions with a Dirac delta function for domain, which converts them to ordinary 
grid shape functions (Bardenhagen and Kober (2004)). The “*” on grid shape function 
arises because the extrapolation may need renormalization to preserve partition of unity 
caused by potentially inactive nodes near the crack surface (i.e., Ni

*(xs
(n)) is Ni(xs

(n)) 
divided by Σi Ni(xs

(n))). The crack particle location can update by center-of-mass velocity 
(Nairn (2003)), or, more efficiently, by moving to the midpoint between the two crack 
surfaces. Some advantages of tracking locations of crack surfaces are that it allows for 
improved contact modeling (Nairn (2013)) and implementation of imperfect interface 
(Nairn (2007)) or cohesive laws (Nairn (2009)) that depend on crack opening 
displacement. These displacements are also used to partition J integral into mode I and II 
stress intensity factors, as explained in the next section. 

2.2 Dynamic J-Integral and Stress Intensity Factors 

The CRAMP algorithm in the previous section explains how MPM can account for 
explicit discontinuities caused by cracks. To handle crack propagation, the next task is to 
calculate crack front fracture parameters that are needed to predict when and in which 
direction a crack will propagate. The general method is to use the crack front J-integral. 
MPM methods for finding J integral and stress intensity factors in 2D and 3D simulations 
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are in Guo and Nairn (2004, 2006). The two results are summarized here together for 
completeness. 
The dynamic J-integral components in crack-front coordinates was formulated by 
Nishioka and Atluri (1983) and Nishioka (1995), as follows: 

Jk =

Z

�c


(W +K)nk � �ijnj

@ui

@xk

�
d�+

Z

V (�c)
⇢

✓
@

2
ui

@t

2

@ui

@xk
� @ui

@t

@

2
ui

@t@xk

◆
dV

(13) 
where k = 1 or 2 for the two components. W and K denote the stress-work density and 
kinetic energy density, respectively; σij is a component of Cauchy stress, ui a component 
of displacement (accordingly, ∂ui/∂xk is an element of displacement gradient), nk is a 
component of the unit normal vector to the near-field J-integral contour Γc, ρ is density, 
and repeated indices i and j are summed. For 2D problems, the Γc contour is most 
conveniently drawn along background grid mesh lines near the crack tip (Guo and Nairn 
(2004)). For 3D problems, the J-integral is calculated at each crack-front node with near-
field integral contour (Γc) being a circular section of a short cylinder on an x1-x2 plane in 
crack-tip local coordinates with the origin located at the crack front node and a radius of 
r, as shown in Figure 2. Here x2 coincides with the direction of the normal to the crack 
plane at the node, x3 (which is the thickness direction of the cylinder) is tangent to the 
crack front, and x1 points in the direction of bi-normal at that position (Guo and Nairn 
(2006)). The second term is an integral over the volume contained by Γc. It is zero for 
quasi-static problems but is needed to provide path-independent results in dynamic 
problems (Nishioka (1995)). In MPM, the second term can be found by using the material 
points within the contour as numerical integration points (Guo and Nairn (2004)). 
Once the dynamic J-integral is calculated, it can be converted into mode I and mode II 
crack tip stress intensity factors — KI and KII. (these first calculations were for problems 
with little or no mode III and therefore ignores KIII). For linear elastic, isotropic materials, 
the formulae are given by (Nishioka (1995)): 

KI = �I

s
2µJ1�II

AI(�2I�II + �2II�I)  (14) 

KII = �II

s
2µJ1�I

AII(�2I�II + �2II�I)  (15) 

where J1 is the first component of dynamic J-integral vector in crack-front coordinates. It 
equals the total strain energy release rate for elastic materials. µ is the shear modulus and 
δI and δII denote crack opening and shearing displacements near the crack tip. βI, βII, AI, 
and AII are parameters related to crack propagating velocity C. They are given by: 

�I =
p
1� C2/C2

s and �II =
q

1� C2/C2
d  (16) 
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AI =
�I(1� �2

II)

4�I�II � (1 + �2
II)

2
and AII =

�II(1� �2
II)

4�I�II � (1 + �2
II)

2
 (17) 

where Cs and Cd are the shear and dilatational wave speeds: 

C2
s =

µ

⇢
and C2

d =

✓
+ 1

� 1

◆
µ

⇢ (18) 

where κ = (3-ν)/(1+ν) for 3D or 2D plane stress, κ = 3-4ν for 2D plane strain, and ν is 
Poisson’s ratio. For slow crack growth, the calculations can use C = 0, βI = βII = 1 and AI 
= AII = (κ+1)/4. This slow limit applies well unless the crack speeds get very close to 
wave speed of the material. 

2.3 Modeling of Crack Propagation 

2.3.1 Crack propagation criteria 

Because the effect of the tearing mode stress intensity (KIII) on crack propagation 
direction in general 3D mixed-mode loading is not well understood, we neglect the effect 
of mode III stress intensity, and assume that only modes I and II affect the direction of 
crack propagation (it could be added in the future, when needed). It is common to find 
that KIII is small compared to KI or KII in many real-world problems, and examples 
chosen here all have negligible mode III component. As a result, a crack-front node will 
propagate in the x1-x2 plane in the crack-front local coordinates at that node. In order to 
perform crack propagation analysis, we need to predict on what conditions the crack will 
propagate, and the propagation direction for the crack under mixed-mode loading, where 
mixed-mode ratio is α = KI/KII. Several criteria have been proposed, and the following 
two are widely used: (1) the maximum hoop (or principal) stress criterion proposed by 
Erdogan and Sih (1963); (2) the minimum strain energy density criterion presented by 
Sih (1972, 1974). 
The maximum hoop stress criterion (Erdogan and Sih (1963)) states that the crack will 
propagate in the direction normal to the maximum principal stress when the equivalent 
stress intensity factor reaches a critical value, KIc, i.e., when 

KI cos
3 ✓c
2

+ 3KII cos
✓c
2

sin

✓c
2

� KIc (19) 
where θc is angle for the direction with the maximum principal stress. It is given by: 

✓c = 2 tan�1

 
↵±

p
↵2 + 8

4

!

 (20) 
where we take the positive sign for KII ≤ 0, and the negative sign otherwise. 
The minimum strain energy criterion (Sih (1972, 1974)) assumes that the crack 
propagates in the direction along which the strain energy density is minimum when the 
equivalent stress intensity reaches the critical value KIc, i.e., when 
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s
a11K2

I + 2a12KIKII + a22K2
II

2(� 1)
� KIc

 (21) 

where 

a11 = (1 + cos ✓c)(� cos ✓c),       a12 = sin ✓c(2 cos ✓c � + 1) (22) 

↵22 = (+ 1)(1� cos ✓c) + (1 + cos ✓c)(3 cos ✓c � 1) (23) 

where θc is the direction along which the stain energy density is minimum. It is found by 
numerically solving: 

(� 1) sin(✓c � 2 tan�1 ↵)� 2 sin
�
2(✓c � tan�1 ↵)

�
� sin 2✓c = 0 (24) 

Note that the two propagation direction criteria (Eqs. (20) and (24)) give nearly identical 
functions for θc as a function of α, which makes it impossible to prefer one over the other 
by comparison to experimental observations of propagation direction with typical 
uncertainties in measuring θc. 

2.3.2 Crack evolution algorithms 

In dynamic fracture analysis within MPM, we calculate dynamic stress intensity factors 
(KI and KII) through dynamic J-integral at crack-front nodes in crack-front local 
coordinates. These values are compared to a material critical value (using Eq. (19) or 
(21)) to predict whether or not the crack should propagate. If it propagates, Eq. (20) or 
(24) are used to determine the direction of propagation. Propagation in 2D involves 
adding a new crack particle in the calculated direction at a distance of less than a 
background cell (we typically extend it half a grid cell length). The new particle becomes 
the new crack tip. The situation in 3D is more complex and described next. 
After propagating 3D crack-front nodes, we need to build additional crack elements to 
represent the new crack growth. Figure 3 illustrates the scheme used for 3D MPM crack 
propagation analysis, where A through G are assumed to be the crack-front nodes before 
crack propagation, and B' through G' are the new positions of the nodes that result from 
propagation. If only one end of a crack segment propagates (such as segment AB), a 
single new crack surface element will be created (such as ABB'). If both ends of a 
segment propagate (such as segment BC), then four new crack surface elements are 
created (such as the four elements within BCC'B'). If a new crack-front segment becomes 
too long after propagation, say two times longer than the initial length, the segment will 
be broken into two, and five new crack elements will be created (such as five elements 
within CDD'C' with added point P1 along the long segment in the new crack front). If a 
crack-front segment becomes too short after propagation, say less than 25% of the initial 
length, the segment will be shrunk into a point, and only one new crack element will be 
created (such as E'F' combining to P2). This adaptive crack-front discretization procedure 
is needed to simulate curved crack fronts and to assure computational accuracy. 
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2.3.3 Interaction between crack plane and material boundary 

Special treatment is needed when crack propagation interacts with the boundary of an 
object. For example, Fig. 4 shows a crack front (solid blue lines) propagating within a 
cross section of a material where the dashed lines represent the real material boundaries. 
After increments of propagation (the solid blue lines are the crack fronts at increments of 
time that move from bottom to top and toward both sides). In 2D crack growth, when a 
crack tip reaches the boundary its’ propagation stops. But, in 3D, only part of the front 
may reach a boundary while the rest should continue to propagate. 3D crack propagation 
methods have to deal with these boundary interactions. 
In MPM, a material body is discretized into a set of particles. Although this discretization 
does not explicitly track locations of boundaries, we can determine them approximately 
along the grid lines with the aid of the gradient of extrapolated nodal volume. We call 
these approximate boundaries the MPM material boundaries, resulting in boundaries such 
as the dotted red lines in Fig. 4. At each time step, if a newly generated crack-front 
reaches the MPM material boundaries, it will get trimmed at the MPM material 
boundaries, as shown in Figure 4. If both ends of a crack-front segment are at or outside 
the MPM material boundary, that segment is beyond the material, such as segments AB 
and BC. Such segments will be eliminated as a crack-front, which means they can no 
longer propagate. It is the 3D analogy of 2D model that stops all propagation when a 
crack tip reaches the edge, but now only a portion of the crack front stops propagating. 

3 Numerical Crack Propagation Examples 

Prior papers have used MPM for 2D crack propagation (e.g., Nairn (2007, 2015, 2016); 
Bardenhagen, Nairn, and Lu (2011); Aimene and Nairn (2014, 2016)). This section 
supplements 2D results by direct comparison to FEM and experiments. It also adds, for 
the first time, two examples of 3D crack propagation using MPM. 

3.1 Crack propagation length versus time 

A three-point bending specimen subjected to central impact was modeled (see Fig. 5).  
This problem was experimentally investigated, and crack length versus time was 
measured by Nishioka et al. (2001). The specimen was made of PMMA, and the 
following material properties were used in the analysis: modulus E = 2.94 GPa, Poisson’s 
ratio ν = 0.3, density ρ = 1190 kg/m3, and fracture toughness KIc = 1.2 MPa√m (adjusted 
to match experiments). The dimensions of the specimen were as follows: span 2l = 400 
mm, height h = 100 mm, thickness = 10 mm, and the initial crack length a0 = 50 mm. A 
stiff, 5.05 kg drop weight (modeled with Ew = 100 GPa and νw = 0.25) impacted the 
specimen’s middle with the velocity of 5 m/s. The geometry of the drop weight was 
estimated from images in Nishioka et al. (2001) with its density adjusted to give proper 
final weight (the full drop weight details were not available). Because the drop weight 
mass was 10 times the beam mass, it moved at nearly constant velocity (<10% reduction 
during the impact event). The 2D calculations used plane strain conditions. The J integral 
calculations used both terms in Eq. (13). As expected, due to specimen symmetry, the 
crack propagated along the initial direction as self-similar crack growth. 
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The results for crack length versus time predicted by MPM using the minimum strain 
energy criterion with various cell sizes (c = 1, 2, and 4 mm) are plotted in Figure 6 and 
compared to experimentally measured results. The results were nearly identical (and 
hence converged) for all cell sizes. Thus, not only is remeshing not needed, but also 
MPM crack calculations converge well. The largest cell size (c = 4 mm), however, 
showed discrete jumps caused by each increment in crack length being half a cell length 
or 2 mm. The results for cell sizes of 1 and 2 mm were smoother. The calculations were 
very fast (from 2 sec for 4 mm cells to 90 sec for 1 mm cells on a desktop computer with 
a 2.7 GHz 12-Core Intel Xeon E5 processor). The MPM simulations and experiments 
agreed well. Perhaps the MPM results had slightly faster crack growth at later times, 
which could be due to dynamic changes in stress intensity factor. According to Eq. (14), 
KI decreases at higher crack growth rates, which could cause propagation to slow, but 
these simulations did not implement that adjustment. Because the maximum simulated 
(and experimental) crack velocity was about 450 m/s and Cd = 1240 m/s for PMMA, this 
refinement would only change KI by 7% at most. The slight discrepancies are more likely 
caused by details about the impactor or the contact conditions on bottom edge of the 
beam; these effects could be modeled with more information on the experimental 
arrangement. The corresponding results using the maximum hoop stress criterion were 
identical (and therefore not shown).  

3.2 Two-dimensional crack propagation path 

The same three-point bending specimen was modeled to simulate mixed-mode crack 
propagation path caused by the drop weight impacting off the center of the specimen, as 
shown in Figure 7. The dimensions and material properties of the specimen were the 
same in section 3.1. The loading eccentricity, e/l, was 0.1. Due to asymmetry of the 
specimen, the crack tip is loaded under mixed-mode conditions, which is expected to lead 
to a change in crack direction during crack propagation. This specimen was studied 
experimentally and also simulated with the finite element method (FEM) by Nishioka et 
al. (2001). 
Crack paths predicted by MPM simulations with 1 mm cells using either the maximum 
hoop stress (“mh”) or minimum strain energy (“mse”) criterion are shown in Fig. 8 where 
they are compared to experimental results and two alternate FEM predictions (Nishioka 
et al. (2001)). The FEM predictions used either the maximum hoop stress criterion 
(“mh”) or a local symmetry criterion based on the direction where KII = 0. The 
experimental and numerical results are for total crack growth at t = 210 µs after the 
impact. All methods, including both MPM and FEM simulations, agreed reasonably well 
with experimental results; the crack paths are within 2 mm of experimental results. The 
maximum hoop stress criterion worked best for these experiments, with MPM slightly 
improved over FEM (especially in the beginning). The KII = 0 criterion by FEM had the 
worst agreement. The MPM results were fast (about 80 sec on desktop computer with a 
2.7 GHz 12-Core Intel Xeon E5 processor) and did not need to use remeshing that was 
required for FEM results. 
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3.3 Three-dimensional dynamic crack propagation 

Three-dimensional (3D) dynamic crack propagation simulation is essentially an 
unexplored area, with very few reports available (Nishioka and Stan (2003), Krysl and 
Belytschko (1999)). The next two examples are used to demonstrate the capabilities of 
MPM to simulate full 3D, mixed-mode crack propagation. As mentioned previously, a 
crack plane in MPM is treated as an independent entity, not connected geometrically to 
the material body or background grid. Therefore, the initial mesh can be used throughout 
the whole process of crack propagation, and no remeshing is needed, which makes it 
possible to model full 3D, mixed-mode crack propagation in arbitrary directions. 
The first 3D example simulated crack propagation process far an inclined corner crack (a 
quarter penny-shaped crack) in a square rod subjected to step loading (s = 400 MPa), see 
the “Initial” condition in Fig. 9. The length of the specimen was 100 mm, and the cross 
section of the specimen was 50´50 mm. The angle between the load direction and the 
initial crack plane was 60o. The origin of the corner crack was located on a generator of 
the specimen, and the center of the crack plane crossed the middle cross-section of the 
specimen. The radius of the initial corner crack was 18.475 mm. The material properties 
used in the analysis were:  modulus E = 200 GPa, Poisson’s ratio ν = 0.298, density ρ = 
7900 kg/m3, and fracture toughness KIc = 20 MPa√m. The J integral calculations used 
only the first term in Eq. (13). This change was done for efficiency (i.e., to avoid 
searching for material points within the contour) when needing all the extra J integral 
calculations compared to 2D problems. Previous results have shown that the second term 
is small when the contour is within a few cells of the crack front (Guo and Nairn (2004)). 
Crack patterns at different time instants simulated by MPM are shown in Figure 9 with 
the last frame being when the entire crack front has reached the specimen edge. It can be 
seen that the crack pattern changed suddenly from mixed-mode to mode I dominated type 
after it starts to propagate. The crack front contour length grew in length during the first 
stage of propagation, but then got shorter and shorter after it reached the diagonal of the 
cross section of the specimen. The proposed method for dealing with crack front 
propagation and interactions with material boundaries worked well throughout the 
propagation process. In particular, the method correctly interacted with edges and was 
able to propagate through to complete failure where the entire front had reached a 
specimen edge. 
The second 3D example was a thin, hollow tube with an inclined, through-the-wall crack 
subjected to step tension (s = 400 MPa), as shown in the initial condition of Figure 10.  
The length of the tube was 300 mm and outer the radius of the tube was R = 45 mm. The 
wall thickness was t = 10 mm. The angle between the crack plane and the loading 
direction was 450. The through-the-wall crack plane was centrally located along the 
length direction of the tube with a crack length of 14.142 mm. The material properties 
used in the analysis were the same as those for the square rod. 
The initial crack and subsequent crack propagation patterns at different time increments 
are shown in Fig. 10. Both ends of the inclined crack turned quickly from the mixed-
mode to mode I propagation and then continued to propagate around the entire 
circumference of the tube. The two cracks did not meet because they started from offset 
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crack tips. This example demonstrated the robust capability of this 3D MPM crack 
propagation method to interact with materials boundaries while still propagating within 
the material. 
The above two examples of full 3D, mixed-mode dynamic crack propagation were not 
compared to experiments because none are available (Nishioka and Stan (2003)). One 
challenge of experiments is how to map crack plane surfaces within opaque materials. 
The modeling results, however, are giving expected results (crack turning to mode I 
conditions) and robustly modeling crack propagation through to complete failure and 
separation (had the simulations continued) along with stable interactions with edges. 

4 Conclusions 

This paper presented the principles and algorithms of dynamic crack propagation 
simulations within the material point method (MPM). The two-dimensional crack 
propagation summarized and expanded on some previous results and included new 
comparisons to experiments and FEM. The full three-dimensional, mixed-mode crack 
propagation was described and demonstrated for the first time. MPM exhibits the 
flexibility of meshless methods in crack propagation simulation due to the fact that the 
crack plane is treated as an independent geometrical entity. The crack is not restrained by 
the background grid and is able to follow any arbitrary path dictated by the crack tip 
stress state. Furthermore, the initial grid can be used repeatedly throughout the whole 
process of crack propagation, and no remeshing is needed. These features are advantages 
of MPM compared to the typical and widely used mesh methods such as the finite 
element method (FEM) or the boundary element method (BEM). This paper also 
described an adaptive crack plane scheme for crack-front division, and the algorithms to 
interact and trim the crack plane at the material boundaries. The applications of the 
methodology to several typical problems have shown that MPM is a reliable and 
powerful approach to simulate dynamic crack propagation. The convergence in terms of 
background cell size is efficient. The methods were shown to work from relative simple 
two-dimensional problems to very complicated three-dimensional, mixed-mode 
problems. 
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Figure 1: Discretization of a material body and a crack. The solid circles represent 
material points. The hollow circles are massless particles that define the path of the 2D 

crack. The background grid is used for solving MPM equations of motion. 



 18 

 
 

 

X1 

X3 

X2 

€ 

Γε
 

x1 

x2 

x3 

r  

crack front 

    crack plane 

 

c 

(a) (b) 

x1 

x2 

c 

 p 

  

€ 

r 
n  

€ 

Γε  

integration points 

r 

 V  

 
 

Figure 2: Dynamic J-integral calculation scheme for 3D crack problems: (a) crack plane 
discretization; (b) J-integral contour (Γc), which is a circle on x1-x2 plane with the origin 

located at crack front node with a radius of r.  

 
 

 

Figure 3: Illustration of building new crack plane elements after crack propagation 
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Figure 4: Illustration showing interaction between crack front and material boundaries 
during crack propagation, where dashed lines are real material boundaries, dotted lines 

are MPM material boundaries on the grid, and solid lines are crack fronts showing 
increments in crack propagation. 

 
 

 

Figure 5: A three-point bending specimen subjected to central impact. 
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Figure 6: Comparison of the results of crack length versus time predicted by MPM with 
various mesh sizes (cell size c=1, 2, and 4 mm) to experimental results. 

 
 
 

 
Figure 7. A three-point bending specimen subjected to impact with the eccentricity of 
e/l=0.1. 
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Figure 8: Comparison of crack growth paths simulated by the MPM and FEM using 
maximum hoop stress (“mh”), minimum strain energy (“mse”), and local symmetry 

condition (“KII=0”) criteria to the experimentally measured path. The experiments and 
simulations were for t = 210 µs after the impact. The inset shows experimental snap shot 
from Nishioka et al. (2001). The black circle is a caustic used to monitor crack tip stress 

state. 
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Figure 9: Crack patterns at different time increments simulated by MPM for an inclined 
corner crack in a square rod subjected to step tension. 
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Figure 10: Crack patterns at different time increments simulated by MPM for an 
inclined, through-the-wall crack in a hollow tube subjected to step tension. 
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