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A variational mechanics analysis of the stresses around breaks
in embedded fibers

John A. Nairn

Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA

Embedded single-fiber tests are often used to characterize the fiber/matrix interface, but their in-

terpretation is usually limited by reliance on the qualitative view of the stresses provided by shear-lag

analyses. This paper describes a new, three-dimensional, axisymmetric solution for the stresses around

breaks in embedded fibers. The new solution is obtained using variational mechanics. It obeys equilibrium

and traction boundary conditions exactly, obeys compatibility approximately, includes all components of

the stresses, accounts for interacting fiber breaks, and includes residual thermal stresses. We apply the

stress analysis to the single-fiber fragmentation test. In some sample calculations, we plot all components

of stress at the fiber/matrix interface and give predictions for an “ideal” single-fiber fragmentation test.

The stress analysis technique is readily adaptable to new problems such as the single-fiber pull-out test,

the microdrop debond test, the description of interfacial fracture or yielding, and the effect of interfacial

friction.

1. Introduction

Without question, the fiber/matrix interface plays a role in determining composite properties. The

relative importance of the interface is low or high depending on the specific property of interest. A complete

understanding of composite materials can only follow from a thorough understanding of interfacial properties.

To study the fiber/matrix interface, many researchers rely on embedded single-fiber tests. These tests

include single-fiber fragmentation tests (Wadsworth and Spilling, 1968; Fraser, Ancker and DiBenedetto,

1975; Oshawa, Nakayama, Miwa and Hesegawa, 1978; Fraser, Ancker, DiBenedetto and Elbirli, 1983; Drzal,

Rich, Camping and Park, 1980; Drzal, Rich and Lloyd, 1982; Drzal, Rich, Koenig and Lloyd, 1983; Drzal,

Rich and Koenig, 1985; Rich and Drzal, 1986; Bascom and Jensen, 1986; Folkes and Wong, 1987; DiLandro

and Pegoraro, 1987; DiLandro, DiBenedetto and Groeger, 1988; DiBenedetto and Lex, 1989; Netravali,

Schwartz and Phoenix, 1989), fiber pull-out tests (Piggot, Chua and Andison, 1985; Piggot, 1987; Penn,

Bystry and Marchionni, 1983), microindentation tests (Mandell, Chen and McGarry, 1980), and microdrop

debond tests (Gaur and Miller, 1989). The results of these various tests are significant, but the quantitative

interpretation of the results is limited by the near universal use of simplistic stress analyses such as shear-lag

models (Cox, 1952; Rosen, 1964; Amirbayat and Hearle, 1969) or uniform shear stress assumptions (Kelly

and Tyson, 1963). This paper introduces a new approach to the analysis of stresses in embedded fibers. The

new analysis uses variational mechanics, achieves a closed-form solution, and is shown to be accurate.
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Fig. 1: The single-fiber fragmentation test. A: Under load σ0, the single fiber develops multiple breaks which
partitions the fiber into multiple fragments. B: A single fragment of length l showing a fiber of radius r1 surrounded
by a matrix cylinder of radius r2. C: Force balance in a differential element of the fiber fragment.

Most analyses of stress transfer between a single fiber and a matrix can be classified as elasticity analyses,

typically based on shear-lag (Cox, 1952; Rosen, 1964) or shear-lag equivalent (Amirbayat and Hearle, 1969)

assumptions, or as elastic-plastic analyses, typically based on a constant interfacial shear stresses in regions

where the interface has failed (Kelly and Tyson, 1963). The shear-lag elasticity analyses have their origins

in the work of Cox (1952). As shown in Fig. 1C, the resultant shear force, S, that the matrix exerts on the

fiber is

S = 2πr1τ =
dP

dz
(1)

where τ is the interfacial shear stress. Cox (1952) assumed that the shear force, S, is proportional to the

difference between the displacement in the matrix, u, and the displacement in the matrix that would exist

if the fiber were absent, v, or that S = H(u − v). The resulting simple equation can be solved to give the

tensile stress in the isolated fiber fragment of length l (See Fig. 1B). The result when the stresses at the fiber

ends (z = ±l/2) are zero is (Cox, 1952)

σf = EAε

[
1− coshβz

cosh βl
2

]
(2)

Expressions of identical form have subsequently been derived by others (Rosen, 1964; Amirbayat and Hearle,

1969). The interfacial shear stress is

τ = −1

2
EAεr1β

sinhβz

cosh βl
2

(3)

In these equations, EA is the fiber axial modulus, ε is the applied strain, r1 is the fiber radius and

β =

√
H

πr21EA
(4)

A typical plot of the fiber tensile stress and the interfacial shear stress is in Fig. 2A. The tensile stress is zero

at the fiber ends and builds to a constant value approaching EAε near the center of the fragment. Stress
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Fig. 2: Tensile stresses in the fiber (σf ) and the shear stresses at the fiber/matrix interface (τ ) as calculated by A:
shear-lag analysis and B: constant shear stress analysis. Also shown in A is the form of the “exact” solution for the
interfacial shear stresses.

is transferred from the matrix to the fiber by shear at the interface. The shear stress is a maximum at the

fiber ends and decays towards zero at the center of the fragment.

There are limitations to the “simplistic” shear-lag analysis. First, the radial and hoop stresses are not

determined by this one-dimensional analysis. These ignored stresses are important because they affect stress

transfer as well as interfacial failure. In particular, the radial stress at the interface is important because

differential thermal shrinkage between the fiber and the matrix typically leads to a shrink fit or radial

compressive stresses at the fiber/matrix interface (Nairn, 1985). A compressive stress promotes physical

adhesion and certainly plays a significant role in the performance of the interface. A second limitation is the

necessity of determining the shear interaction parameter, H. Cox (1952) proposes that in the limit of high

fiber volume fraction that

H =
2πGm
r2
r1
− 1
≈ 2πGm

ln r2
r1

(5)

where Gm is the matrix shear modulus, and r2 is the average separation between adjacent fibers. Embedded

single-fiber tests are inherently low fiber volume fraction tests and Eq. (5) may poorly estimate H.

A third limitation with the shear-lag analysis is that it produces an inadmissible stress state, or a stress

state that does not obey stress equilibrium (Whitney and Drzal, 1987). Consider analysis of the single-fiber

fragmentation test in which the fiber contains multiple breaks (see Fig. 1A). The shear-lag solution predicts

the maximum shear stress in any fragment to be at the fiber breaks. The “exact” solution, however, will

have zero interfacial stress at the fiber breaks; zero shear is required by symmetry. Figure 2A compares the

form of the “exact” solution to the shear-lag solution and shows that the shear-lag analysis misrepresents

the interfacial shear stress, especially near the fiber breaks. We therefore question any conclusions about

interfacial failure that are based on shear stress induced failure and that rely on the form of the shear stresses

given by a shear-lag analysis

One way to avoid some limitations of the shear-lag analysis is to forget about the details of the interfacial

shear stresses that lead to interfacial failure and only consider the post-failure stresses. Adopting this

approach, Kelly and Tyson (1963) assumed the post-failure interfacial shear stress to be a constant, τy,

characteristic of the strength of the fiber/matrix interface. Using this assumption and Eq. (1), the tensile

stress in the fiber near a fiber break at z = −l/2 is

σf =
2τy
r1

(
z +

l

2

)
(6)
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The Kelly and Tyson approach is elastic-plastic in that the fiber stress will increase linearly (according to

Eq. (6)) until it reaches EAε or the tensile stress that would exist in the absence of the fiber break. After

reaching EAε, the tensile stress is assumed to remain constant. A similar analysis applies to the stresses

near the fiber end at z = l/2. The interfacial shear stress and the fiber tensile stress by this model are shown

in Fig. 2B.

The constant shear-stress approach also has limitations. First, this one-dimensional approach still does

not define the hoop or radial stresses and therefore again ignores the important interfacial radial stress.

In the post-failure state, a large contribution to τy might come from friction and the amount of frictional

force will depend on the magnitude of the radial compressive stresses. Second, this approach only seeks to

describe the stresses in the post-failure state. As such, it does not help in understanding interfacial failure

mechanisms.

There have been a few finite element analyses of stresses around breaks in embedded single fibers

(Carrara and McGarry, 1968; Broutman and Agarwal, 1974) but there has been surprisingly little effort at

achieving analytical methods that improve on the shear-lag methods. One significant result is described by

Whitney and Drzal (1987). They use a stress function approach that guarantees an admissible solution. Their

results, however, have two limitations. First, their choice of a stress function was guided by the previously

discussed shear-lag solutions. There is unfortunately no way to judge the accuracy of this approach. A

better approach, as done in this paper, is to choose a stress function that minimizes complementary energy.

By the principle of variational mechanics this approach assures us of finding the most accurate solution for

a given set of assumptions. Second, their analysis only deals with an isolated fiber break. In real single-fiber

fragmentation tests, the breaks interact and the stress analysis should include this effect.

The goal of this paper is to improve the analysis and interpretation of embedded single fiber tests.

To avoid the limitations of the shear-lag model or the Whitney and Drzal (1987) approach, and to avoid

the burdens of purely numerical solutions, we present a new closed-form, three-dimensional, axisymmetric

solution for the stresses around breaks in an embedded single fiber. We specifically discuss the single-fiber

fragmentation test (Fig. 1A) which can be viewed as a two phase structure containing a matrix phase and

a fiber phase. Upon loading, the brittle fiber phase fails in a roughly periodic array of cracks. There is a

close analogy between this structure and symmetric cross-ply laminates of generic layup [0m/90n/0m]. The

cross-ply laminate can also be viewed as a two phase structure consisting of a 0◦ ply phase and a 90◦ ply

phase. Upon loading, the brittle 90◦ ply phase fails in a nearly periodic array of cracks (Hahn and Tsai,

1974; Garret and Bailey, 1977; Highsmith and Reifsnider, 1982). Because of the analogy between failure

of embedded single fibers and cross-ply laminates, we can adapt some of the stress analysis techniques for

cross-ply laminates to the analysis of stresses in embedded single fibers. The most rigorous, closed-form

analysis of stresses in cross-ply laminates is the recent variational mechanics analysis developed by Hashin

(1985; 1986) that has been extended to cover thermal stresses and the analysis of 90◦ ply cracking (Nairn,

1989; Liu and Nairn, 1990; Liu and Nairn, 1992). The variational mechanics analysis for embedded single

fibers parallels Hashin’s (1985; 1986) and related analyses (Nairn, 1989; Liu and Nairn, 1990; Liu and Nairn,

1992). The major difference is that the cross-ply laminate analysis is a two-dimensional analysis and the

embedded single fiber analysis is a three-dimensional, axisymmetric analysis.

This new variational mechanics analysis has many features. The analysis begins with an admissible stress

state that obeys equilibrium and traction boundary conditions exactly. An approximate, but demonstrably
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Fig. 3: The two-cylinder model used for the axisymmetric stress analysis. A single fragment of length l showing the
axial and radial coordinates in both dimensioned and dimensionless forms. B: A cross-section of the two- cylinder
model showing the fiber of radius r1 and the matrix of radius r2.

accurate form of the stress state is found by minimizing the complementary energy. In the final result, all

stresses are included and the solution can be used for any fiber volume fraction. We analyze an entire fiber

fragment and thus the solution accounts for interacting fiber breaks. Finally, the solution includes residual

thermal stresses and therefore can be used to assess the role of radial compressive stresses on interfacial

properties. The next section describes the variational mechanics analysis of the single-fiber fragmentation

specimen for a transversely isotropic fiber in an isotropic matrix of any volume fraction. The analysis assumes

the fiber and the matrix are linear elastic and that the interfacial adhesion is perfect. In the results section, we

plot the stresses at the fiber/matrix interface and give predictions for an “ideal” single-fiber fragmentation

test. The analysis presented in this paper is only intended as a starting point for the analysis of single

embedded fiber tests. The discussion section describes how the analysis can include imperfect adhesion,

account for interfacial friction effects, and handle other single-fiber tests such as microdrop debond tests

(Gaur and Miller, 1989).

2. Stress Analysis

2.1. The Stress Function and an Admissible Stress State.

We consider the two concentric cylinders in Fig. 3. The inner solid cylinder is the fiber and the outer

hollow cylinder is the surrounding matrix. The radii of the two cylinders are r1 and r2. During a single-fiber

fragmentation test, the central cylinder will fracture and become partitioned into a series of fragments. The

fiber breaks do not disturb the axisymmetric nature of the stresses and we thus conduct a three-dimensional,

axisymmetric stress analysis of the single fiber fragment of length l (Fig. 3A).

For axially symmetric stress states, the shear stresses τrθ and τzθ are zero and we only need to consider

the remaining stresses — σrr, σθθ, σzz, and τrz. The equations of equilibrium for the four remaining stresses
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reduce to (Timoshenko and Goodier, 1970)

∂σrr
∂r

+
∂τrz
∂z

+
σrr − σθθ

r
= 0 (7)

∂τrz
∂r

+
∂σzz
∂z

+
τrz
r

= 0 (8)

We rewrite τrz and σrr using two functions of r and z, Ω and Ψ, as

τrz = − ∂2Ψ

∂r∂z
(9)

σrr =
1

r

∂Ω

∂r
+
∂2Ψ

∂z2
(10)

Integrating the equations of equilibrium we find

σθθ =
∂2Ω

∂r2
+
∂2Ψ

∂z2
(11)

σzz =
∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
(12)

We introduce one and only one assumption — we assume that σzz within each cylinder depends only

on the z coordinate. All such stress states are recovered by selecting

Ψ(r, z) =
r2ψ0

4
+ ψ1 ln r + ψ2 (13)

where ψ0, ψ1, and ψ2 are arbitrary functions of z only. To get σrr and σθθ we need to know Ω which we find

using radial compatibility. In axially symmetric stress states (Timoshenko and Goodier, 1970)

εrr =
∂u

∂r
and εθθ =

u

r
(14)

which leads to the compatibility condition

εrr − εθθ
r

=
∂εθθ
∂r

(15)

When each cylinder is at least transversely isotropic with the axial direction along the cylinder axis and σzz

is independent of r, Eq. (15) reduces to

(1 + νT )
σrr − σθθ

r
=

∂

∂r
(σθθ − νTσrr) (16)

where νT = νrθ = νθr is the transverse Poisson’s ratio. In terms of Ω and Ψ, Eq. (16) is

∂

∂r

(
1

r

∂Ω

∂r
+
∂2Ω

∂r2
+ (1− νT )

∂2Ψ

∂z2

)
= 0 (17)

This equation is solved in the general sense by putting

Ω = −(1− νT )

[
r4

64
ψ′′0 +

r2 ln r

4
ψ′′1 +

r2

4
ψ′′2 +

r2

4
ψ3 + ψ4 ln r + ψ5

]
(18)
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where ψ3, ψ4, and ψ5 are three new arbitrary functions of z only. Using Ω, the general axially symmetric

stress state in which σzz is independent of r becomes

σzz = ψ0 (19)

τrz = −rψ
′
0

2
− ψ′1

r
(20)

σrr =
r2

16
ψ′′0 (3 + νT ) +

ψ′′1
4

(
2(1 + νT ) ln r + (1− νT )

)
+ ψ2 −

ψ4

r2
(21)

σθθ =
r2

16
ψ′′0 (1 + 3νT ) +

ψ′′1
4

(
2(1 + νT ) ln r − (1− νT )

)
+ ψ2 +

ψ4

r2
(22)

where ψ2 and ψ4 have been redefined. In terms of the previous functions ψ2 = ψ′′2 −
(1−νT )

2 (ψ′′1 + ψ′′2 + ψ3)

and ψ4 = (1− νT )ψ4.

We apply the general stress function to each cylinder separately. We denote the arbitrary functions of

z defined in the previous paragraph by ψi,j where i is 0, 1, 2, or 4 denoting the function number and j is 1

for the fiber cylinder or 2 for the matrix cylinder. In the fiber cylinder, the requirement for finite stresses at

r = 0 forces ψ4,1 = ψ′1,1 = ψ′′1,1 = 0. In the matrix cylinder we have boundary conditions

τrz,2(r2) = 0 (23)

σrr,2(r1) = σrr,1(r1) (24)

σrr,2(r2) = σedge (25)

where σedge is a constant applied radial stress. By force balance

V1σzz,1 + V2σzz,2 = σ0 (26)

where σ0 is the total applied axial stress and V1 and V2 = 1 − V1 are the volume fractions of the fiber and

matrix, respectively. From these conditions, the stresses in the fiber become

σzz,1 = ψ (27)

τrz,1 = −ξψ
′

2
(28)

σrr,1 =
ψ′′

16

(
ξ2(3 + νT ) + νm − νT +

2(1 + νm) lnV1
V2

)
− ψ4,2V2

r22V1
+ σedge (29)

σθθ,1 =
ψ′′

16

(
ξ2(1 + 3νT ) + νm − νT +

2(1 + νm) lnV1
V2

)
− ψ4,2V2

r22V1
+ σedge (30)

and the stresses in the matrix become

σzz,2 =
σ0
V2
− V1ψ

V2
(31)

τrz,2 =
ψ′V1
2V2

(
ξ − 1

ξV1

)
(32)

σrr,2 =
ψ′′

16V2

[
(3 + νm) + 2(1 + νm) ln ξ2V1 − ξ2V1(3 + νm)

]
+
ψ4,2

r22

(
1− 1

ξ2V1

)
+ σedge (33)

σθθ,2 =
ψ′′

16V2

[
(5νm − 1) + 2(1 + νm) ln ξ2V1 − ξ2V1(1 + 3νm)

]
+
ψ4,2

r22

(
1 +

1

ξ2V1

)
+ σedge (34)
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In these equations ψ = ψ0,1, νm is the Poisson’s ratio of the isotropic matrix, and νT is the transverse

Poisson’s ratio of the fiber. The stresses have been put in a dimensionless form in which ξ = r
r1

and ψ and

ψ4,2 are functions of the dimensionless axial coordinate ζ = z
r1

.

We eliminate ψ4,2 by requiring radial displacement, u = rεθθ, to be continuous at the fiber matrix

interface. The resulting calculation yields

ψ4,2

r22
=
A1

A0

ψ′′

16
+
A2

A0
σedge +

A3

A0
ψ +

A4

A0
σ0 +

A5

A0
T (35)

where

A0 =
V2(1− νT )

V1ET
+

1− νm
Em

+
1 + νm
V1Em

(36)

A1 =

(
1− νT
ET

− 1− νm
Em

)
(1 + νm)

(
1 +

2 lnV1
V2

)
+

2(1− νm)

V2Em
(37)

A2 =
1− νT
ET

− 1− νm
Em

(38)

A3 = −
(
νA
EA

+
V1νm
V2Em

)
(39)

A4 =
νm
V2Em

(40)

A5 = αT − αm (41)

In these equations, EA and ET are the axial and transverse moduli of the fiber, Em is the modulus of the

matrix, νA = νzr = νzθ is the axial Poisson’s ratio of the fiber, νm is the Poisson’s ratio of the matrix

αT is the transverse thermal expansion coefficient of the fiber, αm is the thermal expansion coefficient of

the matrix, and T = Ts − T0 is the temperature difference between the specimen temperature, Ts, and the

stress-free temperature, T0.

We next make a general observation about these stresses which will lead us to a requirement for a third

cylinder. When a crack develops in the fiber, the stress σzz,1 and hence ψ at the crack are zero. From

Eq. (31) the tensile stress in the matrix will increase to σzz,2 = σ0/V2. By the assumptions inherent in

the stress state (i.e., σzz independent of r), this stress concentration in the matrix will exist near the crack

tip and continue unabated out to the edge of the matrix at r = r2. This behavior of the σzz stresses will

not cause serious errors when V1 is fairly large. When the fiber volume fraction gets small (e.g., fiber in an

infinite matrix), however, we can expect this enforced r independence to give poor results. More realistically,

we would expect that the stress concentration due to a fiber break will be felt only for some finite distance

into the matrix. If the effect of the fiber break is apparent for r ≤ rc where rc is some critical radius, then

the stresses in the matrix beyond rc should be the far-field stresses or the stresses in the matrix that exist

when the fiber has no breaks.

A major interest in embedded single-fiber tests is for fibers in an infinite matrix. When the matrix

is infinite, we account for the form of the stresses described in the previous paragraph by adding a third

cylinder of infinite radius. The stresses in the third cylinder are set to the far-field matrix stresses. We find

these far-field stresses using a two cylinder analysis that has an infinite radius matrix cylinder, a fiber with

no breaks, and σedge = 0. The calculation is given in Appendix 1. The stresses in the third cylinder or

far-field matrix cylinder simplify to:

σzz,3 = σapp (42)
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τrz,3 = 0 (43)

σrr,3 =
σ∞
ξ2

(44)

σθθ,3 = −σ∞
ξ2

(45)

where σapp is the total applied stress and σ∞ is the radial stress at ξ = 1. An explicit expression for σ∞ is

given in Appendix 1.

With the addition of a third cylinder, we must make changes in the previous two-cylinder model. The

two required changes relate to the axial and radial boundary conditions. First, the third cylinder applies

a radial stress on the inner two cylinders. This constant radial stress can easily be incorporated into the

two-cylinder model because we anticipated it by allowing a non-zero edge stress. From Eq. (44), we simply

set σedge = V1σ∞. Note that even in the presence of the third cylinder, we continue to reference volume

fractions to the two inner cylinders. Thus, V1 + V2 = 1 and V3 = ∞. Second, the third cylinder will

affect σ0. The appropriate value of σ0 is the one that causes the total axial displacement of the two inner

cylinders to match the total axial displacement of the third cylinder. σ0 is a function of the fragment aspect

ratio
(
ρ = l

2r1

)
and will be evaluated after we determine the stresses. For now, we indicate the functional

dependence of σ0 by writing it as σ0(ρ)

For subsequent calculation, it is useful to rewrite the stresses in the two inner cylinders in a ma-

trix form. The stress in cylinder i is given by [σi] = [Bi][ψ] where [σi] = (σrr,i, σθθ,i, σzz,i, τrz,i), [ψ] =

(σ0(ρ), T, ψ, ψ′, ψ′′, σ∞), and [Bi] is a matrix specific for each component. For the fiber cylinder:

[B1] =


−V2A4

V1A0
−V2A5

V1A0
−V2A3

V1A0
0 f1 V1

(
1− V2A2

V1A0

)
−V2A4

V1A0
−V2A5

V1A0
−V2A3

V1A0
0 f2 V1

(
1− V2A2

V1A0

)
0 0 1 0 0 0
0 0 0 − ξ2 0 0

 (46)

where

f1 =
1

16

(
ξ2(3 + νT ) + νm − νT +

2(1 + νm) lnV1
V2

− V2A1

V1A0

)
(47)

f2 =
1

16

(
ξ2(1 + 3νT ) + νm − νT +

2(1 + νm) lnV1
V2

− V2A1

V1A0

)
(48)

For the near-field matrix cylinder (cylinder 2):

[B2] =


A4

A0

(
1− 1

ξ2V1

)
A5

A0

(
1− 1

ξ2V1

)
A3

A0

(
1− 1

ξ2V1

)
0 f3 V1

[
1 + A2

A0

(
1− 1

ξ2V1

)]
A4

A0

(
1 + 1

ξ2V1

)
A5

A0

(
1 + 1

ξ2V1

)
A3

A0

(
1 + 1

ξ2V1

)
0 f4 V1

[
1 + A2

A0

(
1 + 1

ξ2V1

)]
1
V2

0 −V1

V2
0 0 0

0 0 0 V1

2V2

(
ξ − 1

ξV1

)
0 0


(49)

where

f3 =
1

16V2

[
(3 + νm)

(
1− ξ2V1

)
+ 2(1 + νm) ln ξ2V1 +

V2A1

A0

(
1− 1

ξ2V1

)]
(50)

f4 =
1

16V2

[
(1 + 3νm)

(
1− ξ2V1

)
− 2(1− νm) + 2(1 + νm) ln ξ2V1 +

V2A1

A0

(
1 +

1

ξ2V1

)]
(51)
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2.2. Complementary Energy Minimization

The three cylinder stress state is completely defined by one unknown function — ψ. The stress state is an

admissible stress state in that it obeys stress equilibrium, traction boundary conditions, and interface stress

continuity. By the principal of minimum complementary energy, the function ψ that produces the minimum

value for the complementary energy will give the best approximation to the stresses in an embedded single

fiber. For thermoelastic analyses, the complementary energy can be minimized by minimizing the functional

Γ given by

Γ =

∫
V

1

2
[σ][K][σ]dV +

∫
V

[σ] · [α]TdV −
∫
S1

[σ] · ûdS (52)

where [K] is the compliance tensor, [α] is the thermal expansion coefficient tensor, V is total volume, and S1

is that part of the specimen surface subjected to fixed displacement of û (Carlson, 1984). For the problems

discussed in this paper, S1 is null.

We evaluate Γ for the region between the two cracks located at z = ±l/2 (see Fig. 3A):

Γ =

3∑
i=1

∫ 2π

0

dθ

∫ rfi

r0i

rdr

∫ l
2

− l
2

dz

(
1

2
[ψ]T [Bi]

T [Ki][Bi][ψi] + T [αi] · [Bi][ψ]

)
(53)

where r0i and rfi are the initial and final radii of cylinder i. When each cylinder is at least orthotropic with

the symmetry axes of the orthotropy coincident with the axisymmetry, the symmetric compliance tensor is

[Ki] =


K

(i)
11 K

(i)
12 K

(i)
13 0

K
(i)
12 K

(i)
22 K

(i)
23 0

K
(i)
13 K

(i)
23 K

(i)
33 0

0 0 0 K
(i)
44

 (54)

and the thermal expansion coefficient tensor is

[αi] = (α
(i)
11 , α

(i)
22 , α

(i)
33 , 0) (55)

where the 1, 2, and 3 coordinates refer to r, θ, and z direction properties and the superscript (i) denotes

the properties in cylinder i. Because of axisymmetry, the θ integrals are trivially 2π. Doing the θ integrals,

collecting the r integrals, and recasting in dimensionless form results in

Γ = πr31

∫ ρ

−ρ
dζ
(
[ψ]T [C][ψ] + 2T [D][ψ]

)
(56)

where

[C] =

3∑
i=1

∫ ξfi

ξ0i

ξdξ[Bi]
T [Ki][Bi] (57)

[D] =

3∑
i=1

∫ ξfi

ξ0i

ξdξ[αi][Bi] (58)

The matrix [C] is 6 × 6 and the vector [D] is of length 6. The new dimensionless quantities are defined as

ξ0i = r0i
r1

and ξ0f =
r0f
r1
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In evaluating the symmetric [C] matrix and the [D] vector, C14, C24, C34, C45, C46, and D4 are obviously

zero. Some simple integrations reveal that C12, C23, C25, and C26 are also zero and that C22 = −D2.

Expanding Eq. (56) therefore results in

Γ = Γ0 + πr31

∫ ρ

−ρ
dζ
(
C33ψ

2 + 2C35ψψ
′′ + C55ψ

′′2 + C44ψ
′2 + 2(C13σ0(ρ) + C36σ∞ +D3T )ψ

+ 2(C15σ0(ρ) + C56σ∞ +D5T )ψ′′
) (59)

where Γ0 is a constant and will not enter the minimization procedure:

Γ0 = 2πρr31

(
C11σ0(ρ)2 + 2C16σ0(ρ)σ∞ + C66σ

2
∞ + 2TD1σ0(ρ) + 2D6Tσ∞ +D2T

2
)

(60)

The elements of the [C] matrix and the [D] vector all involve integrations over the dimensionless radial

coordinate ξ. The integrations can all be evaluated in closed form. When the fiber is transversely isotropic

with the unique axis along the fiber axis and the matrix is isotropic, the result of much tedious algebra

yields:

C33 =
1

2

(
1

EA
+

V1
V2Em

)
− V2A

2
3

V1A0
(61)

C35 =
1

16

[
A3

[
(1 + νm)

(
1 +

2 lnV1
V2

)
− V2A1

V1A0

]
− 2A4

]
(62)

C55 =
1

256

{
1− νT
ET

[
5 + 2νT

3
+ νm(2 + νm)

]
+

4A2(1 + νm)2 lnV1
V2

(
1 +

lnV1
V2

)
− V2A

2
1

V1A0

+
1− νm
Em

[
V 2
2 (1 + νm)(5 + 3νm)− 3V2(1 + νm)(3 + νm) + 6(5 + 3νm)

3V1V2
+

8(1 + νm) lnV1
V 2
2

]}
(63)

C44 =
1

16

[
1

GA
− 1

Gm

(
1 +

2

V2
+

2 lnV1
V 2
2

)]
(64)

C13 = − 1

2V2Em
− V2A3A4

V1A0
(65)

C36 = −V2A3A2

A0
− V1

(
νA
EA
− νm
Em

)
(66)

D3 = −V2A3

V1A0
[αT − αm] +

1

2
[αA − αm] (67)

where the new terms, GA and Gm, are the axial shear modulus of the fiber and the shear modulus of the

matrix, respectively. The constants not listed above are not required for the calculations in this paper.

We begin with a limiting solution that ignores end effects and therefore applies to the stresses far from

fiber breaks. Far from the fiber breaks the shear stresses will be zero which implies that ψ′ = ψ′′ = 0 which

further implies that ψ is a constant. The constant will depend on ρ and we denote it as ψ0(ρ). Γ is easily

evaluated to be

Γ = Γ0 + 2πr31ρ
[
C33ψ0(ρ)2 + +2(C13σ0(ρ) + C36σ∞ +D3T )ψ0(ρ)

]
(68)

Γ is minimized when

ψ0(ρ) = −C13σ0(ρ) + C36σ∞ +D3T

C33
(69)

Because the one assumption about σzz being independent of r is correct far from the ends, the value of ψ0(ρ)

should, and does, recover the exact solution for a two-cylinder model under axial stress σ0(ρ) and radial

stress V1σ∞ in which the fiber has no breaks (see Appendix 1).
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A special case of the limiting solution is for an intact fiber in an infinite matrix. For this case the stresses

in the near-field matrix must match the stresses in the far-field matrix. Defining

ψ∞ = lim
ρ→∞

ψ0(ρ) (70)

we require

σzz,2 = σapp =
σ0(∞)− V1ψ∞

V2
(71)

Solving for σ0(∞) and substituting into Eq. (69) results in

ψ∞ = −C13V2σapp + C36σ∞ +D3T

C33 + V1C13
(72)

Eq. (72) recovers the exact elasticity result in Appendix 1.

To find the stresses near the breaks in a fiber fragment of length l, we minimize Γ using the calculus of

variations. The Euler equation for ψ is

ψiv + pψ′′ + qψ = qψ0(ρ) (73)

where

p =
2C35 − C44

C55
q =

C33

C55
(74)

Because ψ0(ρ) is obviously a particular solution to the Euler equation, we can write the general solution as

ψ = ψ0(ρ)(1− φ) where φ is the solution to the homogeneous equation

φiv + pφ′′ + qφ = 0 (75)

The requirement that σzz,1(±l) = τrz,1(±l) = 0 or that the the fiber fracture surfaces are traction free leads

to the boundary conditions φ(±ρ) = 1 and φ′(±ρ) = 0. Eq. (75) and its boundary conditions are identical

to the equation and boundary conditions that appeared in the analysis of the stresses in cross-ply laminates

(Hashin, 1985; Hashin, 1986; Nairn, 1989). The solution extracted from Nairn (1989) is

φ =

β coshαζ
sinhαρ −

α cosh βζ
sinh βρ

β cothαρ− α cothβρ
(76)

where

α =

√
−p

2
+

√
p2

4
− q (77)

β =

√
−p

2
−
√
p2

4
− q (78)

This solution assumes that p2

4 − q > 0 which holds for the calculations in this paper. For completeness, the

solution when p2

4 − q < 0 is provided in Appendix 2.

Having determined the stresses we can find σ0(ρ) by equating total displacement of the near-field matrix

cylinder (cylinder 2) to the far-field matrix cylinder (cylinder 3). Integrating the strains we have∫ l
2

− l
2

εzz,3dz =

∫ l
2

− l
2

εzz,2dz (79)
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Inserting the stresses, noting that
∫ ρ
−ρ ψ

′′dζ = 0, and using the definition of ψ0(ρ) in Eq. (69), we quickly

achieve

σ0(ρ) =
σapp +

(
2νmV1

(
1 + A2

A0

)
+ 2V1EmC36C13(1−〈φ〉)

C33

)
σ∞ +

(
2νmA5

A0
+ 2V1EmD3C13(1−〈φ〉)

C33

)
T

1
V2
− 2νmA4

A0
− 2V1EmC2

13(1−〈φ〉)
C33

(80)

Eq. (80) requires evaluation of 〈φ〉 defined as

〈φ〉 =
1

2ρ

∫ ρ

−ρ
φdζ (81)

We could evaluate this term by integration of φ, but it is simpler to integrate Eq. (75) and rearrange to get

〈φ〉 = −φ
′′′(ρ)

ρq
=
χ(ρ)

ρq
(82)

where we have defined a new function

χ(ρ) = −φ′′′(ρ) = αβ(β2 − α2)
tanhαρ tanhβρ

β tanhβρ− α tanhαρ
(83)

In evaluating specific stresses we need to know the first and second derivatives of ψ. From Eq. (74),

ψ′ = −ψ0(ρ)φ′ and ψ′′ = −ψ0(ρ)φ′′ where

φ′ = αβ

sinhαζ
sinhαρ −

sinh βζ
sinh βρ

β cothαρ− α cothβρ
(84)

φ′′ = αβ

α coshαζ
sinhαρ −

β cosh βζ
sinh βρ

β cothαρ− α cothβρ
(85)

A special case of the above solution is the stress state around an isolated fiber break. We find these

stresses by taking the limit as ρ→∞. Taking this limit and redefining ζ such that the origin is at the crack

rather than midway between two cracks gives the following results:

ψ = ψ∞

[
1− 1

β − α
(
βe−αζ − αe−βζ

)]
(86)

ψ′ =
ψ∞αβ

β − α
(
e−αζ − e−βζ

)
(87)

ψ′′ = −ψ∞αβ
β − α

(
αe−αζ − βe−βζ

)
(88)
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Table 1

Typical mechanical properties for a carbon fiber and an epoxy. These properties are used for the sample calculations
in the Results section.

Property Carbon Fiber Epoxy Matrix

EA or Em (MPa) 220000 4300

ET (MPa) 14000

GA or Gm (MPa) 35000 1605
νA or νm 0.2 0.34

νT 0.25
αA or αm (ppm/◦C) -0.36 40.0

αT (ppm/◦C) 18.0

σmy (MPa) 100

σf,ult (MPa) 3100

Diameter (mm) 0.007

3. Results

The previous section described a closed-form solution for the stresses around breaks in embedded single

fibers. For a given applied stress, σapp, and temperature differential, T = Ts − T0, the complete stress state

is defined by the ψ function. Specific components of the stress are defined in terms of ψ and its derivatives

in Eqs. (46)–(51) and Eqs. (42)–(45). The required constants σ0(ρ), ψ0(ρ), and σ∞ are defined in Eq. (80),

Eq. (69), and Eq. (A4) in Appendix 1, respectively.

For a sample stress state, we consider a typical carbon fiber fragment with a length of 10 fiber diameters

in an epoxy matrix. We use the fiber and matrix properties listed in Table I and arbitrarily choose σ0 =

25 MPa and T = −125◦C. Finally, we need to select the radius of the inner two cylinders or, in other words,

a value for V2 — the volume fracture of the near-field matrix cylinder. We imagine at least three rational

models for selecting V2:

1. Minimum Complementary Energy Model: select V2 to minimize the total complementary energy.

Unfortunately this model fails because the minimum complementary energy occurs when V2 = 0 or

when the near-field matrix cylinder is eliminated.

2. Matrix Plasticity Model: An exact linear elastic stress analysis would show a stress singularity in

the matrix at the crack tip of the fiber break. In real matrices, however, the matrix stress would not

become singular but would be limited by the yield stress of matrix. The matrix plasticity model is to

select V2 such that the stress in the near-field matrix cylinder after the first fiber break is equal to the

matrix yield stress—σmy. After the first break, this model requires

σzz,2 = σmy =
σ0(∞)

V2
(89)

Before the first break we have

σzz,2 = σapp =
σ0(∞)− V1ψ∞

V2
(90)

which allows us to determine σ0(∞) and solve for V2:

V2 =
ψ∞

ψ∞ + σmy − σapp
(91)
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Fig. 4: The axial tensile stress in the fiber, σzz , the interfacial shear stress, τrz , and the interfacial radial stress, σrr,
as a function of distance (in units of fiber diameters) in a fiber fragment of aspect ratio 10. The solid lines are the
stresses calculated by the variational mechanics analysis. The dashed lines are the stresses calculated by a shear-lag
analysis analysis.

3. Experimentally Determined V2 Model: select V2 such that the predicted fiber and matrix stresses

agree with experimentally measured stresses. This model is discussed further below.

In the absence of experimental results for our hypothetical example, we resort to the matrix plasticity model.

For the specific loading conditions of σ0 = 25 MPa and T = −125◦C, σ∞ = −12.53 MPa, ψ∞ = 164.16 MPa,

and σ0(∞) = 68.64 MPa. By the matrix plasticity model we find V2 = 0.686.

The solid lines in Fig. 4 plot the axial fiber stress and the shear and transverse stresses at the fiber/matrix

interface. The axial fiber stress is zero at the fiber break, as required by boundary conditions, and builds to

a constant plateau value within about three fiber diameters. For finite fiber fragment lengths, the plateau

value is less than the far-field fiber stress of ψ∞. This fiber fragment with an aspect ratio of 10 yields a

plateau fiber stress that is 26% of the far-field fiber stress. The interfacial shear stress is zero at the fiber

break, as required by boundary conditions, reaches a peak close to the fiber break, and then decays back

to zero in about three fiber diameters. The interfacial radial stress shows a significant compressive stress

concentration at the fiber break that is more than twice as large as the peak shear stress. The radial stress

reaches a constant level of radial compression within about two fiber diameters. The constant level of radial

compression is similar in magnitude to σ∞. The large stress concentration is related, in part, to Poisson’s

contraction of the fiber. Near a fiber break, the fiber stress is low. This reduced stress causes a release of the

fiber’s Poisson’s contraction and the fiber tries to expand against the bulk, uncracked matrix. The matrix

prevents the expansion and a large compressive stress results. The compressive radial stress concentration

at the fiber break should be expected to play a significant role in the mechanism of interfacial failure.

The dotted lines in Fig. 4 plot the axial fiber stress and the shear stress at the fiber/matrix interface

calculated by the Cox (1952) shear-lag analysis (Eqs. (2) and (3)). The interfacial radial stress is not defined

by shear-lag analysis. For the shear-lag calculations, the shear interaction parameter, H, is taken from Cox

(1952) (see Eq. (5)). To account for thermal expansion, the applied strain in Eqs. (2) and (3) is

ε =
σapp
Em

+ αmT (92)

The shear-lag analysis stresses are significantly different than the variational mechanics analysis stresses.
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Fig. 5: The axial tensile stress in the fiber, σzz , the interfacial shear stress, τrz , and the interfacial radial stress, σrr,
as a function of distance (in units of fiber diameters) from an isolated fiber break. The solid lines are the stresses
calculated by the variational mechanics analysis. The dashed lines are the stresses calculated by a shear-lag analysis
analysis.

The axial fiber stress increases at about the same rate near the fiber break, but continues to increase and

peaks at a different maximum stress. The peak shear stress is similar in magnitude to the peak variational

mechanics shear stress. The shear-lag shear stress, however, violates boundary conditions by being nonzero

at the fiber break and decays more slowly towards zero. Agreement in maximum fiber axial stress can be

improved by deviating from Cox’s (1952) recommendations and choosing a lower value of H. Doing so,

however, would worsen the agreement in the initial rate of axial stress increase and in the magnitude of the

shear stresses.

Figure 5 plots the axial fiber stress and the shear and transverse stress at the fiber/matrix interface

for an isolated fiber break. Again, the solid lines are the variational mechanics stresses and the dashed

lines are the shear-lag analysis stresses. All stresses are similar in form to the stresses in a fiber fragment.

The major difference is that in about three fiber diameters, all variational mechanics stresses approach the

far-field stresses. In other words, σzz(fiber) approaches ψ∞, σrr(interface) approaches σ∞, and τrz(interface)

approaches 0. The shear-lag analysis stresses are again significantly different than the variational mechanics

analysis stresses. The shear-lag analysis predicts a much slower rate of increase in the axial fiber stresses

and a lower magnitude of shear stress. Better agreement can be obtained by arbitrarily increasing the shear

interaction parameter, H, but no value of H will give the correct form for the shear stress.

The are major differences between the variational mechanics analysis and the shear-lag analysis and

we are compelled to consider the accuracy of the variational mechanics analysis. Figure 6 compares the

variational mechanics analysis stresses to stresses calculated by an axisymmetric finite element analysis. To

facilitate finite element calculations, the calculation is made for a finite two-cylinder specimen (i.e. σedge = 0

and σ0(ρ) = σapp). σapp, T , and V1 were arbitrarily chosen to be 25 MPa, -125◦C, and 0.25, respectively.

Because the variational mechanics stress analysis only calculates an average fiber stress, the plotted finite

element stress is the average axial stress over the fiber cross-section. We find good agreement between

variational mechanics stresses and finite element analysis stresses. Some minor fine structure in the finite

element analysis near the fiber break may be due to insufficiently mesh refinement.
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Fig. 7: The fiber crack density as a function of applied load for an “ideal” and a ”real” single-fiber fragmentation
test

For a fracture example, we plot predictions for an “ideal” single-fiber fragmentation test. By an “ideal”

single-fiber fragmentation test, we mean a test on an embedded single fiber in which the interface is perfect

and the fiber strength is given by a single invariant number denoted as σf,ult. The goal is to calculate the

crack density as a function of applied load. For a given crack density, the maximum stress in the fiber is

midway between two fiber breaks. The predicted crack density is thus found by numerically solving the

equation

σf,ult = ψ0(ρ)(1− φ(0)) (93)

for crack density using incremental values of σapp. The result using the fiber and matrix properties in Table

I, T = −125◦C, and V2 = 0.686 is plotted in Fig. 7. The first crack forms at a stress of 83 MPa. For an

infinite matrix sample, this stress corresponds to an applied strain of 1.93%. This strain is higher than the

strain to failure of the fiber of 1.41% because of the initial thermal compressive strain of -0.50% caused by

thermal shrinkage of the infinite matrix. After initial cracking, the crack density increases linearly with load.



148 J. A. Nairn / Breaks in embedded fibers

“Real” single-fiber fragmentation tests always differ from the “ideal” test described in the previous

paragraph. The two major causes of deviations are an imperfect interface and statistical variations in fiber

strengths. An imperfect interface will cause the crack density to stop increasing and to level off at some

plateau value (see “Real” test in Fig. 7). The plateau value defines a critical fragment length that has been

used by many researches as a measure of the interfacial strength (Kelly and Tyson, 1963). The effect of

statistical variations in fiber strengths will be to alter the overall shape of the crack density vs. applied

load curve. Variations in fiber strength will at least change the slope of the curve and will probably also

lead to non-linear results. While nearly all single-fiber fragmentation tests have focused only on the critical

length, the manner in which the critical crack density is approached contains useful information about the

mechanisms of interfacial failure and about statistical variations in fiber strengths. Hopefully the stress

analysis described in this paper and the extensions mentioned in the discussion section will help extract this

information from experimental results.

4. Discussion

We have described a new closed-form analysis for the stresses around breaks in embedded single fibers.

The new analysis avoids limitations of previous analyses and by comparison to finite element calculations is

seen to be accurate. The intention of this paper has only been to describe a new analysis procedure that

can potentially serve as a tool for the interpretation of embedded single fiber tests. We choose this section

to discuss some of the ways it might be used and some of the required extensions to handle new problems.

A logical starting point is to analyze “real” single-fiber fragmentation test results including results at

sub-critical fragment lengths. The analysis of the “ideal” single-fiber fragmentation test was given in the

previous section. To interpret “real” single-fiber fragmentation tests, we focus on three unresolved questions:

1. The near-field matrix cylinder volume fraction, V2, needs to be realistically selected. Physically V2

corresponds to the zone of matrix whose stresses are significantly affected by the presence of fiber

breaks.

2. In the “ideal” single-fiber fragmentation test the fiber/matrix adhesion was assumed to be perfect; in

“real” tests the adhesion will not be perfect. We need to account for interfacial failure and to describe

the form of the stresses after interfacial failure.

3. In the “ideal” single-fiber fragmentation test the fiber was assumed to have a unique tensile strength;

“real” fibers will have a statistical distribution of strengths.

The first question about defining V2, is best answered using the “Experimentally Determined V2 Model.”

When the fiber is intact, the stresses calculated are independent of V2. When the fiber contains breaks,

however, the predicted stresses will depend on V2. By comparing predicted stresses as a function of V2 to

measured stresses, it should be possible to experimentally measure V2. Two experimental techniques are

available. The first is photoelasticity of a birefringent matrix (Drzal, Rich and Lloyd, 1982; Drzal, Rich,

Koenig and Lloyd, 1983; Drzal, Rich and Koenig, 1985; Rich and Drzal, 1986; Bascom and Jensen, 1986).

The photoelastic fringes caused by stresses in the matrix can be compared to calculated fringes derived from

stresses found using various values of V2. A second, complementary approach is to measure the fiber stresses

using Raman spectroscopy (Galiotis and Jahankhani, 1988; Robinson, Zakikhani, Day and Young, 1987) and
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Fig. 8: A single fiber fragment of length l showing three regions. Region I has an intact fiber/matrix interface while
regions II and III have failed fiber/matrix interfaces. The regions of failed interface are δ dimensionless units long.

compare them to predicted fiber stresses as a function of V2.

An alternative approach is to eliminate the need for a third cylinder by using a more refined variational

mechanics analysis. The refined analysis must relax the assumption that the axial stress in the matrix

cylinder is independent of r. For example, an alternative matrix stress function might be

Ψ(r, z) =
r2

4

[
σapp + ψ0(z)

(
2

λ+ 2

)2

rλ

]
+ ψ1(z) ln r + ψ2(ζ) (94)

This stress function gives the matrix axial stress as

σzz,2 = σapp + ψ0(z)rλ (95)

When λ < 0 the axial stress approaches the far-field matrix stress away from the fiber break. The price

of the improved stress function is to considerably complicate the mathematical analysis and it is hoped to

address this problem in future work.

We deal with the second question about imperfect adhesion by adding regions containing failed fiber/-

matrix interfaces. The new problem requiring analysis is illustrated in Fig. 8. Region I has an intact fiber/-

matrix interface and regions II and III, both of dimensionless length δ, have failed fiber/matrix interfaces.

The stress analysis in region I can be completed by procedures identical to those outlined in this paper. The

stress analyses in regions II and III require new techniques. Despite the post-failure nature of the stresses in

regions II and III, those stresses must still obey equilibrium. Thus, the form of the region II and III stresses

must still be given by Eqs. (46)–(51) and Eqs. (42)–(45) and the problem of finding the stresses is reduced

to finding ψ. We suggest a good starting point is to assume some form of the interfacial stresses such as

τrz(1) = µσrr(1) + τy (96)
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Fig. 9: A matrix microdrop of dimensionless length 2ρ showing the boundary conditions relevant to the microdrop
debond test. σf is the background fiber tensile stress. σm is the stress applied to the microdrop during the test.

In Eq. (96), the first term is a frictional term with µ the coefficient of friction. This term only makes sense

when the radial stresses are compressive. It may also be necessary to adjust µ for slip or stick frictional

effects. The second term is an interfacial shear yield stress similar in intent to the simple Kelly and Tyson

(Kelly and Tyson, 1963) shear-yield stress. Inserting the form of the equilibrium stresses into Eq. (96) results

in a second order differential equation for the ψ function:

µf1(1)ψ′′ +
1

2
ψ′ − µV2A3

V1A0
ψ =

µV2
V1

(
A4σ0(ρ)

A0
+
A5T

A0

)
− µσ∞

(
1− V2A2

V1A1

)
− τy (97)

The boundary conditions for Eq. (97) are ψ(ρ) = ψ′(ρ) = 0 in region II and ψ(−ρ) = ψ′(−ρ) = 0 in region

III. Solving Eq. (97) for ψ determines all the stresses in regions II and III. The analysis of region I is virtually

identical to the analysis in this paper. There are two minor changes. First, the boundary conditions will be

different. The values of ψ(±(ρ− δ)) and ψ′(±(ρ− δ)) will no longer be zero but will be determined by the

stress state in regions II and III. Second, because in general ψ′(±(ρ− δ)) 6= 0, the observation that 〈ψ′′〉 = 0,

used when calculating σ0(ρ) and 〈φ〉, is no longer valid and the terms involving 〈ψ′′〉 will have to be carried

through the analysis.

An important application of the stress analysis that includes a failed interface is to study the mechanism

of interfacial failure. In other words, what stress conditions cause the extent of interfacial failure or the lengths

of regions II and III to increase? Due to the complexity of the multiaxial stress state, it seems unlikely that

a simple maximum stress failure criterion will be realistic. We would suggest an energy release rate analysis.

With a completed stress analysis, it is possible to calculate the total energy release rate associated with the

growth of interfacial damage. Comparison of predictions to experiments should reveal if a critical interfacial

toughness can be used to predict the onset and propagation of interfacial damage.

The third question about dealing with distributions of fiber strengths can be handled in various ways.
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In general, we will have to develop a stochastic model based on some assumed or measured distribution

of fiber flaws. Given a description of fiber flaws and their strengths, a stress analysis of fiber fragments

of various lengths can be used to predict the probability of failure as a function of applied load. It would

then be possible to develop a computer model to predict the average fiber fragment length as well as the

distribution of fiber fragment lengths as a function of applied load. Such a computer model coupled with

a model for imperfect adhesion could be expected to reproduce many of the features of “real” single-fiber

fragmentation tests.

Although we have concentrated on the single-fiber fragmentation test, we note that simple changes in

boundary conditions can be used to effect stress analyses of other single-fiber tests such as the microdrop

debond test (Gaur and Miller, 1989) and the fiber pull-out test (Piggot, Chua and Andison, 1985). To be

specific, we consider the microdrop debond test. In the microdrop debond test, a microdrop of matrix is

applied to a fiber and the force required to slide the drop along the fiber or to break the fiber/matrix interface

is measured. The force is applied directly to the matrix microdrop using micrometer adjusted knife edges. If

we replace the microdrop by an effective cylinder of length 2ρ and ignore the third far-field matrix cylinder,

the microdrop debond specimen can be analyzed by solving the problem illustrated in Fig. 9. Before loading

the matrix microdrop the fiber has a background stress of σf . During the test, the matrix microdrop is

directly loaded with a compressive stress σm. This stress on the matrix causes the stress on the fiber at

ζ = ρ to increase by an amount −σmV2

V1
. For the microdrop debond specimen, the boundary conditions on the

ψ function are thus ψ(−ρ) = σf , ψ(ρ) = σf − σmV2

V1
, and ψ′(±ρ)=0. The total applied stress is σ0 = V1σf .

Reworking the analysis in this paper with these new boundary conditions results in a new analysis of the

microdrop debond test (Scheer and Nairn, 1992). Similar types of changes in boundary conditions can be

used to analyze other types of embedded single fiber tests.
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Appendix 1. Elasticity Analyses When Fiber has No Breaks

We present an elasticity analysis for an infinitely long fiber with no breaks. We begin with a two-cylinder

model under total axial stress σ0 and constant radial stress σedge. In the exact elasticity solution all shear

stresses will be zero and σzz will be independent of ξ within each cylinder. We can thus recover the form of

the exact solution by using Eqs. (46)–(51) with ψ′ = ψ′′ = 0. The result is

σzz,1 = ψ0

σrr,1 = σθθ,1 = −V2
V1
ψ6 + σedge

σzz,2 =
σ0 − V1ψ0

V2

σrr,2 = ψ6

(
1− 1

ξ2V1

)
+ σedge

σθθ,2 = ψ6

(
1 +

1

ξ2V1

)
+ σedge

(A1)

where the two unknowns ψ0 and ψ6 are constants. We determine ψ0 and ψ6 using two conditions. First, the

axial strain (εzz) in the fiber and the matrix are equated. Second, the radial displacements (u = rεθθ) at

the fiber matrix interface are equated. The result is

ψ0 =
1

C33

{[
1

2V2Em
+
V2A3A4

V1A0

]
σ0 +

[
1

2
(αm − αA) +

V2A3A5

V1A0

]
T

+

[
νA
EA
− νm
Em

+
V2A3A2

V1A0

]
σedge

}
(A2)

ψ6 =
1

C33

{[
A3

2A0V2Em
+

A4

2A0

(
1

EA
+

V1
V2Em

)]
σ0 +

[
A3(αm − αA)

2A0
+

A5

2A0

(
1

EA
+

V1
V2Em

)]
T

+

[
A3

A0

(
νA
EA
− νm
Em

)
+

A2

2A0

(
1

EA
+

V1
V2Em

)]
σedge

}
(A3)

This elasticity result for ψ0 is identical to the variational analysis solution for ψ0(ρ) in Eq. (69).

To find σ∞ and ψ∞ we set σedge = 0, pass to the limit as V1 → 0, and note that σ∞ = −V2

V1
ψ6. The

result of this exercise is

σ∞ =
(νm − νA) σ0

Em
+
(
νA(αA − αm) + (αT − αm)

)
T

2ν2
A

EA
− 1−νT

ET
− 1+νm

Em

(A4)

ψ∞ =

(
2νAνm
EA

− 1−νT
ET
− 1+νm

Em

)
EAσapp

Em
+
(

2νA
EA

(αT − αm) +
(

1−νT
ET

+ 1+νm
Em

)
(αA − αm)

)
EAT

2ν2
A

EA
− 1−νT

ET
− 1+νm

Em

(A5)

Although it is not obvious that Eq. (5) is identical to the variational analysis result for ψ∞ (Eq. (72)), their

identity can be verified numerically or by tortuous algebra.
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Appendix 2. Solution When p2

4 − q < 0

When p2

4 − q < 0, the solution to the Euler equation (Eq. (2.75)) is

φ =
2h′2(ρ) coshαζ cosβζ − 2h′1(ρ) sinhαζ sinβζ

β sinh 2αρ+ α sin 2βρ
(A6)

where

h1(ρ) = coshαρ cosβρ (A7)

h2(ρ) = sinhαρ sinβρ (A8)

α =
1

2

√
2
√
q − p (A9)

β =
1

2

√
2
√
q + p (A10)

The derivatives of φ and the χ(ρ) function become

φ′ =
2
(
αh′2(ρ)− βh′1(ρ)

)
sinhαζ cosβζ − 2

(
βh′2(ρ) + αh′1(ρ)

)
coshαζ sinβζ

β sinh 2αρ+ α sin 2βρ
(A11)

φ′′ =
2
(

(α2 − β2)h′2(ρ)− 2αβh′1(ρ)
)

coshαζ cosβζ − 2
(

2αβh′2(ρ) + (α2 − β2)h′1(ρ)
)

sinhαζ sinβζ

β sinh 2αρ+ α sin 2βρ
(A12)

χ(ρ) = 2αβ(α2 + β2)
cosh 2αρ− cos 2βρ

β sinh 2αρ+ α sin 2βρ
(A13)

The solution for an isolated crack is (Hashin, 1985):

ψ = ψ∞

[
1− e−αζ

(
cosβζ +

α

β
sinβζ

)]
(A14)

ψ′ = ψ∞

(
α2 + β2

β

)
e−αζ sinβζ (A15)

ψ′′ = ψ∞
(
α2 + β2

)
e−αζ

(
cosβζ − α

β
sinβζ

)
(A16)


