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A B S T R A C T

Finite element calculations were used to bound the modulus of aligned, short-fiber composites with randomly
arranged fibers, including high fiber to matrix modulus ratios and high fiber aspect ratios. The bounds were
narrow for low modulus ratio, but far apart for high ratio. These numerical experiments were used to evaluate
prior numerical and analytical methods for modeling short-fiber composites. Prior numerical methods based
on periodic boundary conditions were revealed as acceptable for low modulus ratio, but degenerate to lower
bound modulus at high ratio. Numerical experiments were also compared to an Eshelby analysis and to an new,
enhanced shear lag model. Both models could predict modulus for low modulus ratio, but also degenerated
to lower bound modulus at high ratio. The new shear lag model accounts for stress transfer on fiber ends and
includes imperfect interface effects; it was confirmed as accurate by comparison to finite element calculations.

(authors’ final submitted manuscript)

1. Introduction

In mean-field modeling of short-fiber composite materials,
a composite unit cell is subjected to mean stress or strain and
the effective stiffness or compliance tensors are found by av-
eraging strains and stresses throughout the composite [1].
This averaging is done over all unit cell orientations using a
fiber orientation distribution function. The unit cell for this
analysis is a short fiber composite with all fibers aligned in the
same direction. Thus, the fundamental problem for analysis
of short-fiber composites is to determine mechanical proper-
ties of an aligned, short-fiber composite.

One might think this problem is solved by methods such
as Eshelby [2], Mori-Tanaka [3], modern shear-lag models
[4–7], or numerical methods [8–13], but some gaps appear.
First, most prior numerical studies have been limited to mod-
est fiber/matrix modulus ratios of R= E f /Em < 30 and rela-
tively short fiber aspect ratios, ρ = l f /d f < 30 [8, 9, 11, 13].
Gusev and Lusti [10, 12] looked at higher aspect ratios, but
only for a narrow selection of R and fiber volume fraction,
Vf . As a consequence, the validation of analytical models by
these numerical studies [9] only validates them for the cor-
responding small range of properties.

A recent trend in composites research, especially in
nanocomposites, is to reinforce soft polymers (e.g., elas-
tomers with R > 104) with nano-fibers having aspect ra-
tios higher then 30 [14–17]; the results of such work has
been a challenge to model. Figure 1 shows some experi-
mental results for reinforcement of an elastomer with nano-
cellulose fibers [14] and compares them to an existing an-
alytical model (labeled “Mori-Tanaka” [3]) and an existing
numerical method based on large periodic representative
volume elements (RVEs) with randomly placed fibers (la-
beled “Periodic RVE (FEA)” using approach of Gusev [8]).
These experimental results are two to three orders of mag-

nitude higher then existing models. The question arises —
are these high reinforcements the discovery of a new nano-
phenomenon that cannot be modeled with continuum me-
chanics or do continuum methods just need to be revised for
high R? To explore this question, we developed a new numer-
ical method to derive upper and lower bounds to the modu-
lus. The sample calculation of bounds in Fig. 1 (see dashed
lines) shows that experimental results fall within continuum
mechanics bounds and that prior modeling methods all de-
generate to lower bound results. In other words, the methods
described here have new potential to guide expectations of
properties for composites with high R.

To study composite modeling methods at high R and aspect
ratio as well as how they relate to conventional methods at
low R and aspect ratio, we ran numerical calculations for a
very wide range of R (from 10 to 105) and aspect ratios (from
5 to 100). The calculations in this part of the study were
based on novel methods that allowed us to numerically de-
termine upper and lower bounds to the fiber-direction mod-
ulus. The shear number of calculations along with the size
of mesh (particularly at high aspect ratio) precluded mesh
refinement of numerical results. A powerful feature of the
bounding method, however, is that it allows one to get defini-
tive bounds even without mesh convergence. These numeri-
cal results provided input for considering four questions:

What is correct modulus? One of the best ways to judge the
accuracy of modeling methods is to compare them to nu-
merical results [9], but what numerical method gives the
correct modulus? Here we derived numerical bounds us-
ing Monte Carlo methods with randomly placed and well-
dispersed, aligned fibers. We used bounding methods to de-
fine limits on the modulus for R up to 105 and ρ up to 100.
The separation of the bounds shows that the calculated mod-
ulus depends on boundary conditions, especially for large R.
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Figure 1: The symbols are experimental results from Ref. [14] with R =
9.5× 105, which are compared to existing modeling methods (Mori-Tanaka
and Periodic RVE (FEA)) and to upper and lower bounds described in this
paper (dashed lines). The experiments are quasi-2D with fibers claimed to
be randomly aligned in the plane of a film. The models are 2D calculations
for aligned fibers. The comparison with experiments is only qualitative, but
if experiments had aligned fibers, they would move toward the upper bound
and still demonstrate that prior models are near the lower bound and far
below experiments.

How do periodic RVE calculations compare to numerical
bounds? Most numerical models use periodic RVEs and as-
sume analysis results with periodic boundary conditions are
equivalent to bulk composite properties. To test this hypoth-
esis, we compared the new numerical bounds to both small
periodic RVEs (using either cylindrical (rectangles in 2D) or
elliptical fibers) and large RVEs with random fibers. All pe-
riodic RVE methods work well for low R, but degenerate to
lower bound results at high R.

Can an analytical model sufficiently capture the results of peri-
odic RVE composites? Given the capabilities (and limitations)
of periodic RVE analysis, an analytical model that agrees
with those numerical results would have those same capabil-
ities (and limitations). We developed an improved shear-lag
model for short fiber composites that explicitly includes stress
transfer on the fiber ends and imperfect interfaces. The new
model, along with an Eshelby [2] analysis, were compared to
numerical results on the same geometries. These analytical
methods can reproduce numerical methods based on peri-
odic conditions, which means they give good prediction for
low R, but degenerate to lower bound results for high R.

Can an analytical model account for 3D fibers and for imper-
fect interfaces? The first three questions used 2D calculations
and assumed perfect fiber/matrix interfaces. Real compos-
ites are 3D and may have imperfect interfaces. We lastly
considered 3D single fiber RVE results by comparing axisym-
metric numerical calculations with imperfect interfaces to the
new shear lag analysis with concentric cylinders that also in-
cludes imperfect interface effects. The new model accurately
reproduces all numerical results including the role of imper-
fect interfaces.

2. Methods

All finite element calculations (FEA) were linear elastic,
static, and two dimensional. Most simulations were plain
strain analyses although some 3D results were generated us-
ing axisymmetric simulations. All calculations were done us-
ing the open source code NairnFEA [18] with 8-node quadri-
lateral elements. Issues involving convergence are discussed
in section 3. By using script control, we automated the thou-
sands of FEA calculations needed to get sufficient results for
answering the posed questions. The FEA calculations were
run on either desktop computers or Linux nodes in a clus-
ter. The main requirement for the largest calculations was to
have sufficient memory (more than 5 GB).

3. Results and Discussion

3.1. What is the Correct Modulus?
To run numerical experiments for the “correct” modulus of

aligned short fiber composites, we ran FEA calculations on
representative composites with randomly placed fibers. The
fibers were all aligned in one direction, placed using a ran-
dom sequential adsorption (RSA) method [11], and well dis-
persed (separated by at least one element in the mesh). The
numerical experiments were done for fiber to matrix modu-
lus ratios of R = 10, 100, 1000, 104, and 105, for fiber aspect
ratios of ρ = 5, 10, 20, 40, 70, and 100, and for fiber vol-
ume fractions of Vf = 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, and
0.25. Monte Carlo methods were used to account for the
random structures. For each combination of R, ρ, and Vf , we
ran FEA calculations for 20 random structures and averaged
the results for mean and standard deviation of the modulus.
For most property settings, the 20 replicates gave sufficiently
narrow errors bars on the results. The total number of FEA
calculations required to map the parameter space exceeded
15,000.

The first issue was the mesh. To deal with randomly placed
fibers with randomly situated stress concentrations, the mod-
eling used a regular mesh. A quick calculation showed that
a 3D mesh for the largest aspect ratio would have over a bil-
lion degrees of freedom, which is infeasible for the 15,000
calculations we needed to run. 3D calculations by Gusev
[8] required 30 processor-hours per calculation and that was
for spherical inclusions (ρ = 1) which can use much smaller
RVEs then needed here. We therefore switched to 2D, plain-
strain FEA (which still can be used to evaluate other methods
provided comparisons are made to 2D versions of those meth-
ods). Even in 2D, the mesh could not be highly refined. We
used the crudest mesh possible where the element size was
equal to the fiber diameter. Thus each fiber had one element
across its width and the well-dispersed fibers were separated
by at least one fiber diameter (i.e., one mesh element). With
this mesh, the largest calculation had about 200,000 degrees
of freedom and could be completed in a 5-30 minutes (de-
pending on computer speed).

Because we were limited to a crude mesh, we could not
refine the mesh for convergence. To allow definitive results
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Figure 2: Schematic view of finite element model used for stress and fixed-
strain boundary conditions. A. Stress boundary conditions apply uniform
stress in the y direction on the top and bottom edges and no stress on the
side edge. A minimal number of displacement conditions are used to pre-
vent rigid body rotation. B. Fixed-strain boundary conditions apply fixed
displacements in both the x and y directions on all edges to match the im-
posed strains.

with such a mesh, we adopted a bounding method. In com-
posite variational mechanics, upper and lower bound results
are found by solving the two problems in Fig. 2 [1, 19–21].
First, the composite is subjected to constant tractions, T , over
the entire surface of

T = σ0 · n̂ (1)

whereσ is the uniform applied stress and n̂ is surface normal.
For stress corresponding to axial loading in the fiber direction
(see Fig. 2A), the complementary energy, as approximated by
FEA strain energy (ΓF EA), must be greater than or equal to the
exact complementary energy, Γ , leading to

ΓF EA ≥ Γ =
σ2

0V

2E(r)y y

or E(r)y y ≥
σ2

0V

2ΓF EA
= ELB (2)

where V is specimen volume and E(r)y y is the effective, plain
strain modulus in the y direction. In other words, an FEA cal-
culation of ΓF EA provides a lower bound to the axial modulus
(ELB).

Second, the composite is subjected to a uniform strain
field, which corresponds to fixed displacement (in both di-
rections), u, over the entire surface of

u = ε0 · x (3)

where ε0 is the applied strain and x is position on the surface.
For such fixed-strain conditions (see Fig. 2B), the FEA strain
energy (UF EA) is a rigorous upper bound to the exact strain
energy, U , leading to

UF EA ≥ U =
1
2
ε0 ·Cε0V (4)

where C is the effective stiffness tensor. Numerical calcula-
tion of axial modulus when using fixed-strain boundary con-
ditions requires three separate FEA calculations:

1. Use εx = ε0, εy = 0, and γx y = 0. An FEA calculation
gives C11 ≤ 2U11/(ε2

0V ) (where U11 is the strain energy
from that FEA analysis).

2. Use εx = 0, εy = ε0, and γx y = 0. An FEA calculation
gives C22 ≤ 2U22/(ε2

0V ).
3. Use εx = ε0, εy = ε0, and γx y = 0. An FEA calculation

gives C11 + C22 + 2C12 ≤ 2U12/(ε2
0V ).

A reduced plain-strain axial modulus can be found from these
three results using

E(r)y y ≤
2
ε2

0V

�

U22 −
(U12 − U11 − U22)2

4U11

�

= EUB (5)

The plain strain properties are defined from the reduced com-
pliance tensor, S(r), which is the inverse of the stiffness tensor
found by 2D FEA:





C11 C12 0
C12 C22 0
0 0 C66





−1

= S(r)

=





1/E(r)x x −ν(r)x y/E
(r)
x x 0

−νx y/E
(r)
x x 1/E(r)y y 0

0 0 1/G(r)x y



 (6)

A side benefit of the three upper bound calculations is that
they can also determine E(r)x x and ν(r)x y . One more calculation
with εx = εy = 0, and γx y = γ0 can add the fourth (and
final) in-plane property, G(r)x y . The results here focus on E(r)y y
although some comments on other properties are at the end.

Formally, neither the lower bound in Eq. (2) nor the up-
per bound in Eq. (5) are rigorous bounds. A rigorous lower
bound requires complementary energy. Here we assumed
strain energy found under stress boundary conditions is a
good approximation to complementary energy. Although
fixed-strain conditions give rigorous upper bounds to the ele-
ments of C, Eq. (5) combines those bounds to find a modulus
that may not be a rigorous upper bound to axial modulus. Be-
cause the second term in Eq. (5) is generally small (<2% of
U22, especially at higher R and Vf ), E(r)y y is effectively a rig-
orous upper bound property. We therefore took these two
results as defining bounds for the composite modulus.

The next issue was the size required for the bounded vol-
ume element (BVE). It should be large enough that results
are unaffected by its size, but small enough to keep calcula-
tion times reasonable. Figure 3A plots ELB for fixed traction
(solid curves) and upper bound C11 for fixed strain (dashed
curves) as a function of the length of the BVE relative to
the fiber length (L/L f ) for fixed width of 20 times the fiber
diameter (d f ). These results are for fiber volume fraction
Vf = 10%, modulus ratio R= 105 (more details on fiber prop-
erties are given below), and two fiber aspect ratios (ρ = 10
and 100); they include the extreme cases with the largest
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Figure 3: A. The lower bound axial composite modulus Ey y (LB) and upper bound C11 as a function of BVE length (L/L f ) for fixed width of 20d f and for
two fiber aspect ratios. B. The lower bound axial composite modulus Ey y (LB) and upper bound C11 as a function of BVE width (W/d f ) for fixed length of
10L f and for two fiber aspect ratios. Both plots used fiber volume fraction Vf = 0.1.

value of R = 105 and largest ρ = 100. Figure 3B shows
analogous results as function of width of the BVE relative to
fiber diameter (W/d f ) for fixed length of 10L f and a differ-
ent R = 102. For BVE with short L, it is likely for fibers to
span the entire length of the BVE resulting in an artificially
high modulus that approaches the continuous fiber compos-
ite. As L increased, the modulus decreased and plateaued
above L/L f in the range of 5 to 10. Similarly, the magnitude
of the error bars decreased up to about L/L f = 10. All subse-
quent simulations used L/L f = 10. For short width BVE, the
modulus bounds were widely separated, but moved closer as
W increased. They plateaued at about W/d f = 40. Width ef-
fects at higher R= 105 showed a small amount of continued
decrease in the upper bound result for W/d f > 40. The de-
crease, however, was relatively small. Because using larger
W made simulations impractical, all subsequent simulations
used W/d f = 40. Note that this BVE size is larger than some
published RVE results. For example, Gusev and Lusti [10, 12]
used L/L f ∼ 3 and W/d f ∼ 12. We expect that the nature
of fixed strain boundary conditions, as opposed to periodic
boundary conditions used in other FEA methods, is the cause
of the need for BVEs to be larger than other RVEs.

Remark 1: Traditional RVE methods (e.g., [10–13]) use
periodic boundary conditions where displacements normal
to an edge are constant (such that plane sections remain
plane) while tangential displacements are a degree of free-
dom [9]. These prior boundary conditions are neither fixed
strain nor fixed traction. While they may converge to a re-
sult, they provide no information on where they fall relative
to upper and lower bounds (i.e., how those boundary condi-
tions affect the converged result). The boundary conditions
used here to get bounds are different. The sample calcula-
tions in Fig. 1 suggest that traditional methods degenerate
to lower bound results, while the bounding method has the
potential to bracket experimental results. To distinguish the
fixed strain or traction boundary conditions used here from
traditional RVE methods, the new method is labeled as a BVE
method for bounded volume element.

Remark 2: Although a BVE model can formally describe a

periodic structure, it seems unrealistic to assume fixed strain
on the edge of a full-scale composite would translate to fixed
strains on representative subelements of the composite. In-
stead, the BVE method is best imagined as external bound-
ary conditions on a full-scale composite (albeit, a small one).
When imagining a full-scale composite, it could be inconsis-
tent to require the BVE to be geometrically periodic (as com-
monly done for RVEs in traditional methods [10]). Never-
theless, we compared geometrically non-periodic BVE calcu-
lations to some periodic ones and the differences were negli-
gible for the size BVEs used.

Using the above method and BVE size, we ran all combi-
nations of R, ρ, and Vf ; some selected results are discussed
here (other results are in subsequent sections). All simula-
tions used an isotropic, elastic, high-modulus fiber with re-
duced plain strain modulus E(r)f = 100, 000 MPa and Pois-

son’s ratio ν(r)f = 0.33 (the unreduced properties were E f =
93, 843 MPa and ν f = 0.2481). The plane strain matrix mod-
ulus varied as Em = E f /R and its Poisson’s ratio was the same
as the fiber’s. Figure 4A shows axial modulus for R= 100 for
three selected aspect ratios. The dashed curves are the lower
bound and the solid curves are the upper bound. As expected,
the modulus increased as volume fraction increased, but the
increase is non-linear. The initial slope is low indicating low
volume fraction does a relatively poor job of providing modu-
lus. The slope gradually increased indicating increased fiber
effectiveness at higher volume fraction. The error bars are
rather small — in most cases smaller than the size of sym-
bols used in the plots. Figure 4B shows the same results
for R = 105 (on a log scale). Unlike the R = 100 results,
these results have lower bound modulus that is three orders
of magnitude below the upper bound. Furthermore, the up-
per bound results have higher error bars; the coefficient of
variation was over 100% at low Vf , but decreased to a range
of 40% to 20% for Vf from 0.15 to 0.25.

Differences between upper and lower bounds in analyt-
ical modeling are well known to increase as R gets larger
[1]. But those differences are attributed to approximations
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Figure 4: Axial composite modulus for R = 100 (A) and R = 105 (B) for three aspect ratios as a function of fiber volume fraction. The symbols are Monte
Carlo BVE results with error bars indicating their standard deviations. The dashed and solid curves connecting the symbols indicate lower and upper bounds,
respectively. Note that (A) uses a linear scale while (B) uses a log scale to better visualize all results.

in the modeling while numerical results are commonly as-
sumed to hone in on the correct answer and therefore upper
and lower bounds should be the same. The question remains
— are the differences between upper and lower bounds be-
cause the FEA is not converged or something else? To answer
this question, we refined the mesh. We could most refine the
mesh for the shortest fiber with ρ = 5. Figure 5 gives mod-
ulus as a function of mesh element size for R = 100 and for
R= 105 when ρ = 5 and Vf = 0.25. As the mesh was refined,
the upper bound dropped, while the lower bound was nearly
constant. We estimated converged results by extrapolating to
zero element size and a discrepancy that was outside errors
bars (as calculated by least squares fits with error estima-
tions) remained between upper and lower bound results. In
other words, part (probably most) of the difference between
stress and strain boundary conditions is that even exact solu-
tions for upper and lower bounds differ. This observation is
an effect of the heterogenous BVE. For homogeneous mate-
rials, the two boundary conditions used here would give ex-
actly the same results; for heterogeneous materials, however,
the effective modulus depends on the boundary conditions.
As a consequence, one cannot define the “correct” composite
modulus without specifying the boundary conditions as well.
The challenge is to determine which results most accurately
describe the full-scale composite. This boundary condition
effect is a function of R. For R < 100, which comprises the
range of most conventional composites, the boundary con-
dition effect is relatively small (<20%). But for high R, the
effect becomes very large (1 to 3 orders of magnitude).

Lastly, we emphasize the BVE bounds are just that —
bounds to axial modulus — and should not be construed as
a “solution” for modeling composites with high R. Indeed,
Fig. 5 shows that the upper bound decreases (by a factor of
2) for a refined mesh when ρ = 5 (we do not know how
much it would decrease for large ρ). Similarly, Fig. 3 shows
the upper bound might decrease further if the BVE was made
much wider. Nevertheless, the bounds presented here remain
as valid bounds to composite properties, even if they are not
the best bounds that could ever be obtained. If experimental
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Figure 6: A. A periodic structure with parallel fibers. B. A periodic structure
with staggered fibers. C. A geometrically periodic structure with many ran-
domly placed fibers. The dashed lines in A and B outline two possible unit
cells for analysis. Each of these has two planes of symmetry allowing the
numerical calculations to be done on one quadrant of the cell.

results are discovered that exceed these upper bounds, those
results potentially indicate a new reinforcement mechanism
that needs further study. On the other hand, any experiments
bracketed by these bounds may be conventional reinforce-
ment that can be explained by continuum mechanics.

3.2. How do periodic RVE calculations compare to numerical
bounds?

Most numerical models analyze composite unit cells con-
taining from one or two fibers [9] to many fibers [8]. Fig-
ures 6A and B show the two simplest, 2D, periodic structures
with parallel or staggered fibers and with dashed lines indi-
cating the smallest repeating unit cells. The parallel structure
can be modeled with a single fiber unit cell while the stag-
gered structure requires a unit cell with two complete fibers
(each of these can model one quadrant of the unit cell by sym-
metry). Figure 6C shows a geometrically periodic structure
with many fibers subjected to periodic displacement bound-
ary conditions. Models that use any of the unit cells in Figure
6 assume the results reflect the full composite. This section
compares results from these periodic structures to the numer-
ical bounds from BVE experiments.

Figure 7 shows the meshes used to model the parallel struc-
ture with either rectangular or elliptical fibers (elliptical fiber
models were done for comparison to elliptical-fiber-based Es-
helby [2]method in the next section). An unknown parame-
ter for an encapsulated fiber is how much matrix is above the
fiber and how much is on the sides? We choose this parame-
ter by setting the distance from the fiber end to the top of the
mesh, ∆, to equal the distance from the side of the fiber to
the edge of the mesh. Under this assumption, the rectangular
fiber volume fraction is:

Vf =
r f L f t

rm Lm t
=

ρr2
f

(r f +∆)(ρr f +∆)
(7)

where t is the 2D thickness. This quadratic equation is easily
solved to find∆ for input modeling parameters ρ, r f , and Vf .
For comparing rectangular to elliptical fibers, we kept aspect
ratio (ρ = L f /(2r f ) = a/b) and fiber area (which is also Vf
in 2D) constant resulting in

2L f r f = 4ρr2
f = πρb2 = πab (8)
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Figure 7: The finite element meshes along with definition of geometric pa-
rameters for single-fiber, unit cell models for the parallel structure with ei-
ther rectangular or elliptical fibers. For clarity, the boundary conditions were
omitted and the mesh is shown coarser than the actual mesh used for con-
verged calculations.

or

b =
2r f
p
π

and a =
2ρr f
p
π

where a and b are the major and minor axes of the ellipse.
The distance from the top and side of the ellipse to the edge
is now found by solving the quadratic equation for∆ defined
from

Vf =
πabt

2rm Lm t
=

πρb2

4(b+∆)(ρb+∆)
(9)

The meshes for the two fiber unit cells (i.e., staggered struc-
ture) were similar, but considered only rectangular fibers.
The meshes for the many-fiber periodic structure were regu-
lar grids with one element across the fiber width (i.e., same
as in BVE calculations) and rectangular fibers only. We did
periodic FEA calculations for selected combinations of R, ρ,
and Vf used in the BVE modeling. Unlike the BVE modeling,
we were able to refine the one- and two-fiber unit cell meshes
and reach convergence by subdividing the elements in Fig. 7
until results became constant (the converged meshes had six
elements across the fiber diameter).

First, we analyzed each periodic structure using periodic
boundary conditions (e.g., the displacement boundary con-
dition in Fig. 6C) and found modulus from three calculations
(analogous to BVE method using Eq. (5)). Figure 8A com-
pares these periodic FEA results to BVE bounds. The solid
and dashed lines are for parallel structures with rectangular
and elliptical fibers, respectively (the dashed elliptical results
are mostly obscured by rectangular fiber results). The dash-
dot lines are for the staggered structure. The dotted lines
with filled triangular symbols are Monte-Carlo FEA of many-
fiber unit cells. The open symbols are the BVE bounds. For
R = 10 or 100, the BVE bounds are fairly close and all peri-
odic FEA results were within those bounds. In other words,
all methods gave good results. For R greater than 1000, how-
ever, the BVE bounds diverge, such as R = 104 in Fig. 8A,
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and all periodic FEA methods track the lower bounds results.
The staggered structure (dash-dot lines) was slightly stiffer
(as expected) than the parallel structure, but the many-fiber,
periodic FEA reverses that trend by reverting to be closer to
the lower bound result.

We considered two causes for periodic FEA being lower
bound results and far from upper bound results for high R.
First, the parallel and staggered unit cells were converged
results while the BVE results bounds were non-converged re-
sults. But, this difference cannot explain the observations,
because upper bound BVE results do no converge to lower
bound results with a more refined mesh. For example the
results in Fig. 5B show that BVE results for R = 105 and
ρ = 5 for Vf = 0.25 extrapolated to zero element size
give upper and lower bound moduli of 492 ± 202 MPa and
2.15 ± 0.05 MPa, respectively. In contrast, the results for
parallel structure with periodic boundary conditions gave
E(r)y y = 2.9 MPa, which is two orders of magnitude below the
upper bound and very close to the lower bound.

Second, we considered the boundary conditions. An al-
ternate approach to periodic boundary conditions is to apply
the fixed-strain boundary conditions used for the BVE. This
effect clearly can explain the differences. When fixed-strain
boundary conditions are applied to the many-fiber unit cell, it
is converted essentially into the BVE method and matches the
upper bound results. The only difference is the geometrically
periodic structure, which as mentioned above has negligible
affect on BVE results. The fixed-strain method, however, does
not work well for parallel and staggered structures because
the final result depends on the choice of unit cell (e.g., quad-
rants of unit cells 1 or 2 in Fig. 6A and B). This dependence
is caused by variable amount of fiber material contacting the
fixed-strain boundary conditions. In other words, the BVE
method only works for large unit cells (see Fig. 3). A po-
tential concern on all upper bound results is that they are
influenced too much by fibers contacting the boundary con-
ditions. It would be a simple matter to artificially force all
fibers sufficiently far from the mesh edges. This approach,
however, would effectively create a parallel structure that
would degenerate to the lower bound results and therefore
be far below experimental results. The better solution is to
verify the volume element in BVE calculations is sufficiently
large and this size requirement may be much higher then the
size needed when using periodic RVEs with periodic bound-
ary conditions.

Lastly, we comment on rectangular vs. elliptical fibers for
the parallel structure. The modulus with a rectangular fiber
was always very close to the modulus with an elliptical fiber
(as seen by solid and dashed lines in Fig. 8). Looking closer,
the elliptical fiber was always slightly stiffer than a rectangu-
lar fiber, with the exception of R ≤ 10 and ρ < 50. Steif and
Hoyson [22] previously looked at cylindrical vs. ellipsoidal
fibers and saw larger differences, but they did different cal-
culations. All their results were for the limit of low Vf and
they used different cylinder-ellipse analogies. Their calcula-
tions matched either minor or major axis of the ellipse to the
corresponding axis of the cylinder and then either kept ρ or

Vf constant. We claim our analogy with both ρ and Vf con-
stant is more appropriate, although it non-intuitively leads to
both the major and minor axes of the ellipse being larger than
the fiber length and diameter, respectively. Although rectan-
gular and elliptical fibers gave nearly the same modulus, they
gave different fiber stress states. As known from Eshelby, the
stress in an elliptical fiber is constant [2]. In contrast, a rect-
angular fiber shows classic stress transfer with low stress on
the ends building to higher stress in the middle. These dif-
ferences apparently do not affect modulus calculations, but
they would be expected to affect models of composite prop-
erties that depend on fiber stress, such as modeling of stress
transfer or interfacial failure.

3.3. Can an analytical model sufficiently capture the results of
small periodic RVE composites?

Most analytical models consider a parallel structure with
the single fiber geometry in Fig. 7 subjected to constant axial
stress in the y direction. Figure 8B shows numerical calcula-
tions for the single-fiber unit cell and compares to BVE lower
bounds. The numerical calculations used constant traction
in the y direction rather then periodic displacement (i.e., the
same boundary conditions used in analytical modeling). The
numerical results were found to match lower bound results
for all values of Vf , ρ, and R that were studied. Furthermore
the modulus for rectangular and elliptical fibers were nearly
identical (the solid and dashed lines in Fig. 8B overlap). The
next task was to see if analytical modeling reproduces numer-
ical RVE results and thereby inherits agreements with lower
bound BVE results, but also disagreements with upper bound
BVE results for high R.

We first considered an Eshelby analysis [2], but all prior
Eshelby models are for 3D composites with ellipsoidal fibers
[1, 23] where we need a 2D analysis to compare to 2D FEA.
Fortunately, the 2D, plane-strain results can be derived as
outlined in the Appendix. Although an Eshelby analysis is
for low Vf , that limit can be removed by a Mori-Tanaka [3]
extension. Tucker and Liang [9] point out that a Mori-Tanaka
[3] extension can be derived from an Eshelby analysis [2] by
replacing the Eshelby tensor, S, with an effective tensor, S∗,
defined by:

S∗ = (1− Vf )S (10)

In addition to an Eshelby/Mori-Tanaka model (E/MT), we
also compared to shear-lag methods. The common shear-lag
solution in the literature [4, 5] and in textbooks [24, 25] con-
siders two concentric cylinders (or two parallel layers when
in 2D) with zero stress on the fiber ends. We tried this model
(using optimal shear-lag parameters [4–7]) and it was inac-
curate. For a better analysis, we derived a new shear lag
model for a single fiber encapsulated in matrix (i.e., the ge-
ometry in Fig. 7A). In addition, the new analysis accounts for
stress transfer on the fiber ends and imperfect interfaces be-
tween the fiber and the matrix [7, 26]. This model, denoted
as a shear-lag capped model (SLC), is derived next followed
by comparison of E/MT and SLC to numerical calculations
on the same structure and boundary conditions.
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Figure 8: Axial composite modulus for ρ = 20 as a function of fiber volume fraction for R from 10 to 105. A. Compares results of periodic unit cells to BVE
bounds. B. Compares fixed traction analysis of the parallel structure to lower bound BVE results. The dashed and solid curves are elliptical and rectangular
fibers, respectively. The dashed-dotted lines in A are for numerical analysis of a staggered structure. The filled triangular symbols (with error bars) in A
are for Monte Carlo analysis of many-fiber unit cells with periodic boundary conditions. The open symbols (with error bars) are upper bound (squares) and
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The SLC model is based on recently optimized shear lag
methods that alter (and improve) the shear lag parameter
[4–6] and explicitly account for imperfect interfaces [7]. The
model is split into two regions (see Fig. 7A) and the y axis
is converted to a dimensionless coordinate using ζ = y/r f ;
the fiber top is at ζ = ρ and the matrix top is at ζ = ρV1/Vf
where V1 is fiber volume fraction within region II:

V1 =
r f L f t

rm L f t
=

r f

r f +∆

where ∆ is found by Eq. (7). Region I is divided into two
perfectly-bonded matrix layers aligned with the fiber — a
“core” layer from x = 0 to r f and an “outer” layer from x = r f
to rm (note that V1 is also core layer volume fraction in re-
gion I). The general shear lag solution [5–7] for average axial
stress in the core region is:

〈σc(ζ)〉= σ0 + C1eβ1ζ + C2e−β1ζ

whereσ0 is the total applied stress and β1 is the shear lag pa-
rameter [4, 5] in region I for layers with identical properties
and a perfect interface:

β2
1 =

3GmV1

EmV2

Here V2 = 1 − V1 is the matrix volume fraction in region II
(and outer layer volume fraction in region I) and Em and Gm
are matrix tensile and shear moduli. Assuming uniform stress
σ0 along the edge at ζ = ρV1/Vf , using force balance, and
redefining C1, the average axial stresses in the region I layers
simplify to:

〈σc(ζ)〉 = σ0 + C1 sinh

�

β1

�

ζ−
ρV1

Vf

��

〈σo(ζ)〉 = σ0 −
C1V1

V2
sinh

�

β1

�

ζ−
ρV1

Vf

��

In region II, the average axial stresses in the fiber and ma-
trix are [5–7]:




σ f (ζ)
�

= σ∞ + C3 cosh(β2ζ)

〈σm(ζ)〉=
σ0 − V1

�

σ∞ + C3 cosh(β2ζ)
�

V2

whereσ∞ is the far-field fiber stress (i.e., stress at the middle
of a long fiber) and β2 is the shear lag parameter in region II
[7]:

β2
2 =

E2V1
E f EmV2

V1
3G f
+ V2

3Gm
+ V1

r f Dt

where E2 = E f V1+ EmV2 is rule of mixtures axial modulus of
region II, E f and G f are tensile and shear moduli of the fiber,
and Dt is an imperfect interface term. The imperfect interface
is modeled by allowing interfacial displacement discontinu-
ities that are proportional to the traction in the displacement
direction [26]. For region II, the axial displacement jump at
x = r f is [w] = τ(r f )/Dt , where τ(r f ) is the interfacial shear
stress. When Dt =∞, the displacement jump is zero and the
interface is perfect; when Dt = 0, τ(r f ) is zero and the in-
terface is debonded; all other Dt values model an imperfect
interface.

The two unknown constants, C1 and C3, can be eliminated
by continuity conditions between the fiber end and the core
layer in region I:




σ f (ρ)
�

= 〈σc(ρ)〉 and [w(ρ)] =




σ f (ρ)
�

Dn
(11)

The first is stress continuity. The second is a new imperfect in-
terface relation on the fiber ends where the jump in axial dis-
placement between the fiber and the core layer is determined
by Dn, which is an imperfect interface parameter analogous
to Dt but for normal displacements [26]. The displacement
jump needed for this condition is calculated from

[w(ρ)] =∆ 〈wm〉+∆ 〈wo〉 −∆ 〈wc〉 −∆



w f

�
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where ∆〈wi〉 is the displacement difference between the top
and bottom of region i. Using 1D Hooke’s laws:

∆ 〈wm〉= r f

∫ ρ

0

� 〈σm(ζ)〉
Em

+αm∆T
�

dζ

∆



w f

�

= r f

∫ ρ

0

�


σ f (ζ)
�

E f
+α f∆T

�

dζ

∆ 〈wc〉= r f

∫

ρV1
Vf

ρ

� 〈σc(ζ)〉
Em

+αm∆T
�

dζ

∆ 〈wo〉= r f

∫

ρV1
Vf

ρ

� 〈σo(ζ)〉
Em

+αm∆T
�

dζ

where αm and α f are the thermal expansion coefficients of
the matrix and fiber and ∆T is the temperature difference.
Substituting the stresses, using

σ∞ =
E f

E2
σ0 +α2∆T and α2 =

α f E f V1 +αmEmV2

E2

where α2 is the weighted rule-of-mixtures thermal expansion
coefficient of region II, and integrating (in Mathematica, Wol-
fram Research) gives

[w(ρ)] =
r f ρ

EmV2

�

2C1

sinh2(β∗1ρ)

β1ρ
− C3

E2

E f

sinh(β2ρ)
β2ρ

�

where

β∗1 =
(V1 − Vf )β1

2Vf

Solving Eq. (11) for C1 and C3 gives:

C1 =

σ0
2

�

EmV2β1
r f Dn

+ E2β1
E f β2

�

1− σ∞
σ0

�

tanh(β2ρ)
�

csch(β∗1ρ)

sinh(β∗1ρ) +
�

EmV2β1
r f Dn

+ E2β1
E f β2

tanh(β2ρ)
�

cosh(β∗1ρ)

C3 =
σ∞

��

σ0
σ∞
− 1

�

sinh(β∗1ρ)−
EmV2β1

r f Dn
cosh(β∗1ρ)

�

sech(β2ρ)

sinh(β∗1ρ) +
�

EmV2β1
r f Dn

+ E2β1
E f β2

tanh(β2ρ)
�

cosh(β∗1ρ)

This stress state was compared to FEA average stresses and
the results were good for a wide range of properties. Al-
though this analysis assumed an isotropic fiber, it works for
anisotropic fibers by replacing E f , G f , and α f with the cor-
responding axial properties of an anisotropic fiber.

Finally, the modulus is found by integrating displacements
in the outer matrix layers. By this process, the incremental
length and effective modulus are:

∆L(σ0,∆T ) =∆ 〈wm〉+∆ 〈wo〉 and
1
E∗
=

2∆L(σ0, 0)
σ0 Lm

Substituting stresses, C1, and C3 followed by much simpli-
fication (in Mathematica, Wolfram Research), the modulus
can be cast as:

E2

E∗
= 1+

� E f

Em
− 1

�

(V1 − Vf ) +
E f Vf

EmVm
Λ(ρ)

where

Λ(ρ) =
Vm

V2

E2
E f

tanh(β∗1ρ)
β1ρ

+
�

1+
�

1− E2
E f

�2 tanh(β∗1ρ)
β1η

�

tanh(β2ρ)
β2ρ

1+
tanh(β∗1ρ)
β1η

+ E2
ηE f

tanh(β2ρ)
β2

and η = EmV2/(r f Dn). In the limit of no region I (V1 → Vf )
and debonded fiber end (Dn → 0 and η → ∞ to get zero
stress on the fiber end), the stresses and modulus reduce to
the standard shear lag result for two layers:

C3 = −σ∞sech(β2ρ) and
E2

E∗
= 1+

E f Vf

EmVm

tanh(β2ρ)
β2ρ

(12)

The results here extend this old result to an encapsulated
fiber including both fiber end stress transfer and an imper-
fect interface on fiber ends and sides.

Figure 9 compares E/MT and SLC models to numerical
single-fiber unit cell (SFUC) models with traction loading and
to lower bound BVE results for R = 100 or R = 104 and for
ρ = 5, 20, and 70. For both R = 100 and R = 104, both the
SLC and E/MT models agreed well with both the SFUC and
lower bound BVE. In summary, both the SLC and E/MT mod-
els accurately predict lower bound modulus for an aligned,
short fiber composite for all tested values of R and ρ. They
track the lower bound because the models are based on an
assumption of uniform far-field stress. Because upper and
lower bound results are fairly close for R≤ 100, the SLC and
E/MT models are also close to upper bound results within this
range. But, for R > 100, these models should be recognized
as providing pessimistic, lower bound modulus predictions.

There is a long history of refining analytical models for
short fiber composites based on analysis of the single-fiber
geometry [9]. Because the SLC and E/MT models agree with
refined numerical models for lower bound modulus, this half
of the problem is “solved,” leaving little room for seeking
improved lower bound models. The development of better
analytical models for upper bound modulus (e.g., using dis-
placement boundary conditions) is tempting, but we claim is
doomed to limited success. The best such analytical model-
ing could achieve would be to agree with numerical RVE re-
sults with periodic boundary conditions. Section 3.2 shows
those results also give lower bound results for R > 100. In
summary, future analytical modeling should focus on finding
an upper bound modulus using non-unit-cell methods.

3.4. Can an analytical model account for 3D fibers and for im-
perfect interfaces?

Because analytical models agree with most lower bound
BVE results and with upper bound BVE results for R ≤ 100,
we hypothesize that 3D analytical modeling would agree sim-
ilarly with 3D BVE modeling, even though the 3D BVE mod-
eling is not available. This section compares 3D analytical
modeling (an axisymmetric analysis), to numerical, axisym-
metric, single-fiber unit cell results (which is the only unit
cell amenable to axisymmetric analysis). In addition, this
section investigates imperfect interface effects [7, 26]. Un-
fortunately, an Eshelby analysis [2] cannot be extended to
modeling of imperfect interfaces. An Eshelby analysis works
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Figure 9: Axial composite modulus for R= 100 (A) and R= 104 (B) as a function of fiber volume fraction for three fiber aspect ratios. The dashed and solid
curves are analytical models based on the new shear lag method (SLC) and an Eshelby/Mori-Tanaka approach (E/MT), respectively. The dotted curves are
numerical results with traction boundary conditions for a single-fiber unit cell (SFUC). The symbols are lower bound, Monte Carlo BVE results with error bars
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by exploiting the observation that elliptical fibers have con-
stant stress; this property allows replacement methods to
find modulus [1, 23]. When the interfaces are imperfect
[26], however, the stresses in an elliptical fiber are no longer
constant (as confirmed by FEA modeling), which means an
Eshelby approach no longer works. In contrast, the SLC
model derived above includes imperfect interfaces. This sec-
tion therefore compares an axisymmetric SLC model to con-
verged, axisymmetric FEA calculations with imperfect inter-
face elements [27] to verify if the SLC model works in 3D and
if it correctly models imperfect interfaces.

The SLC analysis in the previous section was for the 2D
problem. It can easily be extended to an axisymmetric analy-
sis for an end-capped fiber cylinder simply by redefining vol-
ume fractions, ∆, and the shear lag parameters β1 and β2.
The fiber volume fraction within region II becomes

V1 =
πr2

f L f

πr2
m L f

=
ρr2

f

(r f +∆)2

where ∆ is found by solving the following cubic equation

Vf =
πr2

f L f

πr2
m Lm

=
ρr3

f

(r f +∆)2(ρr f +∆)

The shear lag parameters become [7]:

β2
1 = −

4GmV2

Em(V2 + ln V1)
and β2

2 =

4E2
E f Em

V2
2G f
− 1

Gm

�

V2
2 + 1+ ln V1

V2

�

+ 2V2
r f Dt

After these changes, all other equations in the SLC model are
the same.

Figure 10 compares SLC models to FEA analysis of an ax-
isymmetric model using periodic displacement or traction
boundary conditions as a function of interface parameter
for three different aspect ratios, two R values, and all for
Vf = 0.15. In these calculations, the two interface param-
eters were made equal Dn = Dt and high values on the right

correspond to the perfect interface limit. The SLC model ac-
curately reproduces the numerical results and therefore pro-
vides a useful model for studying both 3D (cylindrical fibers)
and imperfect interface effects. The SLC model falls between
numerical results with displacement and traction boundary
conditions and is closer to the traction results. This trend
is likely because the SLC model is based on traction bound-
ary conditions. Because an Eshelby analysis [2] cannot ac-
count for imperfect interfaces, it is plotted on the right as
short, dashed horizontal lines representing the 3D (ellip-
soidal fibers), perfect-interface, E/MT result [1, 2, 23]. Con-
trary to the Russel [23] approach of approximating the Es-
helby tensor for high aspect ratio fibers, these calculations
used the exact Eshelby tensor for ellipsoidal inclusions given
in Ref. [2]. The Eshelby analysis is inconsistent. It is be-
low numerical results for ρ = 5, but moves above it as ρ
increases.

3.5. Other Properties

For mean field modeling of random or partially ordered
composites, one needs all mechanical properties of the unit
cell with random, aligned fibers. Most work focuses on anal-
ysis for E(r)y y because it is the property that is most affected
by fiber aspect ratio, ρ. Christensen [1] shows that for an
Eshelby [2] analysis, the shear modulus is independent of
ρ and therefore equal to the shear modulus of a continuous
fiber composite. Similarly, the transverse modulus, E(r)x x , and
Poisson’s ratio, νy x , may only weakly be affected by ρ. In
other words, once E(r)y y is found, the remaining properties are
assumed to follow by simpler methods. We checked this con-
ventional wisdom with the numerical BVE results. Figure 11
plots E(r)x x , G(r)x y , and ν(r)y x as a function of ρ for two R val-
ues and all for Vf = 0.2. For R = 100, all these properties
are nearly independent of ρ and thus are equal to results for
continuous fiber composites. In contrast, for R = 105, E(r)x x
and G(r)x y decrease. This behavior will need to be included
when doing mean field modeling of such composites.
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4. Conclusions

This paper tackled seemingly basic questions whose an-
swers, in our opinion, provide insights for evaluating past
and future literature on short fiber composites. The novel
results were to develop a method for bounding the mechan-
ical properties and use that approach to study a regime that
is not commonly examined (namely large R and large ρ).
The numerical experiments showed that for R < 100, the
bounds are rather close and other numerical and analytical
models fall within those bounds and therefore must be close
to the correct answer. For R > 100, however, the numer-
ical bounds diverge and both analytical methods and prior
numerical methods based on periodic displacement bound-
ary conditions degenerate to lower bound results. We do not
claim the numerical upper bounds are predicting the mod-
ulus of real materials — they are upper bound results and
because of the crude mesh are not the best upper bounds
possible. But, all efforts to seek refined upper bounds sug-
gest that at large R even improved upper bounds are two or
more orders of magnitude higher than results found by prior
methods. Given that some experimental results on reinforce-

ment of elastomers [14, 16] exceed predictions by analytical
or prior numerical models, but do not exceed upper bound
BVE results, the two options are that current modeling meth-
ods are inadequate or that we must abandon continuum me-
chanics. The upper bound results here demonstrate the an-
swer might be the former.

Analytical models typically treat a single fiber. The Es-
helby/ Mori-Tanaka approach [2, 3] and the new shear lag
method presented here, agreed well with lower bound, nu-
merical, single-fiber models, but gave no information about
upper bound modulus for high R. The new shear lag method
adds modeling for imperfect interfaces. It is not worth the ef-
fort to seek “improved” analytical models because there is lit-
tle room to improve agreement with numerical modeling on
the same structure. The more interesting problem is how to
avoid degenerating to a lower bound results. The next tasks
for short fiber composite modeling should be to develop a
new approach to analytical modeling that can predict upper
bound moduli for all values of R and to extend that model-
ing to composites with non-aligned fibers by averaging over
a fiber distribution function [1].
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Appendix

A 2D, plane-strain Eshelby analysis [2] can be derived by
following Christensen [1], which is based on Russel [23]. We
begin by specifying ε11 = ε0, ε22 = εr , and ε33 = 0, where the
fiber is the 1 direction and the 3 direction is the thickness di-
rection with zero strain for a plane-strain analysis. Modifying
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Russel [23] with a plane-strain constitutive law and requir-
ing only the stress in the 2 direction to be zero, the effective
fiber direction modulus and Poisson’s ratio become:

E∗11 = E(r)m

�

1− Vf (A1111 − A1122ν
∗
12)
�

and

ν∗12 =
ν(r)m − Vf

�

A2211 + ν(r)m A1111

�

1− Vf

�

A2222 + ν
(r)
m A1122

�

where Ai jkl are elements of the fourth-rank tensor that relates
Eshelby transformation strain to applied strain:

εT
i j = Ai jklε

0
kl

Continuing along a 2D plane-strain analog of the Russel anal-
ysis [23], the Ai jkl terms can be found from

A1111 =
a22 b11 − a12 b12

a11a22 − a12a21
A1122 =

a22 b12 − a12 b22

a11a22 − a12a21

A2211 =
a11 b12 − a21 b11

a11a22 − a12a21
A2222 =

a11 b22 − a21 b12

a11a22 − a12a21

where

a11 = ∆λ(S1111 + S2211) + 2∆GS1111 +λm + 2Gm

a12 = ∆λ(S1122 + S2222) + 2∆GS1122 +λm

a21 = ∆λ(S1111 + S2211) + 2∆GS2211 +λm

a22 = ∆λ(S1122 + S2222) + 2∆GS2222 +λm + 2Gm

b11 = b22 = −∆λ− 2∆G = −(λ f −λm)− 2(G f − Gm)

b12 = b21 = −∆λ= −(λ f −λm)

and Si jkl are elements of the 2D, plain-strain Eshelby ten-
sor. The terms λ f and λm are the Lamé parameters for the
fiber and matrix. For results, Russel [23] substituted the 3D
Eshelby tensor [2] (as approximated for large aspect ratio
[1, 23]) and took limiting results for small Vf . Here we need
the 2D plane-strain Eshelby tensor [2] evaluated exactly to
handle small aspect ratios and we used the full modulus and
Poisson’s ratio expressions instead of their low Vf limits. For-
tunately, Eshelby [2] provides explicit 2D plane-strain results
for the case with elliptical axes a > b (ρ = a/b) and c =∞:

S1111 =
1

2(1− νm)

�

1+ 2ρ
(ρ + 1)2

+
1− 2νm

ρ + 1

�

S1122 =
1

2(1− νm)

�

1
(ρ + 1)2

−
1− 2νm

ρ + 1

�

S2211 =
1

2(1− νm)

�

ρ2

(ρ + 1)2
−
(1− 2νm)ρ
ρ + 1

�

S2222 =
1

2(1− νm)

�

ρ(ρ + 2)
(ρ + 1)2

+
(1− 2νm)ρ
ρ + 1

�

Here νm is the unreduced matrix Poisson’s ratio and it is re-
lated to the plane-strain Poisson’s ratio by νm = ν(r)m /(1 +
ν(r)m ).
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