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ABSTRACT

The microcracking process in laminates which have outer-ply 90◦ plies (e.g. [90m/0n]s) has

some important differences from the microcracking process in laminates which lack outer-ply

90◦ plies (e.g. [0n/90m]s). Foremost among the differences is the characteristic damage state.

[90m/0n]s laminates form antisymmetric or staggered microcracks while [0n/90m]s laminates

form symmetric microcracks. To explain observed differences, this paper presents a variational

mechanics analysis of the stresses and the energy release rate in a [90m/0n]s laminate having

staggered microcracks. The new analysis and a previous analysis of [0m/90n]s laminates are used

to assess the effect of laminate structure on the mechanical properties and failure properties of

cross-ply laminates. The findings are: 1. A given level of microcracking damage causes a greater

amount of degradation in mechanical properties in [90m/0n]s laminates than in the corresponding

[0n/90m]s laminates. 2. Although [90m/0n]s laminates will initiate microcracks at lower loads,

the corresponding [0n/90m]s laminates will develop more microcracks after continued loading.

3. A bending effect present in [90m/0n]s laminates but not in [0n/90m]s laminates promotes

mode I delamination in [90m/0n]s laminates.

INTRODUCTION

The initial form of damage in cross-ply laminates loaded in tension is transverse matrix cracking or

microcracking in the 90◦ plies (e.g. [1–8]). Microcracks are observed during static tensile loading [1–8],

fatigue loading [3,9,10], or thermal loading [11,12]. The study of microcracks has commonly been done

using experiments on cross-ply laminates of generic layup [0n/90m]s [1–13]. These laminates have a 90◦ ply

group in the middle. Their characteristic damage state is a roughly periodic array of microcracks with each

microcrack spanning the entire cross-section of the 90◦ ply group [3,13].

An important class of cross-ply laminates that has received significantly less study is laminates of generic

layup [90m/0n]s or laminates which have outer-ply 90◦ ply groups. The characteristic damage state of

[90m/0n]s laminates is again a roughly periodic array of microcracks in each of the two 90◦ ply groups with

each microcrack spanning the entire cross-section of its’ ply group [3,13,14]. Unlike [0n/90m]s laminates,

however, [90m/0n]s laminates have two 90◦ply groups and the description of the characteristic damage state

must include a description of the relation between the microcracks in one 90◦ply group and those in the other

90◦ ply group. The few observations available [3,14] show that if the microcrack density is high enough, the
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Figure 1: The characteristic damage state of A: [0n/90m]s laminate, B: [90m/0n]s laminate
having “staggered” or antisymmetric microcracks, C: [90m/0n]s laminate having symmetric
microcracks (this symmetric damage state is sometimes assumed in analyses but is never
observed in experiments.)

cracks in the two 90◦ ply groups are “staggered.” By staggered microcracks we mean that the microcracks

in one 90◦ ply group are shifted by half a crack interval from the microcracks in the other 90◦ ply group.

Figure 1 shows the characteristic damage states of [0n/90m]s and [90m/0n]s laminates. Also shown in Fig. 1

is a “nonstaggered” characteristic damage state in [90m/0n]s laminates. The nonstaggered damage state

is included for comparison and because it is the damage state assumed in some analyses [15–17]. To our

knowledge, the nonstaggered characteristic damage state is never observed in [90m/0n]s laminates during

experiments.

Besides the differences in the characteristic damage state, there are other significant differences between

microcracking in [0n/90m]s and in [90m/0n]s laminates. The crack density as a function of applied load is

layup dependent. In particular, the applied stress to cause the initial microcrack and the saturation crack

density are both functions of the stacking sequence. In [90m/0n]s laminates, these quantities are both lower

than the corresponding quantities in [0n/90m]s laminates [3,13]. Highsmith and Reifsnider [3] report the

stiffness reduction due to microcracks in outer-ply 90◦ ply groups. The stiffness reduction differs, in details,

from the stiffness reduction of the corresponding [0n/90m]s laminate. Hashin [16] has analyzed the effect of

inner- and outer-ply cracks on the thermal expansion coefficient; the calculated effects are different.

The differences between the microcracking properties of [90m/0n]s and [0n/90m]s laminates described

above suggest that more analyses and experiments on [90m/0n]s laminates aimed at explaining those differ-

ences would be desirable. Explaining those differences has more significance than “academic” interest. All

cross-ply laminates have outer-ply 90◦ ply groups when viewed from some particular direction. [0n/90m]s

laminates, for example, when viewed from the transverse direction are seen as [90n/0m]s laminates. Due to

this bidirectional nature of cross-ply laminates, any cross-ply laminate subjected to biaxial loading, or to

2



transverse loading in the case of [0n/90m]s laminates, will be prone to the development of microcracks in

outer-ply 90◦ ply groups. One important biaxial loading example is thermal loading. Due to a mismatch in

the thermal expansion coefficients of 0◦ and 90◦ plies, any cross-ply laminate subjected to thermal cycling

will experience biaxial thermal loading. Thermal loading of [0m/90n]s laminates has been observed to cause

microcracks in both inner and outer plies [12].

Analyses of [0n/90m]s laminates can be classified as “shear-lag” analysis when they are based on shear-

lag assumptions or when they reduce to results that are equivalent to those based on shear-lag assumptions

(e.g. [2,4,6,7,18,19]). All these analyses are one-dimensional or at best quasi-two-dimensional [e.g. 19].

Because a one-dimensional analysis does not include transverse stresses, it makes no distinction between

[0n/90m]s and [90m/0n]s laminates and these one-dimensional analyses of [0n/90m]s are, by default, also

analyses of [90m/0n]s laminates. Because the resulting solutions are identical, however, such analyses are

of no help in explaining the observed differences between [0n/90m]s and [90m/0n]s laminates. Explanation

of the observed differences can only come from an accurate two-dimensional analysis. The most promising

approach appears to be the variational mechanics approach originally developed by Hashin [20,21,22]. This

type of analysis was shown to accurately predict the stiffness reduction of [0n/90m]s laminates [20]. It has

subsequently been extended and used to explain the microcracking fracture and fatigue behavior of [0n/90m]s

laminates [15,23,24].

This paper presents a new variational mechanics analysis of [90m/0n]s laminates. An important aspect

of this new analysis is that it accounts for antisymmetric or staggered microcracks. The occurrence of stag-

gered microcracks vs. nonstaggered microcracks adds significant complication to the analysis. Is the extra

complication necessary? In extending Hashin’s [20,21] analysis to fracture problems, Nairn [15] included

an analysis of [90m/0n]s laminates with nonstaggered microcracks (see Fig. 1C) as a trivial extension of a

[0n/90m]s analysis. Recent experimental results [14], however, show that for [90m/0n]s laminates with stag-

gered microcracks, the nonstaggered microcrack analysis is not in good agreement with experimental results.

We thus conclude that previous analyses that have resorted to the simplified assumption of nonstaggered

outer-ply microcracks [e.g. 15,16,17,22] may not provide quantitatively accurate predictions. The analysis in

this paper is the first to account for the observed existence of staggered microcracks in [90m/0n]s laminates.

AN ADMISSIBLE STRESS STATE

Consider an n-layer multilayered sample under a uniaxial stress σ0 in the x direction (see Fig. 2A) and

at the thermal stress-free temperature T0. When there is no damage, each layer will be under a state of

uniform, uniaxial stress:

σ(i)
xx = σ(i)

x0 = k(i)σ0 =
E

(i)
x

E0
σ0 (1)

σ(i)
xz = σ(i)

zz = 0 (2)

In this notation, superscript (i) refers to a stress or property in layer i, k is an effective stiffness, Ex is the

x-direction Young’s modulus, and E0 is the x-direction Young’s modulus of the undamaged laminate. The

last equality in Eq. (1) follows from an assumption of constant x-direction axial strain in the undamaged
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Figure 2: An n layer multilayered structure showing the coordinate system and some of the
terms defined in this paper. A: An undamaged multilayered structure. B: The same multi-
layered structure after damage.

sample. We next impose an arbitrary state of damage on the n-layer multilayered sample (see Fig. 2B). The

damage will be caused by an increase in load and/or a change in temperature to Ts. The presence of damage

will perturb the stresses in each layer. Following Hashin [20,21] we make one and only one assumption—that

the new x-axis tensile stresses (σ(i)
xx) are independent of the z-axis or transverse direction within each layer.

A general stress state that fulfills this assumption and simultaneously satisfies stress equilibrium can easily

be derived as:

σ(i)
xx = σ(i)

x0 − ψi (3)

σ(i)
xz = λiFi (4)

σ(i)
zz = −λ2

i fi (5)

where λi = ti

t1
, ti is the thickness of the ith layer, ψi(ξ) is a function of the dimensionless x-direction

coordinate ξ (ξ = x/t1), and Fi(ξ, ζ) and fi(ξ, ζ) are functions of ξ and of the dimensionless z-direction

coordinate ζ:

ζ =
z − ∑i−1

j=1 tj

ti
(6)

which runs from 0 to 1 within each layer. The functions Fi, fi, and ψi are interrelated by equilibrium:

∂Fi
∂ξ

=
∂fi
∂ζ

(7)

ψ′
i =

dψi
dξ

=
∂Fi
∂ζ

(8)
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Integrating these expressions, the functions Fi and fi have the general form

Fi = ψ′
i(ξ)ζ + gi(ξ) (9)

fi =
1
2
ψ′′
i (ξ)ζ2 + g′i(ξ)ζ + hi(ξ) (10)

where gi(ξ) and hi(ξ) are two arbitrary functions of ξ.

That the above stress state satisfies equilibrium can be verified by substituting it into the stress equilib-

rium equations. To be an admissible stress state, the stresses must further satisfy traction boundary condi-

tions and continuity conditions for shear and transverse stresses between layers. First, the stress-free surfaces

at the start of layer 1 and at the end of layer n imply that σ(1)
xz (0) = σ

(1)
zz (0) = 0 and σ(n)

xz (1) = σ
(n)
zz (1) = 0.

With these boundary conditions and Eqs. (9) and (10) we find

F1 = ψ′
1ζ

Fn = ψ′
n(ζ − 1)

f1 =
1
2
ψ′′

1 ζ
2

fn =
1
2
ψ′′
n(ζ − 1)2

(11)

If we know Fi and fi in layer i we can derive Fi+1 and fi+1 (for i �= n) using the stress continuity conditions

σ
(i)
xz (1) = σ(i+1)

xz (0) and σ(i)
zz (1) = σ(i+1)

zz (0). Likewise we can derive Fi−1 and fi−1 (for i �= 1) using the stress

continuity conditions σ(i)
xz (0) = σ(i−1)

xz (1) and σ(i)
zz (0) = σ(i−1)

zz (1). The results are

Fi+1 = ψ′
i+1ζ +

λiFi(ξ, 1)
λi+1

(12)

fi+1 =
1
2
ψ′′
i+1ζ

2 +
λiζ

λi+1

∂Fi(ξ, 1)
∂ξ

+
λ2
i fi(ξ, 1)
λ2
i+1

(13)

Fi−1 = ψ′
i−1(ζ − 1) +

λiFi(ξ, 0)
λi−1

(14)

fi−1 =
1
2
ψ′′
i−1(ζ − 1)2 +

λi(ζ − 1)
λi−1

∂Fi(ξ, 0)
∂ξ

+
λ2
i fi(ξ, 0)
λ2
i−1

(15)

Having established F1, f1, Fn, and fn, Fi and fi for all i can be found from Eqs. (12)–(15) by induction.

From the general results that began this section we derive a specific result for the stress state in a

[90m/0n]s laminate in the presence of staggered microcracks. A four-layer unit cell of damage is show in

Fig. 3A. Layers 1 and 4 are 90◦ ply groups. Layers 2 and 3 split the 0◦ ply group into two layers. The unit

cell of damage extends from x = −a to x = +a or from ξ = −ρ to ξ = +ρ where ρ = a/t1. Layer 1 has

microcracks located at ξ = ±ρ. Due to crack stagger, the microcrack in layer 4 is located at ξ = 0. Unlike

[0n/90m]s laminates or [90m/0n]s laminates with the simplified assumption of nonstaggered microcracks (see

Fig. 1C), the [90m/0n]s laminate with staggered microcracks is no longer symmetric about the midplane (the

plane between layers 2 and 3). Although previous analyses for symmetric problems only needed to consider

half the laminate or two of the layers [15,20,21], our new analysis which accounts for staggered microcracks

must consider all four layers. In short, the antisymmetric damage state complicates the stress analysis.

Although the damage state is not symmetric about the midplane, the ply dimensions and mechanical

properties are symmetric about the midplane. We thus have t3 = t2, t4 = t1, λ4 = λ1 = 1 and λ3 = λ2 =
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Figure 3: A unit cell of damage in an [90m/0n]s having “staggered” or antisymmetric microc-
racks. A: A single unit cell of damage. B: Three unit cells of damage after formation of new
microcracks at locations of local maxima in tensile stress.

λ = t2/t1. Using these relations and setting n = 4 yields

F1 = ψ′
1ζ

F2 = ψ′
2ζ +

1
λ
ψ′

1

F3 = ψ′
3(ζ − 1) − 1

λ
ψ′

4

F4 = ψ′
4(ζ − 1)

f1 =
1
2
ψ′′

1 ζ
2

f2 =
1
2
ψ′′

2 ζ
2 +

1
λ
ψ′′

1 ζ +
1

2λ2
ψ′′

1

f3 =
1
2
ψ′′

3 (ζ − 1)2 − 1
λ
ψ′′

4 (ζ − 1) +
1

2λ2
ψ′′

4

f4 =
1
2
ψ′′

4 (ζ − 1)2

(16)

where F2 and f2 were derived using Eqs. (12) and (13) and F3 and f3 were derived using Eqs. (14) and (15).

The stress state in Eq. (16) depends on four functions of ξ—ψ1, ψ2, ψ3, and ψ4. We can eliminate

two of these functions using force balance and stress continuity conditions between layers 2 and 3. By force

balance
4∑

i=1

tiσ
(i)
xx =

4∑
i=1

tiσ
(i)
x0 (17)

which reduces to

λ(ψ2 + ψ3) = −ψ1 − ψ4 (18)

Transverse stress continuity between layers 2 and 3 implies that σ(2)
xx (1) = σ(3)

xx (0), which eventually yields

−λ2(ψ2 − ψ3) = (1 + 2λ)(ψ1 − ψ4) (19)

Shear stress continuity between layers 2 and 3 implies that σ(2)
xz (1) = σ

(3)
xz (0). This condition reduces to the

first derivative of Eq. (18) and thus provides no additional constraint. Differentiating Eq. (18) twice and
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simultaneously solving the resultant equation and Eq. (19) for ψ′′
2 and ψ′′

3 yields

ψ′′
2 = Aψ′′

1 +Bψ′′
4 (20)

ψ′′
3 = Bψ′′

1 +Aψ′′
1 (21)

where

A = −1 + 3λ
2λ2

B =
1 + λ
2λ2

(22)

Because the unit cell of damage is symmetric about a plane through ξ = 0, ψi must be an even function and

ψ′
i must be an odd function. Using these symmetry conditions, we can integrate Eqs. (20) and (21) to get

ψ′
2 = Aψ′

1 +Bψ′
4 (23)

ψ′
3 = Bψ′

1 +Aψ′
4 (24)

The integration constant must be zero to preserve the odd symmetry of ψ′
i. Integrating Eqs. (20) and (21)

a second time and using force balance yield

ψ2 = Aψ1 +Bψ4 + η (25)

ψ3 = Bψ1 +Aψ4 − η (26)

where η is an integration constant. We argue that far away from any cracks, the functions ψ1 to ψ4 must

simultaneously approach zero. For this behavior to occur η must be zero and thus

ψ2 = Aψ1 +Bψ4 (27)

ψ3 = Bψ1 +Aψ4 (28)

COMPLEMENTARY ENERGY MINIMIZATION

The equations in the previous section define an admissible stress state for a [90m/0n]s laminate damaged

with staggered microcracks. The stress state obeys equilibrium, all traction boundary conditions, and stress

continuity between layers. The stress state is expressed in terms of two unknown functions of ξ — ψ1

and ψ4. By the principle of minimum complementary energy, the functions ψ1 and ψ4 that produce the

minimum complementary energy will provide the best approximation to the stress state in a microcracked

laminate. For thermoelastic analyses, a variational solution that minimizes complementary energy is found

by minimizing the functional Γ given by

Γ =
1
2

∫
V

�σ · K�σdV +
∫
V

�σ · �αTdS −
∫
S1

�σ · ûdS (29)

where �σ is the stress tensor, K is the compliance tensor, �α is the thermal expansion coefficient tensor,

T = Ts − T0 is the difference between the sample temperature (Ts) and the stress-free temperature (T0), V

is the volume of the laminate, and S1 is that part of the laminate surface subjected to a fixed displacement
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[25]. In this problem S1 is null. Note that for the two dimensional analysis described in this paper the stress

and thermal expansion coefficient tensors are written as vectors: �σ = (σxx, σzz, σxz) and �α = (αx, αz, αxz).

Substituting the [90m/0n]s laminate stress state into Eq. (29) and assuming that each ply group is

orthotropic with at least one of the material axes coincident with either the x or z axis, Γ per unit depth for

the region −a < x < a (or −ρ < ξ < ρ) is

Γ = Γ0 + t21
4∑

i=1

∫ ρ

−ρ

[
λiψ

2
i

2E(i)
x

− ν
(i)
xz λ3

iψi

E
(i)
x

∫ 1

0

fidζ +
λ5
i

2E(i)
z

∫ 1

0

f2
i dζ +

λ3
i

2G(i)
xz

∫ 1

0

F 2
i dζ

+ λ3
i

(
σ

(i)
x0ν

(i)
xz

E
(i)
x

− α(i)
z T

)∫ 1

0

fidζ − α(i)
x λiTψi

]
dξ

(30)

where E(i)
x , E(i)

z , G(i)
xz , ν

(i)
xz , α(i)

x , and α(i)
z are the mechanical and thermal expansion properties of the ith

layer, being, respectively, x and z direction Young’s moduli, in-plane shear modulus, in-plane Poisson’s ratio,

and x and z direction thermal expansion coefficients. The term Γ0 is a constant energy term that does not

enter energy minimization procedures:

Γ0 = 2ρt21
4∑

i=1

λi


 σ

(i)
x0

2

2E(i)
x

+ α(i)
x Tσ

(i)
x0


 (31)

Substituting the expressions for Fi, fi, ψ2 and ψ3 into Eq. (30) and evaluating all the ζ integrals (which can

be evaluated in closed form) result in

Γ − Γ0 = t21

∫ ρ

−ρ

(
C11(ψ2

1 + ψ2
4) + C21(ψ1ψ

′′
1 + ψ4ψ

′′
4 ) + C31(ψ′′2

1 + ψ′′2
4 ) + C41(ψ′2

1 + ψ′2
4 )

− ∆αT (ψ1 + ψ4) + C12ψ1ψ4 + C22(ψ1ψ
′′
4 + ψ′′

1ψ4) + C32ψ
′′
1ψ

′′
4 + C42ψ

′
1ψ

′
4

)
dξ

(32)

where ∆α = α
(1)
x − α(2)

x and Cij are constants that depend on the dimensions and mechanical properties of

the layers:

C11 =
1

2E(1)
x

+
λ

2E(2)
x

(A2 +B2) (33)

C21 = −1
6

(
ν

(1)
xz

E
(1)
x

+
ν

(2)
xz λ3

E
(2)
x

(
A2 +B2 +

3A
λ

+
3A
λ2

))
(34)

C31 =
1

120

(
3

E
(1)
z

+
λ

E
(2)
z

(
3(A2 +B2)λ4 + 15Aλ3 + 10(A+ 2)λ2 + 30λ+ 15

))
(35)

C41 =
1

6G(1)
xz

+
λ3

2G(2)
xz

(
A2 +B2

3
+
A

λ
+

1
λ2

)
(36)

C12 =
2λAB

E
(2)
x

(37)

C22 = −1
6

(
ν

(2)
xz λ3

E
(2)
x

(
2AB +

3B
λ

+
3B
λ2

))
(38)

C32 =
λ

60E(2)
z

(
6ABλ4 + 15Bλ3 + 10Bλ2

)
(39)

C42 =
λ3

G
(2)
xz

(
2AB

3
+
B

λ

)
(40)
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By the assumption of staggered microcracks, the function ψ4 is identical to ψ1 except that it is shifted

by half a crack interval:

ψ4 =
{ψ1(ξ − ρ) for ξ > 0

ψ1(ξ + ρ) for ξ < 0
(41)

In addition to this condition, ψ1 and all its even derivatives are even, while all its odd derivatives are odd.

By virtue of Eq. (41), ψ1 and ψ4 are dependent functions, but we can treat them as independent functions if

we consider only the interval (0, ρ2 ) and impose appropriate boundary conditions at ξ = ρ
2 . After solving for

these two independent functions on the interval (0, ρ2 ), we can construct the complete ψ1 and ψ4 functions

by symmetry and Eq. (41).

The next step is to reduce the integral for Γ− Γ0 to an integral on the interval (0, ρ2 ). The integrand is

an even function about ξ = 0 and we simply reduce the integral to an integral from 0 to ρ by multiplying

by 2. On the interval (0, ρ) we can write ψ1(ξ) = ψ4(ρ − ξ) and ψ4(ξ) = ψ1(ρ − ξ). With this symmetry,

the integral from 0 to ρ
2 is equal to the integral from ρ

2 to ρ. We therefore use an additional facotr of 2 and

rewrite Γ − Γ0 as

Γ − Γ0 = 4t21

∫ ρ
2

0

(
C11(ψ2

1 + ψ2
4) + C21(ψ1ψ

′′
1 + ψ4ψ

′′
4 ) + C31(ψ′′2

1 + ψ′′2
4 ) + C41(ψ′2

1 + ψ′2
4 )

− ∆αT (ψ1 + ψ4) + C12ψ1ψ4 + C22(ψ1ψ
′′
4 + ψ′′

1ψ4) + C32ψ
′′
1ψ

′′
4 + C42ψ

′
1ψ

′
4

)
dξ

(42)

The boundary conditions on the interval (0, ρ2 ), which include the symmetry imposed boundary conditions

at ξ = ρ
2 , are

ψ1(0) = σ (43)

ψ′
1(0) = 0 (44)

ψ4(0) = σ(1)
x0 (45)

ψ′
4(0) = 0 (46)

ψ1(
ρ

2
) = ψ4(

ρ

2
) (47)

ψ′
1(
ρ

2
) = −ψ′

4(
ρ

2
) (48)

where σ, being the value of ψ1 at ξ = 0, is an undetermined constant.

The minimization of the functional Γ− Γ0 is more conveniently found by recasting in terms of two new

functions that are the sum and difference of ψ1 and ψ4:

X = ψ1 + ψ4 (49)

Y = ψ1 − ψ4 (50)

The complementary energy in terms of X and Y is

Γ−Γ0 = t21

∫ ρ
2

0

(
C1X

2 +C2XX
′′ +C3X

′′2 +C4X
′2−4∆αTX+C∗

1Y
2 +C∗

2Y Y
′′ +C∗

3Y
′′2 +C∗

4Y
′2

)
dξ (51)
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where the new constants are

C1 = 2C11 + C12 =
1

E
(1)
x

+
1

λE
(2)
x

(52)

C2 = 2C21 + 2C22 = − ν
(1)
xz

3E(1)
x

+
ν

(2)
xz

E
(2)
x

(
1 +

2λ
3

)
(53)

C3 = 2C31 + C32 =
1

20E(1)
z

+
λ

60E(2)
z

(
8λ2 + 20λ+ 15

)
(54)

C4 = 2C41 + C42 =
1

3G(1)
xz

+
λ

3G(2)
xz

(55)

C∗
1 = 2C11 − C12 =

1

E
(1)
x

+
(1 + 2λ)2

λ3E
(2)
x

(56)

C∗
2 = 2C21 − 2C22 = − ν

(1)
xz

3E(1)
x

+
ν

(2)
xz

E
(2)
x

[
(1 + 2λ)(2 + λ)

3λ

]
(57)

C∗
3 = 2C31 − C32 =

1

20E(1)
z

+
λ

60E(2)
z

(
2λ2 + 7λ+ 8

)
(58)

C∗
4 = 2C41 − C42 =

1

3G(1)
xz

+
1 + λ+ λ2

3λG(2)
xz

(59)

C1 through C4 are identical to the constants that appear in the analysis of [90n/0m]s laminates with non-

staggered microcracks [15]. The complementary constants C∗
1 through C∗

4 are new. From Eqs. (43)–(48),

the boundary conditions for X and Y are

X(0) = σ + σ(1)
x0 (60)

X ′(0) = 0 (61)

X ′
(ρ

2

)
= 0 (62)

Y (0) = σ − σ(1)
x0 (63)

Y ′(0) = 0 (64)

Y
(ρ

2

)
= 0 (65)

Treating σ as a given, albeit unknown, constant, the minimization of Γ − Γ0 is a calculus of variations

problem having variable end conditions for X
(
ρ
2

)
and for Y ′(ρ

2

)
[26]. Taking the first variation of Γ− Γ0 and

accounting for the two variable end conditions yields the following equations:
∂Φ
∂X

− ∂

∂ξ

(
∂Φ
∂X ′

)
+
∂2

∂ξ2

(
∂Φ
∂X ′′

)
= 0 (66)

∂Φ
∂Y

− ∂

∂ξ

(
∂Φ
∂Y ′

)
+
∂2

∂ξ2

(
∂Φ
∂Y ′′

)
= 0 (67)

∂Φ
∂X ′ −

∂

∂ξ

(
∂Φ
∂X ′′

)
= 0 at ξ =

ρ

2
(68)

∂Φ
∂Y ′′ = 0 at ξ =

ρ

2
(69)

where Φ is the integrand in the Γ − Γ0 expression. The first two equations lead to two Euler equations for

X and Y :

Xiv + pX ′′ + qX =
2∆αT
C3

(70)
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Y iv + p∗Y ′′ + q∗Y = 0 (71)

where

p =
C2 − C4

C3

q =
C1

C3

p∗ =
C∗

2 − C∗
4

C∗
3

q∗ =
C∗

1

C∗
3

(72)

Eqs. (68) and (69) give two new boundary conditions:

X ′′′
(ρ

2

)
= 0 (73)

Y ′′
(ρ

2

)
= 0 (74)

The two Euler equations (Eqs. (70) and (71)) and the eight boundary conditions (Eqs. (60)–(65),(73),(74))

are what we have to solve for X and Y .

The two Euler equations are two uncoupled fourth order differential equations each similar to the

equations that resulted from the variational analysis of [0n/90m]s laminates. We can extract their general

solutions from the results in Hashin [20,21] and in Nairn [15]. The specific solutions depend on the boundary

conditions presented in this paper. The details of the solution process are described in the Appendix.

After solving for X and Y , the solution is complete except for determination of the undetermined

constant σ, which can be obtained by finding the value of σ that minimizes Γ − Γ0. To achieve this second

minimization we insert the solutions for X and Y back into the expression for Γ−Γ0 (Eq. (51)). Fortunately

we can use the two Euler equations to simplify this task. Multiplying Eq. (70) by C3X and integrating from

0 to ρ
2 gives ∫ ρ

2

0

(
C1X

2 + C2XX
′′ + C3X

′′2 + C4X
′2 − 2∆αTX

)
dξ = C3

(
σ + σ(1)

x0

)
X ′′′(0) (75)

Multiplying Eq. (71) by C∗
3Y and integrating from 0 to ρ

2 gives∫ ρ
2

0

(
C∗

1Y
2 + C∗

2Y Y
′′ + C∗

3Y
′′2 + C∗

4Y
′2

)
dξ = C∗

3

(
σ − σ(1)

x0

)
Y ′′′(0) (76)

These result in

Γ − Γ0 = t21
(
C3

(
σ + σ(1)

x0

)
X ′′′(0) + C∗

3

(
σ − σ(1)

x0

)
Y ′′′(0) − 2∆αT 〈X〉

)
(77)

where the average value notation means

〈f〉 =
∫ ρ

2

0

fdξ (78)

Substituting 〈X〉, X ′′′(0) and Y ′′′(0) derived in the Appendix into Eq. (77) gives

Γ − Γ0 = t21

[
C3

(
σ + σ(1)

x0 − 2∆αT
C1

)2

χ
(ρ

2

)
+ C∗

3

(
σ − σ(1)

x0

)2

χ∗
(ρ

2

)
+

2ρ∆α2T 2

C1

]
(79)

The functions χ
(
ρ
2

)
and χ∗

(
ρ
2

)
are given in the Appendix and found not to depend on σ. We differentiate

Eq. (79) with respect to σ to find the value of σ that minimizes Γ − Γ0. The result is

σ =
σ

(1)
x0 C

∗
3χ

∗(ρ
2

)
−

(
σ

(1)
x0 − 2∆αT

C1

)
C3χ

(
ρ
2

)
C3χ

(
ρ
2

)
+ C∗

3χ
∗(ρ

2

) (80)
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THE EFFECT OF STAGGERED MICROCRACKS

The previous section gives a solution that minimizes the total complementary energy in a [90m/0n]s

laminate having staggered microcracks. The solution is expressed in terms of the functions X and Y on the

interval (0, ρ2 ) and the constant σ. This information allows us to construct the functions ψ1 to ψ4, which

define the stress state, on the interval (−ρ, ρ). In this section we use the obtained stress state to evaluate the

effect of staggered microcracks on the sample strain energy, longitudinal modulus, and longitudinal thermal

expansion coefficient. From the result for strain energy, we deduce the energy release rate for the formation

of new microcracks.

For a given thermoelastic stress state the total strain energy is defined by

U =
∫
V

�σ · K�σdV (81)

This integral is identical to the first term of Eq. (29). We thus find total strain energy by repeating the

evaluation of complementary energy but ignoring the thermal term (the second term in Eq. (29)). The total

strain energy per unit depth in the unit cell of damage in terms of X and Y is

U = U0 + t21

∫ ρ
2

0

(
C1X

2 + C2XX
′′ + C3X

′′2 + C4X
′2 + C∗

1Y
2 + C∗

2Y Y
′′ + C∗

3Y
′′2 + C∗

4Y
′2

)
dξ (82)

where

U0 =
(
σ2

0

2E0

)
2ρt1B (83)

and B = 2(t1 + t2) is the total thickness of the laminate. Using Eqs. (75) and (76) we get

U = U0 + t21
(
C3

(
σ + σ(1)

x0

)
X ′′′(0) + C∗

3

(
σ − σ(1)

x0

)
Y ′′′(0) + 2∆αT 〈X〉

)
(84)

Inserting the expressions of X ′′′(0), Y ′′′(0), 〈X〉 (given in the Appendix ) and σ gives

U =
(
σ2

0

2E0
+
t1∆α2T 2

C1B

)
2ρt1B +

4t21C3χ
(
ρ
2

)
C∗

3χ
∗(ρ

2

)
C3χ

(
ρ
2

)
+ C∗

3χ
∗(ρ

2

)(
σ

(1)
x0

2
− ∆α2T 2

C2
1

)
(85)

For better analogy with the variational analysis of [0n/90m]s laminates [15,20,21] we define a new function

χa(ρ). The subscript “a” stands for cross-ply laminates with antisymmetric or staggered cracks:

χa(ρ) =
2χ

(
ρ
2

)
1 +

C3χ( ρ
2 )

C∗
3χ

∗( ρ
2 )

(86)

The total strain energy in terms of χa(ρ) is

U =
(
σ2

0

2E0
+
t1∆α2T 2

C1B

)
2ρt1B + 2t21C3χa(ρ)

(
σ

(1)
x0

2
− ∆α2T 2

C2
1

)
(87)

This result is identical to the [0n/90m]s laminate result [15] except that the new function χa(ρ) replaces the

function χ(ρ).

We next extend our result to a damaged [90m/0n]s laminate having n microcracks in each 90◦ ply group.

Let the resulting n unit cells of damage be characterized by crack spacings ρ1, ρ2, . . ., ρn. Note that the
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crack spacings can be variable and we do not have to assume a periodic arrangement of cracks. Let the total

sample width in the y direction be W . Summing the strain energies for each unit cell and multiplying by

the sample width, the total strain energy is

U =
(
σ2

0

2E0
+
t1∆α2T 2

C1B

)
LBW + t1C3LW

(
σ

(1)
x0

2
− ∆α2T 2

C2
1

) ∑n
i=1 χa(ρi)∑n

i=1 ρi
(88)

We use Eq. (88) to evaluate the effective sample modulus — E. In the absence of thermal stresses

(T = 0), the strain energy and the complementary energy will be equal. By definition, the complementary

energy of the damaged laminate in terms of an effective sample modulus, E, is

U =
(
σ2

0

2E

)
LBW (89)

By the principles of variational mechanics, Eq. (88) gives an upper bound to the true complementary energy

in Eq. (89). We thus must have(
σ2

0

2E

)
LBW ≤

(
σ2

0

2E0

)
LBW + t1C3LWσ

(1)
x0

2
∑n

i=1 χa(ρi)∑n
i=1 ρi

(90)

Simplifying Eq. (90) results in

1
E

≤ 1
E0

+
2t1C3E

(1)
x

2

BE2
0

∑n
i=1 χa(ρi)∑n

i=1 ρi
(91)

Multiplying both sides of Eq. (91) by L
BW gives an expression for compliance:

C ≤ C0 +
2t1C3LE

(1)
x

2

B2WE2
0

∑n
i=1 χa(ρi)∑n

i=1 ρi
(92)

where

C0 =
L

BE0W
(93)

is the compliance of the undamaged sample. Although Eq. (91) formally only defines a lower bound to the

modulus, the results for [0n/90m]s laminates suggest that it is a tight bound [20]. We therefore expect that

Eqs. (91) and (92) also provide a tight bounds to the modulus and compliance of [90m/0n]s laminates with

staggered microcracks.

It is useful to rewrite the sample strain energy in terms of sample compliance which is an easily measur-

able quantity. We solve Eq. (92) for the summation terms involving χa(ρi) and ρi. Substituting this result

into Eq. (88) gives

U =
(
σ2

0

2E0
+
t1∆α2T 2

C1B

)
LBW + (C − C0)

B2W 2E2
0

2E(1)
x

2

[
σ

(1)
x0

2
− ∆α2T 2

C2
1

]
(94)

This expression for strain energy of [90m/0n]s laminates is symbolically identical to the one for [0n/90m]s

laminates [15]. Differences in strain energy levels as a function of damage arise due to the different functional

forms of the compliance expressions required for use in Eq. (94).

Complete knowledge of the stress state in [90m/0n]s laminates allows us to calculate the effect of

temperature on sample displacements. This calculation can be used to predict the longitudinal thermal
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expansion coefficient. We begin the calculation by finding the total displacement of the intact 0◦ plies —

layers 2 and 3. The unit cell displacement under load P , u(P ), can be found by integrating the strain:

u(P ) = t1
∫ ρ

−ρ

(
σ

(i)
xx

E
(i)
x

− ν
(i)
xz σ

(i)
zz

E
(i)
x

+ α(i)
x T

)
dξ (95)

Using this formula on layers 2 and 3 reveals their displacements to be different. When many crack intervals

are included, the appropriate total displacement is the average of the displacements from these two layers.

We note the σ(i)
zz depends only on ψ′′

1 and ψ′′
4 . Because∫ ρ

−ρ

ψ′′
i dξ = 0 (for i = 1 or 4) (96)

the second term in the displacement equation is zero. Considering only the first and third terms and averaging

the results for layers 2 and 3 give

u(P ) =
1
2
(
u2(P ) + u3(P )

)
=

2ρt1P
BE0W

+ 2ρt1α(2)
x T +

2t1
λE

(2)
x

〈X〉 dξ (97)

Substituting the expression for 〈X〉 (given in the Appendix), the average displacement is

u(P ) =
2ρt1P
BE0W

+ 2ρt1α(2)
x T +

t1C3

λE
(2)
x C1

(
2σ(1)

x0 − 2∆αT
C1

)
χa(ρ) +

2ρt1∆αT

λE
(2)
x C1

(98)

Summing over n unit cells of damage yields

u(P ) =
PL

BE0W
+ α(2)

x LT +
L∆αT

λE
(2)
x C1

+
LC3

λE
(2)
x C1

(
σ

(1)
x0 − ∆αT

C1

) ∑n
i=1 χa(ρi)∑n

i=1 ρi
(99)

The longitudinal laminate thermal expansion coefficient is defined by

αLc =
u(0)
LT

= α(2)
x +

∆α

λE
(2)
x C1

− ∆αC3

λE
(2)
x C2

1

∑n
i=1 χa(ρi)∑n

i=1 ρi
(100)

The first two terms combine to give

α(2)
x +

∆α

λE
(2)
x C1

= 2
t1α

(1)
x E

(1)
x + t2α

(2)
x E

(2)
x

BE0
= α0

Lc (101)

which is the longitudinal thermal expansion coefficient of the undamaged laminate. In deriving Eq. (101)

we used the rule-of-mixtures sample modulus

E0 =
E

(1)
x + λE(2)

x

1 + λ
(102)

to rewrite C1 as

C1 =
BE0

2t2E
(2)
x E

(1)
x

(103)

As with the sample strain energy, the summation part of the last term in Eq. (100) can be written in terms

of the compliance. The final expression for the thermal expansion coefficient becomes

αLc = α0
Lc −

C − C0

C0

∆α
C1ET

(104)
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Eq. (104) is identical to the result for [0n/90m]s laminates [15,24] except of course that the expression for C

differs from the C expression for [0n/90m]s laminates

When written in terms of sample compliance, the expressions for sample strain energy and thermal

expansion coefficient of a damaged [90m/0n]s laminate are symbolically identical to the corresponding ex-

pressions for [0n/90m]s laminates. Any calculation that depends only on these expressions will symbolically

be the same for [0n/90m]s and [90m/0n]s laminates. One such calculation is the total energy released due

to the formation of new microcracks [15,24]. The total energy release rate on going from one state of mi-

crocracking damage to another is found by differentiating the total strain energy (Eq. (94)) at constant

displacement

Gm = −∂U
∂A

∣∣∣
const.u

=
B2W 2E2

0

2E(1)
x

2

(
E

(1)
x

E0
σ0 −

∆αT
C1

)2
dC

dA
(105)

where A is the total microcrack fracture area (A = 2t1nW ). In deriving Eq. (105) we needed to evaluate
∂σ0
∂A

∣∣
const. u

. Using the relation

CP = u(P ) − u(0) = u(P ) − αLLT (106)

where P = σ0BW and differentiating result in

∂σ0

∂A

∣∣
const. u

=

(
E0∆αT

E
(1)
x C1

− σ0

)
1
C

dC

dA
(107)

Evaluating dC
dA by differentiating Eq. (92) and substituting into Eq. (105) result in the final energy release

rate expression:

Gm =

(
E

(1)
x

E0
σ0 −

∆αT
C1

)2

C3t1Y (D) (108)

where Y (D) is a calibration function that depends on the crack density, D = n
L , or more formally on the

complete distribution of crack spacings:

Y (D) = LW
d

dA

∑n
i=1 χa(ρi)∑n

i=1 ρi
=

d

dD

(
D 〈χa(ρ)〉

)
(109)

where 〈χa(ρ)〉 is the average value of χa(ρ) over the n unit cells of damage.

To use Eq. (108), we must evaluate Y (D). As was done for [0n/90m]s laminates [15,24] we evaluate

Y (D) by considering a specific fracture event resulting in new microcracks in the kth unit cell of damage.

The tendency towards staggered microcracks requires that the new microcracks form in layer 1 at ξ = ±ρ/3
and form in layer 4 at ξ = ±2ρ/3. As shown in Fig. 3B, these locations for new microcracks divide the

existing unit cell of damage into three unit cells of damage, each 1
3 as large as the original. In the next

section we explain why it is reasonable for the new microcracks to form at these specific locations. Before

the new microcracks form there are n unit cells of damage and

〈χa(ρ)〉 =
1
n

n∑
i=1

χa(ρi) and D =
n

L
(110)
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Figure 4: Stresses between two microcracks in the 90◦ ply group of a Hercules AS4/3501-6
[902/0]s laminate. The applied stress in 100 MPa, the thermal load is T = −125◦C, and

the crack spacing is ρ = 4. The normal stress (σ
(1)
xx ) is for the entire ply group. The plotted

shear stress (σ
(1)
xz ) and transverse stress (σ

(1)
zz ) are the stresses at the interface between the

90◦ and 0◦ ply group.

After the new microcracks form in the kth unit cell of damage there will be n+ 2 unit cells of damage and

〈χa(ρ)〉 =
1

n+ 2

[(
n∑

i=1

χa(ρi)

)
− χa(ρk) + 3χa(ρk/3)

]
and D =

n+ 2
L

(111)

By a discrete evaluation of the derivative in Eq. (109) the calibration function is

Y (D) =
∆

(
D 〈χa(ρ)〉

)
∆D

=
1
2
(
3χa(ρk/3) − χa(ρk)

)
(112)

For relatively uniform crack spacings, ρk can be replaced by the average value or ρi or ρ = 1
2t1D

. The final

expression for the energy release rate is

Gm =
1
2

(
E

(1)
x

E0
σ0 −

∆αT
C1

)2

C3t1
(
3χa(ρ/3) − χa(ρ)

)
(113)

RESULTS

In this section we plot the results of the previous section for a specific example of a [902/0]s Hercules

3501-6/AS4 laminate. We assume the following mechanical properties

E(1)
x = E(1)

z = E(2)
z = 9700 MPa

E(2)
x = 130000 MPa

G(1)
xz = 3600 MPa

G(2)
xz = 5000 MPa

ν(1)
xz = 0.5

ν(2)
xz = 0.3

α(1)
x = α(1)

z = α(2)
z = 28.8 10−6 ◦C−1

α(2)
x = −0.09 10−6 ◦C−1

0.154 mm per ply
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Figure 5: The ratio of the modulus of a damaged Hercules AS4/3501-6 laminate to the modulus
of an undamaged laminate as a function of crack density. The two plots compare the results
for a [902/0]s laminate and a [0/902]s laminate. The dashed line is the modulus for a
laminate with discounted 90◦ plies.

The stresses in the 90◦ ply group on the left edge of the laminate in Fig. 3A, or the stresses between two

existing microcracks are plotted in Fig. 4. The stresses are calculated for a specific applied stress of σ0 = 100

MPa, a thermal load caused by a temperature differential of T = −125◦C, and a unit cell of damage

characterized by ρ = 4. The tensile stress (σ(1)
xx ) is zero at the two crack faces as required by boundary

conditions. Midway between the two microcracks and directly opposite the crack in the 90◦ ply group on

the opposing surface (see Fig. 3A) there is a local minimum in tensile stress. This local minimum is caused

by a bending effect that results from the asymmetric nature of the unit cell of damage. Two local maxima

in tensile stress are located at positions close to 1
3 and 2

3 of the way from the bottom microcrack to the top

microcrack. The form of the tensile stresses shown in Fig. 4 can be used to explain the tendency towards

staggered microcracks. Figure 3B shows a unit cell of damage with new microcracks formed at all local

tensile stress maxima. The new damage state is equivalent to three unit cells of damage each 1
3 as large as

the initial unit cell of damage. Thus forming microcracks at maxima in tensile stresses leads to propagation

of staggered microcracks. For microcracks that are farther apart (ρ gets larger), the local stress maxima are

less pronounced. This result suggests that the tendency towards staggered microcracks will be weak when

there are few microcracks but become stronger as the crack density increases.

The shear stress (σ(1)
xz (ζ = 1)) plotted in Fig. 4 is the shear stress at the interface between the 90◦ and

0◦ ply groups. As required by boundary conditions, the shear stress is zero on the crack faces. The shear

stress is also zero at ξ = 0; this zero shear stress is a consequence of symmetry. The peak shear stress is
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Figure 6: The longitudinal thermal expansion coefficient of a Hercules AS4/3501-6 laminate as
a function of crack density. The two plots compare the results for a [902/0]s laminate and a
[0/902]s laminate. The dashed line is the longitudinal thermal expansion coefficient of the
0◦ plies.

similar in magnitude, but less than the peak tensile stress.

The transverse stress (σ(1)
zz (ζ = 1)) plotted in Fig. 4 is the transverse stress at the interface between

the 90◦ and 0◦ ply groups. There is a significant transverse stress concentration at the microcrack tip. The

peak transverse stress is tensile and about twice as large as the peak σ(1)
xx stress. In dramatic contrast, the

corresponding interfacial transverse stress in [0/902]s laminates shows a compressive stress concentration

near the microcrack tips [20]. The difference between [902/0]s and [0/902]s laminates is the bending effect

caused by the asymmetric unit cell in [902/0]s laminates. The same bending effect that caused the local

minimum in σ(1)
xx causes the interfacial transverse tensile stress near the microcrack tips. This high tensile

transverse stress can be expected to promote mode I delamination initiating from the tips of microcracks. The

differences in transverse tensile stresses between [902/0]s and [0/902]s laminates suggest that delamination

failure will be more likely in [902/0]s laminates than in [0/902]s laminates. This suggestion agrees with

preliminary observations [14].

In Figs. 5 and 6 we plot the effect of microcracks on the mechanical properties of cross-ply laminates as

a function of crack density. Each plot gives the results for a [902/0]s laminate and gives a comparison to a

[0/902]s laminate. Also shown in each plot is a dashed line labeled “Ply Discount.” The dashed line is the

result for a laminate in which the 90◦ plies are discounted and assumed to have zero modulus. The results for

both laminates should, and do, asymptotically approach this dashed line in the limit of large crack density.

In these two figures we note that both the laminate longitudinal modulus and the laminate longitudinal
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Figure 7: The crack density in a Hercules AS4/3501-6 laminate as a function of applied stress.
The two plots compare the results for a [902/0]s laminate and a [0/902]s laminate.

thermal expansion coefficient degrade more rapidly in [902/0]s laminates than in [0/902]s laminates. Thus at

moderate levels of microcracking damage, or at levels commonly observed in real laminates [24], microcracks

in [90m/0n]s laminates will cause a larger reduction in properties than microcracks in [0n/90m]s laminates.

In Fig. 7 we plot a fracture mechanics prediction of the crack density as a function of applied stress

during static loading. The fracture mechanics prediction is made by assuming that the next microcrack

will form when the energy released upon forming that microcrack is greater than or equal to some critical

energy release rate—Gmc. Gmc has a physical interpretation as the microcracking fracture toughness or the

intralaminar fracture toughness. If Gmc is known, it can be equated to Gm in Eq. (113)and solved for σ0 to

give the stress required to form the next microcrack for a given laminate structure and current crack density.

Inverting this result gives a prediction of the crack density as a function of applied stress. The result of this

calculation is plotted in Fig. 7. The corresponding result for the [0/902]s laminate uses the energy release

rate analysis in Nairn [15] and in Liu and Nairn [24].

The fracture mechanics prediction of microcrack density requires knowledge of Gmc. This toughness

property has been measured for Hercules 3501-6/AS4 laminates using static tests on [0m/90n]s laminates.

The measured toughness was found to be Gmc = 240 J/m2 [24]; this measured toughness was used to generate

the predictions in Fig. 7. The prediction is that microcracks will begin to form in [902/0]s laminates before

they begin in [0/902]s laminates. At high loads, the [0/902]s laminate will reach a higher crack density than

the [902/0]s laminate. Both of these predictions are in agreement with experimental observations [3,13,14].
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DISCUSSION AND CONCLUSIONS

The analyses of microcracking in both [90m/0n]s and [0n/90m]s laminates requires two distinct solutions.

The major factor preventing a single analysis is that the microcracks in [90m/0n]s laminates are staggered

or antisymmetric while the microcracks in [0n/90m]s laminates are symmetric. The effect of the different

damage states can only be assessed by using an analysis technique that is affected by the crack pattern. One

such analysis technique is the variational mechanics approach originally developed by Hashin [20,21]. The

major result of this paper is an extension of the variational mechanics approach to account for staggered

microcracks. The new analysis is considerably more complex but can be cast in a form analogous to the

analysis of [0n/90m]s laminates.

Predictions of the new analysis of [90m/0n]s laminates have been compared to the predictions of the

corresponding analysis of [0n/90m]s laminates. The different laminate structures and damage states cause

differences in the effect that microcracks have on laminate mechanical properties. In particular, both the

laminate longitudinal modulus and the laminate longitudinal thermal expansion coefficient decrease more

rapidly as a function of damage in [90m/0n]s laminates than they do in [0n/90m]s laminates. The effect

on mechanical properties are relatively minor, however, when compared to the effect on failure properties.

Microcracks initiate at a lower applied stress in [90m/0n]s laminates, but fail to develop to an extent of

microcracking damage that is observed for [0n/90m]s laminates. The transverse normal stress at the interface

between the 90◦ and 0◦ ply groups is large and tensile in [90m/0n]s, a result that is in marked contrast to

the corresponding stress in [0n/90m]s laminates which is smaller and compressive. The transverse tensile

stress renders [90m/0n]s laminates more susceptible to microcrack induced mode I delaminations.

Some of the differences between [90m/0n]s laminates and [0n/90m]s laminates can be understood by

considering bending effects. [0n/90m]s laminates are symmetric and bending effects make no contribution to

the analysis. The unit cell of damage in [90m/0n]s laminates, however, is not symmetric and the asymmetry

leads to a net bending moment. That bending moment causes the unit cell of damage to curve towards

the intact 90◦ ply group and away from the 90◦ ply group that has a microcrack at ξ = 0 (see Fig. 3A

where curving is towards the left). Such a bending effect will create compression at ξ = 0 in the intact 90◦

ply group. This compression effect superposed on the net tensile load causes a the local minimum in σ(1)
xx

plotted in Fig. 4. The bending effect will also create tensile effects at ξ = 0 in the 90◦ ply group that has a

microcrack at ξ = 0. The tensile effect is to pull the 90◦ ply group away from the 0◦ ply group. The pulling

effect is manifested by a large tensile transverse stress at the interface between to 90◦ and 0◦ ply groups (see

Fig. 4).

In summary, there are three major predictions that distinguish the failure properties of [90m/0n]s

laminates from those of [0n/90m]s laminates:

1. The load to initiate microcracks is significantly lower for [90m/0n]s laminates.

2. On continued loading, [90m/0n]s laminates develop fewer microcracks. This prediction manifests itself

as a lower saturation crack density in [90m/0n]s laminates than in [0n/90m]s laminates.

3. Net bending effects tend to promote mode I delamination in [90m/0n]s laminates. A similar driving
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force for delamination is not found in [0n/90m]s laminates.

All these predictions are in agreement with the few experiment results available in the literature [3,13,14].

We are in the process of conducting new experiments on a variety of [90m/0n]s laminates. These new

experiments will be used as a quantitative test of this new analysis.
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APPENDIX

In this appendix we solve for X and Y . There are two cases to consider for each function. When
p2

4 − q < 0 the solution for X is

X = A1 coshαξ cosβξ +A2 sinhαξ sinβξ +A3 sinhαξ cosβξ +A4 coshαξ sinβξ +
2∆αT
C1

(A− 1)

where

α =
1
2

√
2
√
q − p (A− 2)

β =
1
2

√
2
√
q + p (A− 3)

When p2

4 − q > 0 the solution for X is

X = A1 coshαξ +A2 coshβξ +A3 sinhαξ +A4 sinhβξ +
2∆αT
C1

(A− 4)
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where

α =

√
−p

2
+

√
p2

4
− q (A− 5)

β =

√
−p

2
−

√
p2

4
− q (A− 6)

The general solutions for Y are similar except that they do not have the constant particular solution term.

When p∗2

4 − q∗ < 0 the solution for Y is

Y = B1 coshα∗ξ cosβ∗ξ +B2 sinhα∗ξ sinβ∗ξ +B3 sinhα∗ξ cosβ∗ξ +B4 coshα∗ξ sinβ∗ξ (A− 7)

where

α∗ =
1
2

√
2
√
q∗ − p∗ (A− 8)

β∗ =
1
2

√
2
√
q∗ + p∗ (A− 9)

When p∗2

4 − q∗ > 0 the solution for Y is

Y = B1 coshα∗ξ +B2 coshβ∗ξ +B3 sinhα∗ξ +B4 sinhβ∗ξ (A− 10)

where

α∗ =

√
−p

∗

2
+

√
p∗2

4
− q∗ (A− 11)

β∗ =

√
−p

∗

2
−

√
p∗2

4
− q∗ (A− 12)

There are eight unknowns — A1 to A4 and B1 to B4. To find these unknowns we have eight boundary

conditions (Eqs. (60)–(65),(73),(74)). Solving the two seperable systems of four linear equations yields the

dersired results. When p2

4 − q < 0

A1 =
(
σ + σ(1)

x0 − 2∆αT
C1

)
(A− 13)

A2 = −
(
σ + σ(1)

x0 − 2∆αT
C1

)
α sinhαρ− β sinβρ
β sinhαρ+ α sinβρ

(A− 14)

A3 = −
(
σ + σ(1)

x0 − 2∆αT
C1

)
β(coshαρ− cosβρ)
β sinhαρ+ α sinβρ

(A− 15)

A4 =
(
σ + σ(1)

x0 − 2∆αT
C1

)
α(coshαρ− cosβρ)
β sinhαρ+ α sinβρ

(A− 16)

When p2

4 − q > 0

A1 =
(
σ + σ(1)

x0 − 2∆αT
C1

)
β tanh βρ

2

β tanh βρ
2 − α tanh αρ

2

(A− 17)

A2 = −
(
σ + σ(1)

x0 − 2∆αT
C1

)
α tanh αρ

2

β tanh βρ
2 − α tanh αρ

2

(A− 18)

A3 = −
(
σ + σ(1)

x0 − 2∆αT
C1

)
β tanh αρ

2 tanh βρ
2

β tanh βρ
2 − α tanh αρ

2

(A− 19)

A4 =
(
σ + σ(1)

x0 − 2∆αT
C1

)
α tanh αρ

2 tanh βρ
2

β tanh βρ
2 − α tanh αρ

2

(A− 20)
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When p∗2

4 − q∗ < 0

B1 =
(
σ − σ(1)

x0

)
(A− 21)

B2 = −
(
σ − σ(1)

x0

) α∗ sinhα∗ρ+ β∗ sinβ∗ρ
β∗ sinhα∗ρ− α∗ sinβ∗ρ

(A− 22)

B3 = −
(
σ − σ(1)

x0

) β∗ (coshα∗ρ+ cosβ∗ρ)
β∗ sinhα∗ρ− α∗ sinβ∗ρ

(A− 23)

B4 =
(
σ − σ(1)

x0

) α∗ (coshα∗ρ+ cosβ∗ρ)
β∗ sinhα∗ρ− α∗ sinβ∗ρ

(A− 24)

When p∗2

4 − q∗ > 0

B1 =
(
σ − σ(1)

x0

) β∗ tanh α∗ρ
2

β∗ tanh α∗ρ
2 − α∗ tanh β∗ρ

2

(A− 25)

B2 = −
(
σ − σ(1)

x0

) α∗ tanh β∗ρ
2

β∗ tanh α∗ρ
2 − α∗ tanh β∗ρ

2

(A− 26)

B3 = −
(
σ − σ(1)

x0

) β∗

β∗ tanh α∗ρ
2 − α∗ tanh β∗ρ

2

(A− 27)

B4 =
(
σ − σ(1)

x0

) α∗

β∗ tanh α∗ρ
2 − α∗ tanh β∗ρ

2

(A− 28)

In the text of the paper we write Γ−Γ0 and the strain energy U in terms of the 〈X〉, X ′′′(0), and Y ′′′(0).

In the remainder of this appendix we evaluate these terms for the above solutions for X and Y . Integrating

X form 0 to ρ
2 gives after much trigonometric simplification

〈X〉 =
(
σ + σ(1)

x0 − 2∆αT
C1

)
C3

C1
χ
(ρ

2

)
+
ρ∆αT
C1

(A− 29)

The χ(ρ) function is

χ(ρ) = 2αβ
(
α2 + β2

) cosh 2αρ− cos 2βρ
β sinh 2αρ+ α sin 2βρ

(A− 30)

when p2

4 − q < 0 and is

χ(ρ) = αβ
(
β2 − α2

) tanhαρ tanhβρ
β tanhβρ− α tanhαρ

(A− 31)

When p2

4 − q > 0. The χ(ρ) function in Eq. (A-30) is identical to the function defined during the variational

analysis of [0n/90m]s laminates [15,20,21]. The χ(ρ) function in Eq. (A-31) is identical to an additional

function defined during further variational analysis of [0n/90m]s laminates [15].

We evaluate X ′′′(0) and Y ′′′(0) by straightforward differentiation of the general expressions for X and

Y . For both p2

4 − q < 0 and p2

4 − q > 0

X ′′′(0) =
(
σ + σ(1)

x0 − 2∆αT
C1

)
χ
(ρ

2

)
(A− 32)

where χ(ρ) is defined by Eq. (A-30) or Eq. (A-31), depending on the sign of p2

4 − q. For Y ′′′(0) we have

Y ′′′(0) =
(
σ − σ(1)

x0

)
χ∗

(ρ
2

)
(A− 33)
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where the new function complementary to χ(ρ) is

χ∗(ρ) = 2α∗β∗
(
α∗2 + β∗2

) cosh 2α∗ρ+ cos 2β∗ρ
β∗ sinh 2α∗ρ− α∗ sin 2β∗ρ

(A− 34)

when p∗2

4 − q∗ < 0 and is

χ∗(ρ) = α∗β∗
(
β∗2 − α∗2

) 1
β∗ tanhα∗ρ− α∗ tanhβ∗ρ

(A− 35)

when p∗2

4 − q∗ > 0.
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