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Abstract

A numerical nanoindentation model was developed using the Material Point Method, which was chosen because it
can handle both large deformations and dynamic contact under the indenter. Because of the importance of contact,
prior MPM contact methods were enhanced to improve their accuracy for contact detection. Axisymmetric and full 3D
simulations investigated the effects of hardening, strain-rate dependent yield properties, and local structure under the
indenter. Convergence of load-displacement curves required small cells under the indenter. To reduce computation
time, we used an effective non-regular grid, called a tartan grid and describe its implementation. Tartan grids reduced
simulation times by an order of magnitude. A series of simulated load-displacement curves were analyzed as “virtual
experiments” by standard Oliver-Pharr methods to extract effective modulus and hardness of the indented material.
We found that standard analysis methods give results that are affected by hardening parameters and strain-rate
dependence of plasticity. Because these parameters are not known during experiments, extracted properties will
always have limited accuracy. We describe an approach for extracting more properties and more accurate properties
by combining MPM simulations with inverse methods to fit simulation results to entire load-displacement curves.
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I. Introduction

Humans have been using indentation to test material
properties since the first person poked a stick into soft
ground to see if it was firm enough to walk on. More
modern techniques are described by Oliver and Pharr
[1]who developed a method for analyzing microscale in-
dentation experiments using the maximum indentation
load, maximum indentation depth, and initial unload-
ing stiffness. This method for analyzing nanoindenta-
tion, which is generally referred to as the “Oliver-Pharr
method,” extracts material properties from nanoinden-
tation, load-displacement curves. Since then, much
work has been done in analyzing, numerically modeling,
and developing new experimental techniques. Most nu-
merical modeling has used finite element analysis (FEA)
[2–4]. This paper describes a new simulation method
for modeling nanoindentation using the particle-based,
Material Point Method (MPM).

MPM has been used for modeling nanoindentation ex-
periments [5] and for modeling coupled with Molecular
Dynamics [6]. This paper describes new axisymmetric
and 3D MPM simulations of nanoindentation that added
three improvements to increase accuracy and efficiency
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of prior MPM simulations [5]. First, accurate modeling
of nanoindentation requires that contact between the
indenter and the material is well modeled. We describe
an improvement to the standard MPM contact algo-
rithms [7–9] that more accurately detects contact based
on displacements of the two material surfaces. Second,
converged nanoindentation results requires small cells
under the indenter. We describe a mesh refinement
scheme, called a “tartan” grid, that allows for refined
mesh under the indenter and larger cells elsewhere, but
maintains orthogonality of standard MPM grids. The re-
tained orthogonality greatly simplifies implementation
of tartan grids. Use of tartan grids significantly reduced
computational time for axisymmetric simulations and
made converged, 3D simulations feasible. Third, all
MPM simulations used dynamic code with explicit time-
stepping. Several techniques were used to suppress
dynamic effects and noise.

The new simulation methods led to output of load-
displacement curves that faithfully represented quasi-
static nanoindentation experiments. Each curve could
be viewed as a “virtual experiment” on a material
with precisely known material properties (e.g. rate-
independent, non-linear elastic properties with various
non-linear J2 plasticity properties). We subjected a
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series of such “virtual experiments” to standard Oliver-
Pharr analysis methods. The results show that such
methods are reasonable, but have limited accuracy for
extraction of effective modulus or hardness. The prob-
lem is that extracted results depend on plasticity prop-
erties. Thus, when experiments are done on any un-
known material, compromises have to be introduced
into analysis methods. A potential method to avoid
such compromises and to measure both more material
properties and more-accurate material properties is to
couple MPM simulations with inverse methods. By fit-
ting entire load-displacement curves from experiments
to simulated load-displacement curves, in some cases it
may be possible to extract both modulus and plasticity
properties.

II. Nanoindentation Simulation Methods

MPM is a numerical method for solving continuum me-
chanics problems and can handle complex geometries,
large deformations, history-dependent materials, mul-
tiple interfacing materials, and extreme loading con-
ditions [10, 11]. It is a hybrid Eulerian/Lagrangian
method that avoids some disadvantages of each while
retaining their advantages [12]. The continuum is dis-
cretized into a set of Lagrangian material points or par-
ticles that store their complete deformation history. The
material points interact with each other by interpolating
information to a background grid where the equations
of motions are solved. The use of particles allows for
MPM to easily handle complex geometries by avoiding
the need for difficult meshing algorithms. This feature
has been demonstrated by modeling the cellular struc-
ture of wood [13–15], complex biological structures
[16, 17], and polymer foams [18]. Other MPM applica-
tions include modeling of complex materials [19, 20],
extreme loading conditions [21, 22], fracture [23, 24],
cutting [25, 26], and fluid-structure interactions [27].
MPM is recommended for nanoindentation simulations
because of its ability to handle the large deformations
[11] expected under the indenter tip and because of
its ability to dynamically model contact [7–9]. MPM
contact methods were refined further in this work. All
simulations used the MPM code OSParticulas (which is
development version of the public domain NairnMPM
code [28]).

Figure 1: Axisymmetric MPM simulation of nanoidentation
with colors (or shades of gray) showing radial displacement. A.
The full modeled specimen from an axisymmetric simulation. B.
Zoomed-in view of absolute value of transverse displacements
from a 3D simulation using a Berkovich indenter.

A. Geometry

The geometry for 2D, axisymmetric simulations [29] of
nanoindentation is shown in Fig. 1A. In axisymmetric
simulations, the indenter has a conical tip, which differs
from most experiments that use a pyramidal Berkovich
indenter. Axisymmetric simulations, however, allow
much faster simulations and thereby more testing of
simulation variables. Much nanoindentation analysis
similarly relies on axisymmetry for tractability [30, 31].
To maximize similarity between conical indenter and a
Berkovich pyramid, the angle of the cone was chosen
such that the projected contact area as a function of
indentation depth is the same for both shapes. For a
Berkovich indenter with a tip angle of 65.3◦, the equiv-
alent cone has a tip half-angle of θ = 70.3◦ [1, 30].

The axisymmetric block used for indentation was a

2 J. Mater. Res., Vol. 0, No. 0, 2018



C. C. Hammerquist et al.: Modeling nanoindentation using the Material Point Method

rectangular block with symmetry conditions along the
r = 0 plane, zero velocity grid boundary conditions
on the bottom, and free surfaces on the top and right
edges. The indenter was modeled with rigid material
points that were slanted to accurately represent the
cone angle and the indenter surface. The goal of most
simulations was to simulate nanoindentation on a large
bulk object. To achieve this goal, the size of the block
was varied until it no longer influenced the simulations.
For a nanoindentation depth of 1.5 µm, which was
chosen to reach indentation load of 5 mN for simulated
materials, the block radius and depth had to be 0.05 mm
or larger. Figure 1A shows radial displacements during
an axisymmetric simulation of a sufficiently-large block.

Although most simulations were axisymmetric, we
also ran 3D simulations with a Berkovich indenter to
verify similarity to axisymmetric simulations. The 3D
simulations used a block of material ±0.05 mm in trans-
verse directions and a depth of 0.05 mm. The simula-
tions modeled half the block by cutting at its mid-plane
and applying symmetry boundary conditions. The top
and side surfaces were stress free; the bottom surface
had zero velocity boundary conditions. Figure 1B shows
a zoomed-in view of absolute value of transverse dis-
placements during a 3D simulation (absolute value was
plotted for better comparison to axisymmetric results).

B. Material Modeling

The indenter was modeled as a rigid material. All in-
denter particles were pushed into the material at a pre-
scribed velocity. After reaching a desired maximum in-
dentation load, the indenter particles reversed direction
and returned to their initial positions at a prescribed
reversing velocity. For simulations with strain-rate de-
pendent yield properties, the indenter load was held
constant for selected periods of time before reversing
the particles. The rigid particle interacted with the bulk
material by contact mechanics. A rigid indenter was
used to allow simulations with larger time steps and to
provide accurate, non-deforming contacting surfaces.

The material being indented was modeled as a neo-
Hookean, hyperelastic-plastic material using J2 plastic-
ity with nonlinear and rate-dependent hardening laws.
In the elastic region, this material uses the Mooney-
Rivlin [32] strain energy function with G1 = G and

G2 = 0 or:
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where F is the deformation gradient, J = det(F) is
the relative volume change, G = E/(2(1+ ν)), K =
E/(3(1− 2ν)), and E are the low strain shear, bulk,
and tensile moduli, respectively, and ν is low-strain
Poisson’s ratio. The Cauchy stress for this material is:
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The non-linear hardening law used in all simulations
was

σy = (σy0 + kh||εp||nh)

 

1+ C ln

 

˙||εp||

ε̇0
p

!!

(3)

whereσy0 is initial yield stress, kh and nh are hardening
parameters, εp is plastic strain, and C and ε̇0

p describe
strain rate dependence of the yield stress. When C = 0,
this law is rate-independent with power-law harden-
ing. Nanoindentation experiments commonly hold at
a constant maximum load before unloading. If mod-
eled with a rate independent material, this hold period
would not be evident in the load-displacement curves.
Experiments show, however, that indenter displacement
increases while the load is held constant [33–35], re-
sulting in a flat spot on top of load-displacement curves.
While this flat spot or “creep” could be thermal drift,
most of it is material dependent and can be described
by a logarithmic model [33]. When C 6= 0, the loga-
rithmic term in Eq. (3) allowed us to investigate strain
rate effects. This term came from the Johnson-Cook
[36] hardening law (the temperature-dependent term
in Johnson-Cook law [36] was omitted because all sim-
ulations were isothermal).

Contact between the rigid indenter and the plastic
material was modeled using the contact methods de-
scribed in Ref. [8]. Because contact is crucial to nanoin-
dentation simulations, the contact methods used here
included a new option to improve detection of contact.
Contact in MPM is modeled by extrapolating plastic ma-
terial a and rigid material b to separate velocity fields
on the grid [7, 8]. Any node that “sees” both materials
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models contact mechanics in these simulations by the
following three steps:

1. Find Contact Normal: The first step is to find a normal
vector from material a to b using

n̂ i ||n̂ i ||=
�

−g i,b ||g i,b|| ≥
||g i,a ||

100
Ωi,ag i,a −ΩI ,bg i,b otherwise

(4)

whereΩi, j is “domain” of material j and g i, j is “domain”
gradient of material j found by extrapolating domains
of particles to node i on the grid using gradient shape
functions [8]. For 3D simulations, the “domain” is the
particle volume, but for axisymmetric simulations, the
“domain” is the area of the material point in the r-z
plane and not its volume [8]. The first option is using
the rigid material volume gradient (RMVG) option in
Ref. [8]. The second option switches to the average
volume gradient (AVG) option in Ref. [8] for nodes in
which the domain gradient of the rigid material is very
small [37]. Axisymmetric simulations made use of sym-
metry to set normal vector for nodes along the r = 0
symmetry plane to be n̂ i = (0,1). Similarly, nodes on
the 3D mid-plane of symmetry enforced normal vectors
to have zero component perpendicular to that symmetry
plane.

2. Detect Contact: The second step is to determine if the
two materials are in contact. A necessary condition is
that the materials are approaching each other or that
(v i,b − v i,a) · n̂ i < 0, but this condition is not sufficient.
Contact detection is improved by also requiring that
edges of material domains are in contact or that di,b −
di,a ≤ 0 where di, j is the distance along the normal
vector from the edge of material j to node i [8]. The
calculation of di, j is done by extrapolating material
point positions to the grid. For a material j, we can
find an “apparent” distance from extrapolated particle
position (x i, j [8]) to node i (at x i) using:

d(ex t)
i, j = (x i, j − x i) · n̂ i (5)

but, this distance will not equal the desired edge dis-
tance di, j . An accurate use of edge positions in contact

detection requires definition of a function di, j(d
(ex t)
i, j )

to calculate actual edge distance from extrapolated “ap-
parent” distance. Reference [8] proposed a simple
constant correction that is equivalent to linear mapping

functions:

di, j(d
(ex t)
i, j ) =
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For these nanoindentation simulations, we instead im-
plemented non-linear mapping functions given by:

di, j(d
(ex t)
i, j )

∆x
=



















1−2

�

−d(ex t)
i,a

1.25∆x

�0.58

j = a

−1+ 2

�

d(ex t)
i,b

1.25∆x

�0.58

j = b

(7)

These functions were determined by explicit calcula-

tions of d(ex t)
i, j as a function of di, j for either convected

particle domain integration shape functions (CPDI in-
troduced in [38]) or undeformed generalized interpola-
tion material point shape functions (uGIMP, introduced
in [39]), inverting the results, and fitting to a power
law. The calculation process and plots of calculations
are given in the supplemental material.

3. Add Contact Forces: For any multimaterial node de-
tected to be in contact, the last step in rigid material
contact is to apply contact force to material a by chang-
ing its extrapolated momentum. For contact with rigid
materials, this task first finds momentum change re-
quired for material a to “stick” to the rigid material as
∆p i,a = mi,a(v i,b − v i,a) where mi,a is extrapolated
mass of material a. This momentum change implies
normal and tangential contact forces to “stick” to the
rigid material of

f n =
(∆p i,a · n̂ i)

∆t
n̂ i and f t =

(∆p i,a · t̂ i)

∆t
t̂ i (8)

where∆t is time step and t̂ i is unit vector in the tangen-
tial direction of motion. These simulations used contact
with Coulomb friction. For this contact law, the final
momentum change applied to material a is:

∆p′i,a =

�

∆p i,a ft < −µ fn
(∆p i,a · n̂ i)(n̂ i −µt̂ i) otherwise

(9)

whereµ is the coefficient of friction [7, 8]. The first form
is “stick” conditions while the second is for frictional
“slip.” The final change in momentum implies a contact
force on node i of f i,c = ∆p′i,a/∆t. We summed all
nodal contact forces to track the indenter load on the
non-rigid material.
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All simulations used explicit MPM methods, which
means the time step must follow ∆t <∆x/w where w
is wave speed of the material. For modeling to be possi-
ble in a reasonable time frame, we used loading rates
much higher than in typical experiments and relied on
two techniques to mitigate or eliminate dynamic effects.
First, the prescribed indenter velocity was chosen such
that indenter displacement as a function of time was
sigmoidal in both the loading and unloading phases.
This approach helped reduce stress waves induced by
impulses associated with constant-velocity loading and
its abrupt shift to constant-velocity unloading. Second,
we used a new MPM velocity update scheme called
XPIC(2) [40]. This update scheme suppresses noise
and high frequency velocity waves not appropriate in
quasi-static simulations without causing over-damping.
Figure 2A gives a typical simulated load-displacement
curve by cross-plotting simulated load and applied sig-
moidal displacement. The sigmoidal speed varied from
0 to 1.3 m/sec, which for the simulated materials was
less than 0.1% of its wave speed. Loading faster in-
troduced dynamic effects while loading slower gave
identical results. We thus used the maximum possible
speed such that sigmoidal loading and XPIC(2) updates
were sufficient to provide results equivalent to noise-
free, quasi-static loading.

C. MPM Grid

Simulation output provides a virtual nano-indentation
experiment for indenter load (from contact forces) ver-
sus displacement (from position of rigid indenter parti-
cles). We varied cell sizes to determine necessary spatial
resolution for convergence. We found, not surprisingly,
that necessary grid cell size scales with depth of inden-
tation, i.e., deeper indentation can use lower resolution.
For the range of depths studied, we found that 100 nm
cells, which corresponds to 50 nm particles when using
two particles per cell in each dimension, gave converged
results.

Most MPM modeling uses a regular grid of equally-
sized cells. Regular grids are used because of simplicity
afforded to some calculations and because they are
needed in problems with large movement through the
grid [19, 21, 26, 41]. The literature on mesh refine-
ment in MPM is sparse. A few examples can be found in
Refs. [27, 42, 43]. The nano-indentation problem mod-
eled here is an excellent candidate for mesh refinement.
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Figure 2: A. Cross plot of load output vs. displacement input
for typical simulated indenter load as a function of displacement
for both loading and unloading. B. Simulated load-displacement
curves for a strain-rate dependent material with C jc = 0.1 for
different hold times.

We know that throughout the simulation, we need a
refined mesh only under the indenter tip. All regions re-
mote from the indenter can be modeled with sufficient
accuracy by using larger grid cells and material points.

For nano-indentation simulations, we used a grid
scheme termed a “tartan” grid. In a tartan grid, one
or more “regions of interest” are modeled with a high-
resolution, regular grid with equally-sized elements. For
the nano-indentation problem, the one region of interest
under the indenter was modeled with 100 nm cells
determined above as needed for convergence. Outside
regions of interest, the grid cell sizes were allowed to
increase, thus forming a tartan-like pattern.

A tartan grid maintains orthogonal grid lines, which
greatly simplifies its implementation compared to arbi-
trary background grid cell sizes. The changes needed
for a tartan grid depend on the MPM shape functions
being used and are easily implemented for CPDI shape
functions [38]. In brief, CPDI shape functions for both
Cartesian grids [38] and axisymmetric grids [29] de-
pend only on current size of the particle and element
shape functions evaluated at the corners of current par-
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ticle domain. Thus any current CPDI code automati-
cally supports a tartan grid provided the shape function
calculations recognize variable particle sizes and vari-
able element sizes when finding the shape functions
at the corners. Classic MPM shape functions [44] simi-
larly support tartan grids with little modification, but
such shape functions are never recommended for ac-
curate simulations. The changes required for uGIMP
shape functions are more substantial. Implementation
of uGIMP shape functions is typically done by analyti-
cal solution to the GIMP integral as function of particle
position in a cell and that integral may involve inte-
gration over neighboring cells [39]. For a regular grid,
the analytical functions are the same for all particles.
Implementation of a tartan grid would not be difficult,
but would require re-evaluation of all integrals allowing
for variable size particles and variations in sizes of cells
surrounding each node.

All simulations here used tartan grid and CPDI shape
functions. The grid spacing outside the region of in-
terest was increased with a linear ratio: ∆x t = nR∆x ,
where n is the number of cells away from the region of
interest, R = 2 is the size ratio, and∆x = 100 nm is the
cell size in the region of interest. For 2D, axisymmetric
simulations, we verified that tartan grid results gave
virtually identical results as a regular grid with equal-
sized cells. By using a tartan grid, however, we could
reduce the number of particles by an order of magni-
tude, which also reduced simulation time by an order
of magnitude. Full 3D simulations using our resources
(Dell servers with 32, 3 GHz, Xeon processors) and tar-
tan grids took 10+ hours. 3D grids without tartan grids
in a reasonable time would require significantly more
processors. The supplemental material illustrates the
tartan grids used along with some additional details.

Besides shape function calculations, tartan grids also
require modification of any contact calculations that
depend on grid size [9]. For example the calculation
of material separation described above depends on cell
length or ∆x . For regular grid with square (2D) or
cubic (3D) cells, grid dimensions are the same in all di-
rections and ∆x is the appropriate factor. For a regular
grid with equally-sized rectangular (2D) or rectangular
cuboid (3D) cells, ∆x needs to change to h⊥ which is
an effective cell-size normal to the contacting plane [8].
For a tartan grid, ∆x (and some other contact calcula-
tions), must be changed further to account for sizes of
all cells surrounding node i. For these nano-indentation

simulations, all contacting nodes were located in the
region of interest that had equally-sized elements. The
contact calculation methods explained above for a regu-
lar mesh could therefore be used without modification.
The changes for general contact in a tartan grid will be
in a future publication.

III. Results and Discussion

Nanoindentation simulations described above predict
the load-displacement curve for nanoindentation exper-
iments on any material with known constitutive law
in any specimen with known geometry (typical curve
in Fig. 2A). The constitutive law used here was for
neo-Hookean, hyperelastic-plastic materials, but the
simulation method could be used with other material
models such as models including thermal effects, rate-
dependence, and brittle failure processes. If the ma-
terial and indenter have comparable properties, the
simulations could explicitly model the indenter rather
than assume a rigid indenter. One application of such
simulations would be to vary material properties until
simulations and experiments agree. Although this use
of simulations has potential future uses (especially for
nanoindentation on materials with complex morphol-
ogy such as wood cells walls [34]), another application
of simulations is to validate conventional methods for in-
terpreting nanoindentation experiments. In brief, these
simulations can be treated as accurate and low-noise
virtual experiments on a material with precisely known
properties and on various geometries of the indented ob-
ject. In this section, we subject such virtual experiments
to various analysis methods to see if those methods
correctly extract the input material properties.

A. Analysis of Load-Displacement Curves

The Oliver-Pharr method to interpret nanoindentation
experiments is based on nanoindentation of an isotropic
material in an infinite half space. We can apply their
methods to results from simulations on an isotropic
bulk with length and width large enough to represent
an infinite half space. In the Oliver-Pharr method, the
unloading portion of the curve is modeled with a power
law:

P(h) = α(h−h f )
m (10)

where P is the contact force, h is the indenter depth,
h f is the final depth (i.e., the depth at which the load
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returns to zero), and α and m are fitting parameters.
The measured modulus of the material is deduced from
the initial slope of the unloading curve at h = hmax
(denoted as S = dP(hmax )/dh = αm(hmax −h f )

m−1)
and the maximum projected area of contact, Ac , be-
tween the indenter and the material using:

E
1−ν2

=
1
β

p
π

2
S
p

Ac
(11)

where β is an empirical parameter used to account for
all physical processes that might affect S (e.g., indenter
shape or properties of the indented material) [30]. The
β parameter was chosen in early work to be unity, but is
now recognized as larger. Oliver and Pharr [30] recom-
mend β = 1.05 as good choice for a range of materials.
The material’s hardness can also be determined from
the maximum load and contact area:

H =
Pmax

Ac
(12)

Calculation of E or H relies on measurement of Ac .
For the axisymmetric cone used here, a geometric cal-
culation of projected contact area gives:

Ac(h) = πh2 tan2(70.3◦) (13)

(note cone angle 70.3◦ was chosen to give identical
A(h) function as Berkovich indenter with angle 65.3◦).
Unfortunately, one cannot use hmax in this equation
because the measured displacement combines both pen-
etration into the material and “sink-in” deflection of
the surface away from the indenter [30]. The standard
analysis method accounts for “sink-in” by correcting
hmax to give an actual contact depth, hc , using:

hc = hmax − ε
Pmax

S
=

(m− ε)hmax + εh f

m
(14)

and then finding contract area from Ac(hc) [30]. The
parameter ε depends on material properties and ge-
ometry of the indented material. Calculations for an
isotropic, elastic material in an infinite half space show
that ε depends on m from the unloading curve and
varies from 0.74 to 0.79 for typical values. For sim-
plicity, it was suggested that ε= 0.75 provides a good
overall value, although a function to find ε from m
for isotropic, elastic, infinite, half space is an available
option [30].

Our baseline simulation used E = 2.0 GPa, ν= 0.3,
ρ = 1.2 g/cm3, σy0 = 30 MPa, kh = 100 MPa,

nh = 0.5, and C = 0. We first interpreted the virtual
load-displacement curves using the Oliver-Pharr simpli-
fication that β = 1.05, but different options for finding
ε. References [1] and [45] suggest that power-law fits
to only the top 33% (or even top 10%) of unloading
curves are sufficient for determining unloading param-
eters. To test this suggestion, the power law in Eq. (10)
was fit to various fractions of the unloading curves us-
ing R [46]. Initial parameters were obtained by fitting
a linear model to the log-transformed data. These pa-
rameter estimates were then refined to fit the curves
by nonlinear least squares using R’s built-in function
optim(). All power law fits to our simulated curves were
essentially perfect with R2 values always greater than
0.99999. Nevertheless, due to nature of power laws,
the fitting parameters depended on fraction fit — m
varied from 1.05 to 1.32; α varied from 33.5×103 to
1460×103 N/mm; h f varied from 1.08 to 1.16 µm.

Figure 3 plots percent error in effective modu-
lus (Ee f f = E/(1− ν2) compared to input Ee f f =
2.198 GPa) extracted from simulated curves by three
different methods for finding ε. First, notice that results
vary widely when fraction fit is less than 60%. Because
this region is fitting a narrow range in h, the power law
results are not reliable. The results for 60% and higher
are reliable and consistent; the variations below 60%
are not meaningful. The solid curve (square symbols)
assumed ε= 0.75. The extracted modulus for 60% or
more fit is about 5% too high and the error increased
slightly as more of the unloading curve was fit. The
dashed line (diamond symbols) found ε from relation
in Ref. [30]. For the range of m seen in this data, the
calculated ε ranged from 0.77 to 0.86, but increasing ε
caused larger errors compared to actual modulus.

Rather then find ε from a relation that was derived
for an elastic material [30], the last method was to
“measure” Ac from simulation output; i.e., find ε for an
plastic material by numerical methods. All particles in
contact with the indenter were in compression (in the
depth direction), while the first surface particle at the
edge of contact was in tension. The radial position of
this tensile particle equals the radius of the projected
contact area or hc tanθ (±25 nm or half a particle size).
From this simulated hc and fits to unloading curves,
the simulation results corresponded to ε ranging from
0.711 to 0.736 or always lower than 0.75. Using these
numerically determined ε’s, the extracted modulus is
slightly closer to the correct result.
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Figure 3: The percent error in effective modulus extrapolated
from simulated nanoindentation curves as a function of the
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method. All curves used β = 1.05.

This baseline simulation analysis suggests that mod-
ulus calculation should analyze at least 60% of the un-
loading curve and ε is best found from measured hc .
Because measuring hc may not be possible, a value of
ε = 0.75 is as good, or preferable to, finding ε from
the relation for an elastic material in Ref. [30]. An ob-
servation that fitting less than 60% of an experimental
unloading curve, R2 > 0.99 still does not support a
claim that fitting parameters are reliable.

Even when ε is numerically determined from known
material properties (i.e., using simulation results), the
extracted modulus is still 5% or more higher than actual
modulus of the material. This discrepancy can be inter-
preted as use of an incorrect value for the β parameter.
In other words, by changing β , the extracted Ee f f can
be made to exactly match the input value. Using the
reasonable ε = 0.75, the results when using 60% or
more of the unloading curve give exact results if β is
varied from 1.111 to 1.118. This higher β is consistent
with prior calculations. Larsson et al. [45] conducted
finite element experiments for linear elastic materials,
and found β dependent on ν with β = 1.14 at ν= 0.3.
Oliver and Pharr [30] mentioned that β is higher for
materials with strain hardening. References [34] and
[47] also claimed β should be higher and closer to
1.09. Our simulations, which are consistent with these
previous findings, show the β depends on both elastic
and hardening properties of the material. When doing
nanoindentation on an unknown material, the correct
value of β will not be known. Choice of values between
1.05 and 1.14 will therefore have uncertainties in the
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range of ±5%.

B. Hardening parameters

This section explores the effect of changing material
plasticity properties on the modulus and hardness ex-
tracted with the Oliver-Pharr method. The baseline
properties were from the previous section. These addi-
tional simulations varied yield stress, σy0, hardening
modulus, kh, and hardening exponent, nh, about the
baseline values. Four sets were run: vary only kh, vary
only nh, vary kh and nh together, and vary onlyσy0. For
each set, the variable parameter was scaled by factors
0.25, 0.5, 1.5, 3, and 5 relative to baseline value while
all other parameters were held at their baseline value.
Based on results in previous section, the effective mod-
uli and hardness were extracted by analyzing 75% of
the unloading curve and using ε= 0.75 and β = 1.115.

The percent error in the calculated effective moduli
for these simulations as function of scaling factor are
shown in Fig. 4A. The yield stress had the smallest effect
while strain hardening parameters had larger effects.
When kh and nh were varied together, the results in-
creased almost as much as varying nh alone suggesting
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that nh is the dominate hardening parameter affecting
the analysis.

The errors in measured effective moduli varied from
-2.9% to 8.6%. Because these errors occurred by vary-
ing material properties other than modulus, we suggest
the Oliver-Pharr should never expect better than about
±10% accuracy for a material with unknown harden-
ing properties. Improving accuracy of nanoindentation
experiments would require analysis methods that can
account for both a material’s stiffness and its hardening
properties. One option would be to use inverse methods
and vary all material properties until the full, simulated
load-displacement curve matches experimental results.
Because this process would use the full curve, it has
more potential to detect effects of material hardening
(the loading portion of the curve depends on harden-
ing parameters more then the unloading portion). This
approach was used with some success for analysis of
nanoindentation experiments on materials with gradi-
ent properties [5]. Their inverse methods could find
Ee f f , K , and n by inverse methods. They found results
were insensitive to σy0, which is consistent with above
observation that varying σy0 had the smallest effect on
the unloading curve. The simulations in Ref. [5] were
lower resolution and had more noise. The simulations
here with tartan grid and methods for reducing noise
should lead to improved inverse analysis of nanoinden-
tation experiments.

The calculated hardness H for these simulations rela-
tive to baseline values and as function of scaling factor
are shown in Fig. 4B. Unlike modulus, the H value for
any material is not an input to simulations and there-
fore extracted H cannot be compared to a known value.
Experiments for hardening are mostly qualitative and
express some number based on final indent size relative
to indentation pressure. A simulated material’s hard-
ness should therefore vary with change in hardening
properties and results in Fig. 4B track expectations. The
measured H increases as σy0 or kh increases. The varia-
tion with nh is also expected. For power-law hardening
with constant σy0 and kh, hardening curves for various
nh intersect when ||εp|| = 1 (or 100% plastic strain).
Because all simulations show that ||εp|| remained less
than 1 for all material points (except sometimes a few
points directly under the indenter tip), increasing nh
will shift the hardening curve closer to an elastic-plastic
material with lower hardness. Con versely, decreasing
nh will shift the curve to a material with higher yield

stress and higher hardness. The dependence of H on nh
follows this expected trend. The curve that varied kh
and nh again shows that nh is the dominant hardening
parameter affecting indentation experiments.

C. Strain-rate dependent materials

The goal of simulations with time-dependent strain
hardening (i.e., when C 6= 0 in Eq. (3)) was to mimic
typical experiments where indenter load is held constant
for some time period before unloading. Because load is
held constant, we had to switch from indenter velocity
control to load control simulations. The rigid parti-
cles used in these simulations were constant-velocity
particles that effectively have infinite mass. Because ap-
plying loads to infinite-mass particles would not affect
their velocity, we implemented a PID (Proportional, In-
tegral, Derivative, controller, see [48]) feedback loop to
control indenter velocity. This loop compared a target
force function to the current contact force, which was
determined by summing all contact forces on the rigid
indenter. The feedback control modified indenter veloc-
ity to achieve the desired force function. As in velocity
control simulations, the PID loop was based on a target
load as a function of time that was sigmoidal both in
the loading and unloading phase to prevent oscillations.
To simulate experimental procedures, the target load
function had a hold phase at constant maximum load
for variable amounts of time.

These simulations used the same baseline properties
as above, but now varied C from 0.01 to 0.1. The ref-
erence strain rate parameter, or strain rate at which
hardening is equal to baseline hardening, was set to
ε̇0

p = 106 sec−1. This reference rate was set to 1/(load-
ing time) for the simulations, where loading time was
1 µs. Because the loading rate (or maximum displace-
ment over loading time of about 1 m/s) was much less
than 1% of the material’s wave speed, these simula-
tions can be considered as quasi-static results where
the only rate effects would be rate-depending yielding
of the material. In other words, although the simula-
tions were much faster than experiments, the time axis
can be viewed as reduced time relative to the reference
strain rate parameter. Predictions at slow rates with
real materials could be made by rescaling the time axis
to any new reference strain rate. For positive C , par-
ticles loaded below the reference rate will see drop in
yield stress while those at higher rates will see higher
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yield stress. Figure 2B gives simulated nanoindentation
curves with C = 0.1 and various hold times at maximum
load. The PID load control worked well, giving simu-
lations that were relatively free from noise and that
contained a stable hold phase at constant maximum
load. The quasi-static character of these simulations is
confirmed by small oscillations in the plateau region
(and some of the oscillations may be caused by PID con-
trol parameters). We looked at the effect of hold time
for a strain-rate dependent yield material on both the
hardness and the effective modulus extracted from simu-
lated results by the Oliver-Pharr method (and assuming
ε= 0.75 and β = 1.115). Figure 5A shows measured
hardness compared to baseline hardness (horizontal
line for C = 0). Increasing C caused the hardness to
drop and the drop increased with C . The drop in hard-
ness occurred because plastic strain rates under the
indenter were always less than the chosen reference
strain rate. As a result, the strain-rate term causes a
drop in yield stress or a material with lower hardness.
As a function of time, the hardness dropped further.
During the hold phase the plastic strain rate is very low
leading to further drop in yield stress.

Figure 5B shows the effects of C and hold time on
percent error in the extracted effective modulus. Ee f f
error increased with zero hold time and the increase was
larger for higher C . The increase was caused by change
in strain hardening properties of the material. As seen in
Fig. 4A, the change in Ee f f with changes in hardening-
law properties are more convoluted than changes in
hardness. For all values of C , the extracted Ee f f de-
creased with time and perhaps reached a plateau. As a
consequence, experiments on materials with strain-rate
dependent hardening properties should use sufficient
hold time to reach plateau, or at least consistent, results
for both hardness and modulus.

D. Shape effects

Many methods for extracting Ee f f from experiments
and analyzing effects of material hardness are based on
indentation of a homogeneous infinite half-space, or a
good approximation of such a space. If this assumption
is significantly violated, the standard nanoindentation
analysis methods cannot be trusted. Reference [34]
presents an experimental method to correct for shape
effects. They propose modeling total compliance Ct of
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Figure 5: Effect of C jc and hold times on parameters extracted
from load-displacement curves. A. Calculated hardness. B.
Precent error in calculated effective modulus. All curves used
ε= 0.75 and β = 1.115.

the indentation system using:

Ct =
1

Ee f f
p

Ac
+ Cm + Cs (15)

where Cm is compliance of the machine and Cs is any
additional compliance of the indentation specimen due
to deviation from being a homogeneous, infinite half-
space. The term Ee f f

p

Ac is proportional to slope S
in Eq. (11). The machine compliance should be fairly
constant (and zero for simulations), but the structural
compliance could vary significantly with location of the
indentation on a specimen. For example, indentation
on one material near an interface with another material
or indention near a free edge would both see Cs change
as a function of distance to the interface or the edge. In
principle, by running experiments as a function of in-
dentation location, one could measure Cs allowing one
to separate material Ee f f from machine and specimen
compliance effects. Reference [34] proposes that the
effect of some structural demarcation should be a func-
tion of the inverse of its distance to the nanoindentation
site.

To investigate the strategy from Ref. [34], we con-
ducted three numerical experiments using MPM sim-
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Figure 6: Axisymmetric simulation geometries used to inves-
tigate the effect of structure on shape. d is the distance from
indentation tip to a key structural change. A. Low stiffness ma-
terial surrounded by high stiffness material (moduli in GPa).
B. High stiffness material surrounded by low stiffness, C. Thin
material.

ulations as illustrated in Fig. 6. First, the indentation
block was divided into two materials with the material
under the indenter have E = 1.0 GPa while the remain-
der of the block had E = 2.0 GPa. The variable d was
the distance from indenter tip to the material interface.
Second, the two materials were switched such that the
stiffer material was under the indenter. Third, the en-
tire block had E = 2.0 GPa but the depth of the block
was varied — d was now distance from the indenter
tip to the rigid, zero-velocity surface on the bottom of
the block. The plasticity properties used the base-line
properties from section III.A.

The calculated Ee f f from simulated load-
displacement curves for the three different structural
geometries are plotted in Fig. 7A. Not surprisingly,
Ee f f varies significantly when d is small or when the
indented specimen has significant deviations from a
homogeneous, infinite half-space. Also note that the
effect persists to a rather large d. The measured Ee f f
did not return to input material properties until d was
more than 20 times the indentation depth, which was
1.5 µm (see Fig. 7A). It would be a misconception to
think that because nanoindentation tips and depths
are small that the method is not altered by even
relatively-remote structural features.

Reference [34] discusses two ways to correct for struc-
tural compliance in nanoindentation experiments. One
method requires measurement of the contact area from
the indentations while the second requires multiple in-
dentations in the same area with different maximum
loads. Here we used a third method that was made
possible because we know the correct modulus. We
assumed the structural effects should be described by
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Figure 7: The effect of distance to a structural change on effec-
tive modulus extracted from simulated nanoindentation curves.
The horizontal dashed lines are the actual effective moduli. Plots
A and B show the same date plotted two different ways.

some function of d, which can be formulated as:

1
Em(d)

=
1

Ee f f
+ f (d) (16)

where Em(d) is the measured modulus from simulation
of material with known Ee f f and f (d) is some non-
constant function. By examining simulation results,
f (d) appears well represented by a linear function of
1/d. In other words, plots of 1/Em(d) as a function of
1/d are close to linear with the intercept being close
to 1/Ee f f (see Fig. 7B). Extrapolating to d →∞ (or
1/d → 0) gives an estimate for Ee f f with an error of
10% for the geometry A (“1 to 2 GPa”) in Fig. 6, 2%
for geometry B (“2 to 1 GPa”) and 2% for geometry C
(“2 GPa vs. thickness”). The larger error for geometry
A was likely because the material under the indenter
had E = 1.0 GPa while the data was interpreted using
β determined in section III.A for a material with E =
2.0 GPa.
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E. Full 3D simulation and effective indenter
shapes

We repeated the base-line simulations in section III.A
using a full 3D model with a pyramidal Berkovich inden-
ter. A simulation of the same size block extended to 3D
using a tartan grid and using slightly lower resolution
under the indenter (150 nm cells) needed about nine
million particles and ran in about two days. A simula-
tion with 100 nm cells under the indenter is feasible, but
required about 30 million particles and would take sev-
eral weeks. The results at 150 nm resolution looked ac-
ceptable. As seen in Fig. 1, the transverse displacement
under the indenter in 3D resembles the corresponding
radial displacement in axisymmetric simulations. The
3D simulation does reveal asymmetry in the displace-
ment caused by asymmetry in the Berkovich indenter
shape along the symmetry plane. Despite asymmetry
effects in 3D stress state, the global load-displacement
curves for the full 3D simulations were almost identical
to curves from axisymmetric simulations. Compared
to axisymmetric simulations, the 3D simulation had
about 3% higher peak load, had the same hardness,
and had about 7% higher extracted Ee f f . The small
differences persist even if compared to axisymmetric
simulations with 150 nm cells, which means they are
likely caused by indenter shape effects. The overall
similarities between axisymmetric and 3D results are
reassuring as much nanoindentation analysis is carried
out using axisymmetric methods [1–3, 30].

While a Berkovich indenter is not conical, its agree-
ment with conical simulations can be partially explained
by the concept of an effective indenter discussed in
Ref. [49]. When an indenter is being pressed into a sur-
face, any plastic deformation will blunt or smooth the
indenter shape seen by the purely elastic portion of the
material. During the unloading, the deformed region
and the indenter forms a blunted “effective indenter”
under which the pressure is approximately constant. For
the power law in Eq. (10) describing the unloading por-
tion of the curve, a elastic material should have m = 1
for a flat punch and m = 2 for a cone or Berkovich
indenter. In nanoindentation experiments (and simula-
tions), this parameter is generally between these two. In
our axisymmetric simulations, we found m≈ 1.25 (pro-
vided at least 60% of unloading curve was fit), which is
consistent with the concept of an effective indenter. Ref-
erence [49] suggests the effective indenter shape can be
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Figure 8: Comparison of the actual indenter shapes, effective
indenter shapes, and an isosurface of vertical compressive stress
of 30 MPa under the indenter. The vertical axis for the shapes
were made five times larger and all the geometries are flipped
upside down, and the flat surface was added for better viewing
perspective.

found by measuring the difference between the final in-
dentation shape and the indenter. Because simulations
give full details for indentation shape, this proposed ef-
fective indenter shape can be calculated. The effective
shapes for both our axisymmetric and 3D simulations
are visualized in Fig. 8. These shapes are fairly blunt
for both cases, which is consistent with m decreasing
toward value for a flat punch and partially explains
similarities of the results.

For another view, we looked at an isosurface of con-
stant compression stress of 30 MPa in the depth direc-
tion. These isosurfaces do not correspond well to the
shape of the effective indenters, as would be expected
from a uniform pressure under an indenter. As pointed
out in Ref. [50], it is not actually possible to have uni-
form pressure under an indenter of any shape. Despite
the lack of axisymmetry of the Berkovich indenter, the
stress isosurface shown in Figure 8 looks similar to the
axisymmetric case, which illustrates again that indenter
shape effects are blunted by plasticity and by dispersion
of the stress distribution. Both effective indenter shapes
and stress isosurfaces help explain why axisymmetric
simulations are good approximations to 3D simulations
with a pyramidal Berkovich indenter.

12 J. Mater. Res., Vol. 0, No. 0, 2018



C. C. Hammerquist et al.: Modeling nanoindentation using the Material Point Method

IV. Conclusions

These new simulations have demonstrated that MPM is
well equipped for the modeling of nanoindentation. In
particular, MPM handles well the large deformation and
contact that occurs under the indenter tip. For good
simulations results, the region under the indenter tip re-
quires high resolution and that need was met efficiently
by using a tartan grid. To achieve noise-free curves
with no dynamic artifacts, the indenter displacement
should be sigmoidal and the MPM calculations should
use noise reduction methods now available in XPIC(m)
[40].

All virtual experiments show that stiffness and hard-
ness extracted from load-displacement curves depend
on the hardening parameters of the material. If the
hardening parameters depend on strain rate, the ex-
tracted stiffness and hardness will also depend on hold
time at maximum load. Because one typically does not
know the hardening parameters of a material studied by
nanoindentation, these numerical observations suggest
a limit on the accuracy achievable by using Oliver-Pharr
methods. A potential approach to achieving higher ac-
curacy is by using numerical analysis. For example, an
iterative inverse approach coupled with MPM, as done
in [5], could be used to solve for material parameters
by matching load-displacement curves to experiments.
If that analysis considers the full curve (i.e., both load-
ing and unloading), such an inverse approach may find
both stiffness and hardening properties of an unknown
material. A note of caution — the load-displacement
curves are a convolution of elasticity, plasticity, and lo-
cal geometry and have been shown to not necessarily
be unique [51]. Furthermore, if the material being in-
dented is strain-rate dependent, resulting in the load
displacement curves with a flat top, then this strain-
rate dependance needs to be modeled as well. MPM
could be an effective tool for carrying out inverse meth-
ods aimed at extracting additional and more accurate
material properties from nanoindentation experiments.
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