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Chapter 1

SUMMARY

Composites are often treated as “materials,” but it is perhaps more realistic to treat them as

“engineered structures.” Unlike conventional materials, which on some relatively small scale are

homogeneous bodies, composite structures are heterogeneous bodies. For advanced, aerospace

composites, which are comprised of fibers and a matrix, the heterogeneous nature is revealed by

observations on the scale of a fiber diameter—8 µm. Such heterogeneity has numerous conse-

quences. First, the mechanical properties of composite structures are generally anisotropic. This

anisotropy complicates any detailed stress analysis of composites. Second, and perhaps more im-

portantly, heterogeneity leads to a variety of failure modes. Some examples include fiber fracture,

matrix fracture, interfacial failure, delamination, and intralaminar fracture. Because of the variety

of failure modes, the analysis and prediction of composite failure is a difficult and multifaceted

problem. The theme of this research project, as indicated by the title, was to develop new meth-

ods for characterizing the fracture toughness of advanced composite structures. The new methods

were used to study microcracking, microcrack-induced delamination, and longitudinal splitting of

polymeric matrix composites.

We view the analysis of each composite failure mode (fiber fracture, matrix fracture, etc.) as

a separate fracture mechanics problem. In this research project we approached each failure mode

5



6 CHAPTER 1. SUMMARY

with a five step micromechanics of damage analysis. Those five steps are:

1. Observe the damage process

2. Analyze the stresses in a damaged laminate

3. Propose failure criteria and make predictions

4. Verify the analysis with experiments

5. Use the analysis to study or design composite structures.

The first step is to determine the type of damage observed in representative composite laminates.

This step should be obvious but, surprisingly, is skipped by many investigators. The goal of this

step is to understand what type of cracks form, where the cracks form, and what causes them to

form. Some typical questions to ask are: Is the damage matrix cracking, fiber breakage, interfacial

debonding, or ply delamination? How is the damage process affected by laminate structure and

material properties? It is necessary to obtain a large data base of experimental observations before

it is possible to develop a meaningful analysis of any particular composite failure mode.

The second step is to undertake a stress analysis in the presence of damage. If the first step

was done correctly the stress analysis will be carried out for stress and strain distributions in the

presence of the observed damage. Unlike isotropic, homogeneous materials for which it is often

possible to obtain exact linear elastic solutions, analysis of stresses in composites almost always

requires approximate stress analyses. The key to a successful failure analysis is the development of

a mechanics model that leads to a sufficiently accurate stress analysis. For very complex problems

involving complex damage states or significant three-dimensional effects, it may be necessary to

turn to numerical stress analyses such as finite element analysis. The overuse of numerical analysis,

however, tends to limit practical utility, limit model generality without additional costly numerical

calculations, and limit physical insights gained from closed form, but approximate stress analyses.
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Armed with information about the effect of observed damage on the stresses, the third step is to

postulate failure criteria and predict initiation and growth of damage. Failure criteria are usually

maximum stress or strain criteria, or fracture mechanics criteria such as stress intensity factor or

strain energy release rate. An important feature, often missed in criticism of the literature, is

that steps two and three are totally independent. Any available stress analysis can be used with

any failure criterion. If experimental results reveal that a particular model for micromechanics of

damage is inadequate, it may be the result of the inadequacy of only one step. For example, a good

stress analysis coupled with an inappropriate failure criterion will give poor results as will an over

simplified stress analysis coupled with a good failure criterion.

Step four is to compare the predictions of steps two and three to the experimental observations

in step one. A good micromechanics of damage analysis is defined as one that correlates and

explains most or all of the experimental observations.

Step five is the application phase. Once a micromechanics of damage analysis for any particular

composite failure mode has been proposed and verified, it becomes available for use. It can be used

to characterize the toughness of various composites and thereby rank them according that failure

mode. To completely characterize the toughness of a composite, however, one must study many

failure modes and not just one failure mode such as delamination. The toughest composite will

generally be the one with the best overall balance of properties. Besides ranking materials, failure

analysis models can be used to design composite structures. The can be used to avoid damage, to

predict the effect of damage, and to predict fatigue lifetimes.

The first form of failure in composites which have off-axis plies is matrix fracture or matrix

microcracking in those off-axis plies. Although matrix microcracking has been studied since the

1970’s, we found that as of 1988 (the start of this contract), no microcracking theory could explain

all microcracking results. Chapter 1 describes a new analysis of microcracking developed during
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this contract. That chapter begins with a review of the stress analysis techniques used to study

microcracking. We concluded that Hashin’s [1–4] variational analysis is the best stress analysis

method. Before we could use his analysis to study microcracking, however, we had to extend to

include thermal stresses [5–7], to include general cross-ply stacking sequences [8, 9], and to account

for antisymmetric damage states observed when the microcracking plies are on the free-surface

of the laminate [10]. We assumed that microcracking occurs when the energy release rate due

to the formation of the microcrack exceeds the microcracking toughness, Gmc, of that composite

material. The best way to verify the stress analysis and the energy release rate failure criterion is

to compare the predictions to experimental results using a master plot approach. We found that

the new analysis can correlate our large body of new experimental data. We also derived master

plot analyses for previous microcracking models. We found that many models previously believed

to be qualitatively correct are, in fact, complete failures. Our new microcracking model is unique

in its ability to explain experimental observations. Chapter 1 closes with an application phase

of composite failure analysis by comparing the microcracking toughness of a variety of composite

materials.

The success of the variational analysis and the energy release rate failure criterion described

in Chapter 1, led us to consider additional failure problems. In Chapter 2, we use the energy

release rate calculation to derive a modified Paris-Law for microcracking fatigue experiments. By

plotting the microcrack density growth rate as a function of energy release rate amplitude, ∆Gm, we

were able to correlate experimental data from a many different laminates of one composite material

system an a single master plot. The fatigue characterization worked for both for mechanical fatigue

and thermal cycling fatigue.

An important detrimental effect of microcracks is that they can nucleate further forms of damage

such as delaminations. In Chapter 3, we describe an extension of the variational analysis to account
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for delaminations emanating from the microcrack tips [9]. The analysis was used to make several

predictions about the process of microcrack induced delaminations. All predictions agree well with

available experimental observations.

Chapter 4 is an abstract chapter that discusses ways in which the variational stress analysis

techniques can be generalized to handle new fracture problems. In particular we discuss an analysis

of curved microcracks, a completely general variational analysis of composite plates, and a varia-

tional analysis of stresses around breaks in single embedded fibers. The discussion in Chapter 4

suggests many possibilities for future work.

Another matrix failure mode is longitudinal splitting. Longitudinal splitting is usually defined

as intralaminar crack propagation parallel to the fibers in unidirectional composites. Longitudinal

splitting can also be observed in 0◦ plies of multi-axial laminates. Chapter 5 discusses a new analysis

of longitudinal splitting in unidirectional composites. We found that many experimental results

are influenced by fibers bridging across the longitudinal split. If the experimental observation of

fiber bridging is ignored, it is easy to misinterpret composite fracture tests and thereby incorrectly

characterize the longitudinal splitting fracture toughness. We developed new ways to account

for fiber bridging and clarified the definition of true fracture toughness for intralaminar crack

propagation.

In this research project, we worked on micromechanics of damage analyses for various failure

modes including microcracking, delamination, and longitudinal splitting. In the process, we arrived

at two litmus tests that can be used to judge our own or anyone else’s failure analysis models:

1. The stress analysis must be realistic and sufficiently accurate.

2. The failure criterion must be realistic and rooted in fracture mechanics.

The first litmus test considers the stress analysis in the presence of damage. Most people would
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agree that unless the stress analysis is accurate, the fracture predictions cannot be accurate. A more

subtle point is that the requirements of a stress analysis for fracture predictions is more severe than

the requirements of a stress analysis for other properties. Fracture should be viewed as an instability

event. As such, the predictions can be very sensitive to small differences in stress analyses. Other

laminate properties such as stiffness, plates displacements, thermal expansion coefficients, etc.,

are not instability events, but rather global plate properties. It is much easier to derive a stress

analysis to predict global properties than it is to derive one to predict instability events. In the

microcracking analysis, for example, we found that approximate stress analyses based on shear-lag

approximations do a good job at predicting plate stiffness and in-plane displacements, but a very

poor job at predicting fracture. Before we were able to derive an acceptable microcracking model,

we had to use improved stress analysis methods. When evaluating literature fracture models, the

stress analysis parts of those models should always be questioned. No stress analysis should be

accepted unless it can be demonstrated that it can be used in conjunction with failure criteria to

predict fracture properties.

The second litmus test involves the failure criterion. There is a disturbing tendency of composite

failure models to concentrate of sophisticated stress analyses, damage mechanics, or finite element

analyses, while giving too little thought to choosing an appropriate failure criterion. As a result,

one often finds complex failure models that are based on simplistic failure criteria such as maximum

stress, maximum strain, average stress, point stress, or quadratic stress functions. We found that

such simplistic failure criteria could not explain our experimental observations. In all our analyses

we turned instead to fracture mechanics and predicted failure in terms of energy release rate for

crack propagation. The failure modes we studied are not unique in being controlled by energy

release rate. We suggest that fracture mechanics is a fundamental tool for predicting failure and

should be used for all composite failure modes.
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A good way to judge the failure criterion in a composite failure model is to imagine applying

the model to an isotropic, homogeneous material. After all, isotropic, homogeneous materials are

a special case of a composite material in which the fiber and matrix have identical properties and

the interface is perfect. If a failure model cannot handle the simple special case of an isotropic,

homogeneous material, then it should not be expected to be realistic for more complex cases

(e.g. composites). For example consider crack propagation from a notch. No one would consider

using maximum stress, maximum strain, average stress, point stress, or quadratic stress functions to

predict the conditions that lead to crack propagation in isotropic, homogeneous materials. Likewise,

no one should propose a composite failure model based in these unrealistic failure criteria. We

recommend that all serious composite failure models should make use of the principles of fracture

mechanics.
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Chapter 2

MICROCRACKING UNDER

STATIC LOADS

2.1 Introduction

Many observations have confirmed that the first form of damage in general angle-ply laminates

loaded in tension is matrix cracking or microcracking in the off-axis plies [6, 10–47]. Microcracks

are readily observed in 90◦ plies in which they are logically termed transverse cracks. Even if 90◦

plies are not present, however, microcracks can still form in the plies with the highest angle with

respect to the loading direction (e.g. the θ plies in a [0/θ/ − θ]s laminate [48]). Microcracks may

be observed during static loading, fatigue loading, thermal loading, or any combination of these

loadings.

The initial effects of a few microcracks in 90◦ plies are relatively minor. Microcracks cause

changes in mechanical properties of the laminate including a reduction in longitudinal stiffness [23]

and a change in thermal expansion coefficients [49, 50]. Microcracks introduce pathways through

which corrosive agents can penetrate into the interior of the laminate. The mere presence of micro-

cracks and the above minor effects may cause a technical failure [17]. If small changes in mechanical

13
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properties cannot be tolerated or if leakage is crucial (e.g. for pressure vessels), the presence of the

first microcrack causes structural failure. For these critical applications the microcracking analysis

must be able to predict the initiation of microcracking.

Many composite applications are not affected by a few microcracks and it is tempting to consider

microcracking damage to be tolerable as long as the microcrack density is low. Unfortunately

there is much evidence suggesting that microcracks act as nuclei for further and potentially more

deleterious forms of damage [17]. Microcracks can promote delamination between the off-axis ply

(e.g. the 90◦ ply) and the adjacent ply. These delaminations initiate along the line where the edge of

the microcrack meets the ply interface. When 0◦ plies are adjacent to 90◦ plies, the microcrack can

induce longitudinal splitting in the 0◦ plies. The intersection of the microcrack and the longitudinal

split is an area of intense stress concentration that can cause delamination [34]. At late stages of

microcracking damage, curved or oblique microcracks may appear near existing straight microcracks

[34]. Delamination appears to proceed easily from the tips of curved microcracks [34]. Matrix

microcracks in 90◦ plies and the types of damage induced by matrix microcracks are shown in

Fig. 2.1. A successful microcracking analysis should be capable of predicting not only microcracking,

but also the nucleation of other forms of damage.

This chapter describes a new analysis of microcracking in the 90◦ plies of [90n/(S)]s and

[(S)/90n]s laminates where (S) is any orthotropic supporting sublaminate. We can list some goals

or objectives for a successful analysis:

1. Predict microcrack initiation.

2. Predict the increase in density of microcracks on continued loading.

3. Predict the conditions that lead to related forms of damage such as delamination, longitudinal

splitting, and curved microcracks.
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(S) 90
2n (S)

Curved
   Microcrack

Complete
   Microcracks

Partial
   Microcrack

Longitudinal
   Split

Through-the-Width
   Delamination

Non-Through-the-Width
   Delamination

Figure 2.1: A [0n/90m]s laminate with several types of damage modes. The illustrated damage
modes are complete microcracking, partial microcracking, microcrack induced delamination (both
through-the-width delamination and non-through-the-width delamination that initiates at a free
edge), curved microcracks, and longitudinal splitting

4. In the micromechanics analysis, include residual thermal stresses and thereby assess the role

of thermal stresses in the damage process.

5. Predict the effect that microcracks and other forms of damage have on mechanical and thermal

properties.

6. Combine all above results to predict fatigue lifetimes during mechanical fatigue or thermal

cycling.

The microcracking analysis described in this chapter meets most of these goals and can be used as

a methodology for meeting the remaining goals.

The new microcracking analysis was a two-step process. We began with Hashin’s variational

stress analysis for stresses in damaged [0n/90m]s laminates [1–4]. We extended his analysis to include

thermal stresses [5–7], to handle the more general [(S)/90n]s laminates [8, 9], to deal with surface
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90◦ plies in [90n/(S)]s laminates [10], and to handle delaminations emanating from microcrack

tips [9]. The second step was to use the new stress analyses to predict failure. We assumed that

microcracks from when the total energy release rate associated with their formation exceeds some

critical value or microcracking toughness of the composite materials system.

This chapter begins by reviewing microcracking stress analysis techniques that have appeared

in the literature. We give reasons for believing that the variational analysis is currently the best

analysis and therefore the preferred analysis for any analysis of microcracking. We next discuss

various microcracking failure criterion and show that the energy release rate criterion does the best

job of correlating all experimental data. The best way to evaluate microcracking theories is to

construct a master plot that can be used to compare predictions of those theories. The master plot

section of this chapter shows that the energy release rate criterion coupled with the the variational

stress analysis is the only one capable of predicting all experimental results. A surprising finding

is that previous literature theories that many people believe to be at least qualitatively correct are

better characterized as complete failures. This chapter closes with a discussion of the microcracking

toughness of various composite materials.

2.2 Stress Analysis

The first step in any microcracking analysis is to obtain the stress state for laminates with micro-

cracks in the 90◦ plies. For now we ignore other damage modes, such as delamination and curved

microcracks. They will be considered in later chapters. The laminate coordinate system is defined

in Fig. 2.2. The x direction is the loading direction; the y direction is the width direction; the z

direction is the thickness direction. The sample length (L), width (W ), and thickness (B) are also

shown in Fig. 2.2.
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zy

x

W

B

L

Figure 2.2: The coordinate system for the stress analysis of [(S)/90n]s and [90n/(S)]s laminates.
L, W , and B are the length, width, and thickness of the laminate plate.
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a
a

t1 t2

A

x

z

h

a
a

t1 t2

B

x

z

h

2 
 tδ

1

(S) (S) (S) (S)

Figure 2.3: Edge view of a [(S)/90n]s laminate with microcracks. A: Two microcracks in the 90◦

plies. B: The formation of a new microcrack at a distance 2δt1 above the bottom microcrack

We simplify the microcrack damage state by assuming that all microcracks instantaneously span

the entire cross-section of the 90◦ plies. This assumption is reasonable because partial microcracks

are only observed in unusual circumstances such as laminates with thin 90◦ plies [14] or laminates

under low-stress fatigue [22, 33]. A microcrack that spans the entire cross-section of the 90◦ plies

is a through-the-width microcrack. In the presence of only through-the-width damage, the stress

analysis is approximately two-dimensional in the x− z plane. The coordinate system for the x− z

stress analysis of [(S)/90n]s laminates is given in Fig. 2.3A. The “unit cell” of damage is the area

between two existing microcracks. We define t1 as the semi-thickness of the 90◦ ply group, t2 as

the thickness of each (S) sublaminate, and 2a as the distance between existing microcracks.

In the analysis of [90n/(S)]s laminates we must account for the fact that microcracks in one 90◦

ply group are observed to be staggered from those in the other 90◦ ply group [8, 10, 23]. We idealize

the damage state by assuming that microcrack stagger is perfect and take the “unit cell” of damage

as the area between two existing microcracks in one of the 90◦ ply groups. The coordinate system

for the “unit cell” of damage for [90n/(S)]s laminates is given in Fig. 2.4A. For these laminates t1
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a
a

A

z

B

x

t2 t2 t1t1

a
a

B

z

B

x

t2 t2 t1t1

(S)
2

(S)
2

Figure 2.4: A unit cell of damage in a [90n/(S)]s laminate having “staggered” or antisymmetric
microcracks. A: A single unit cell of damage. B: Three unit cells of damage after formation of new
microcracks at locations of local maxima in tensile stress.

is the total thickness of each 90◦ ply group, t2 is the thickness of the (S) sublaminate (or semi-

thickness of the (S)2 ply group), and 2a is the distance between existing microcracks in one of the

90◦ ply groups.

By a few reasonable assumptions, the stress analysis simplifies mathematically to a two-dimen-

sional analysis. The third dimension enters by an additional assumption of plane stress, plane

strain, or generalized plane strain conditions. We describe mostly plane stress analyses but realize

that a plane strain solution can trivially be generated from a plane stress solution by substituting

reduced mechanical properties for the mechanical properties of the plane stress analysis. Although

a two-dimensional analysis gives us much information about microcracking damage, it can never

yield information about three-dimensional effects. A two dimensional analysis is therefore not useful

in predicting the y direction propagation of partial microcracks or in elucidating the edge effects

that might cause microcracks to initiate at specimen free edges.
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2.2.1 Statement of the Problem

We define a component of the stress tensor by σ
(i)
jk where j and k are x, y, or z and superscript (i)

denotes the ply group (i = 1 for the 90◦ ply group and i = 2 for the (S) sublaminate). In the x− z

plane of an undamaged laminate, only σ
(i)
xx is non-zero. Defining σ

(i)
x0 as the initial x-axis stress in

ply group i, the stresses in the undamaged laminate are

σ(i)
xx = σ

(i)
x0 σ(i)

zz = σ(i)
xz = 0 (2.1)

Because microcracking occurs at very low strains, a linear thermoelastic analysis is appropriate.

Linearity allows us to rewrite the initial stresses as

σ
(i)
x0 = k(i)

m σ0 + k
(i)
th T (2.2)

where σ0 is the total applied stress in the x direction and T = Ts − T0 is the difference between

the specimen temperature, Ts, and the stress free temperature, T0. k
(i)
m and k

(i)
th are mechanical and

thermal stiffnesses for ply group i.

There are some minor differences in the various microcracking analyses regarding the evaluation

of k
(i)
m and k

(i)
th . If the third dimension (the y dimension) is ignored, the stress state of an undamaged

laminate reduces to a one-dimensional problem. Assuming that the x-direction displacements of

all ply groups are identical, one quickly derives

k
(1)
m = E

(1)
x

E0
c

k
(1)
th = −∆α

C1

k
(2)
m = E

(2)
x

E0
c

k
(2)
th = ∆α

λC1

(2.3)

where E
(i)
x is the x-direction Young’s modulus of ply group i,

E0
c =

t1E
(1)
x + t2E

(2)
x

t1 + t2
(2.4)

is the rule-of-mixtures x-direction modulus of the undamaged laminate, ∆α = α
(1)
x − α

(2)
x is the
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difference between the x-direction thermal expansion coefficients of the two ply groups,

C1 =
1

E
(1)
x

+
1

λE
(2)
x

(2.5)

and λ = t2
t1

.

Alternatively, one may analyze the undamaged laminate using laminated plate theory [51]. The

mechanical load and thermal stiffnesses obtained either by simple one-dimensional analysis or by

laminated plate theory are identical if the Poisson ratios, ν
(i)
xy , are set equal to zero. Therefore, for

laminates under unidirectional tension, laminated plate theory is a correction of the one-dimensional

analysis to account for transverse Poisson’s contraction. In cross-ply laminates, the correction is

generally small. For a homologous series of [0/90n]s laminates with n = 1
2 to 8, the Poisson

correction to k
(i)
m is always less than 2% and the Poisson correction to k

(i)
th is always less than 6.5%.

Because these correction factors are small, we regard consideration of Poisson’s contraction as an

insignificant aspect or any microcracking analysis. In other words, if the only feature distinguishing

two analyses is the inclusion of Poisson’s contraction we regard those analyses as identical.

When microcracks form in an undamaged laminate, the stresses change. In general all stress

components, σ
(i)
xx, σ

(i)
xz , and σ

(i)
zz , become non-zero. In terms of boundary conditions, it is normally

assumed that microcrack surfaces are stress free. Thus the normal and shear stresses in the 90◦

plies are zero on the microcrack surfaces. The load no longer carried by the 90◦ plies is transferred

to the adjacent unbroken plies. For [(S)/90n]s laminates these requirements and symmetry in shear

stresses lead to the following boundary conditions

〈
σ(2)

xx (±a)
〉

= σ
(2)
x0 +

σ
(1)
x0
λ

(2.6)

σ(1)
xx (±a) = 0 (2.7)

σ(1)
xz (±a) = σ(2)

xz (±a) = 0 (2.8)

where
〈
σ

(2)
xx (x)

〉
is the average x-direction stress in the (S) sublaminate at position x. In the
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next section we discuss some approximate stress analyses that are incapable of satisfying the zero

shear stress boundary conditions in Eq. (2.8). Such analyses are clearly deficient. The situation in

[90n/(S)]s laminates is more complex. Because of staggered microcracks, the load lost by microc-

racking of one 90◦ ply group is carried by both the (S)2 sublaminate and the other 90◦ ply group.

The analysis of [90n/(S)]s laminates is considered in more detail later.

The goal of the stress analysis is to solve for the stress distribution in laminates after the

formation of microcracking damage. The boundary conditions for [(S)/90n]s laminates are in

Eqs. (2.6)–(2.8). The next few sections discuss the approximate stress analyses that have appeared

in the literature.

2.2.2 One-Dimensional Analysis of [(S)/90n]s Laminates

Many analyses eliminate the z-dependence of the problem by making various assumptions about the

z-direction stress or displacement. The common assumptions are zero stress, zero average stress,

or zero displacement. We define any analysis using one of these assumptions as a one-dimensional

analysis. Examples can be found in Refs. [12, 16, 21, 36, 42, 43, 52–59]. In this section we show

that all one-dimensional analyses can be reduced to a single governing equation. Thus despite much

effort in the late 1970’s and early 1980’s, none of the work in Refs. [12, 16, 21, 36, 42, 43, 52–59]

improves on the original 1977 work of Garrett and Bailey [12]. We note that some authors describe

their analyses as “two-dimensional” analyses. (e. g. Refs. [52, 53, 57, 58]). In all cases, however, the

second dimension is the y-dimension whose inclusion is little more than a correction for Poisson’s

contraction. As discussed in the previous section, the difference between a two-dimensional x − y

plane analysis and a one dimensional x-axis analysis is marginal.

We define ∆σ(x) as the total amount of stress transferred from the 90◦ plies to the (S) sublam-
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inate:

∆σ(x) =
〈
σ(2)

xx (x)
〉
− σ

(2)
x0 (2.9)

Garrett and Bailey [12] used a shear-lag approximation that the rate of stress transfer from the

90◦ plies to the (S) sublaminate is proportional to the difference of the longitudinal displacements

in those two ply groups. They derived a second order differential equation for ∆σ. We transpose

their equation to a dimensionless x-direction coordinate defined as ξ = x
t1

to get

d2∆σ

dξ2 + φ2∆σ = 0 (2.10)

where φ2 is a constant that depends on laminate structure and material properties. By using a

consistent nomenclature, we find that all one-dimensional analyses (including the “two-dimensional”

x − y plane analyses [52, 53, 57, 58]) can be reduced to a generalized form of Garrett and Bailey’s

[12] equation:

d2∆σ

dξ2 + φ2∆σ = ω(P ) (2.11)

where ω(P ) is a function that may depend on laminate structure, microcrack spacing, and applied

load (P ). The boundary conditions for the general equation are

∆σ(±ρ) =
σ

(1)
x0
λ

(2.12)

where ρ = a
t1

is the dimensionless half-spacing of the microcrack interval. The constant φ governs

the rate of stress transfer through shear at the 90/(S) interface and we call it the shear stress

transfer coefficient. The function ω is zero in all analyses except that of Nuismer and [57, 58].

We retain a non-zero ω to group all one-dimensional analyses into a single equation. The fact

that the analyses in Refs. [12, 16, 21, 36, 42, 43, 52–59] can all be reduced to the same governing

equation, with different φ2 and ω, is evidence that despite some author’s claims, all those analyses

are mathematically one-dimensional analyses.
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Equation (2.11) is easily solved to give

∆σ = − ω

φ2 +

(
σ

(1)
x0
λ

+
ω

φ2

)
cosh φξ

cosh φρ
(2.13)

The average stress in the (S) sublaminate is

〈
σ(2)

xx

〉
= σ

(2)
x0 − ω

φ2 +

(
σ

(1)
x0
λ

+
ω

φ2

)
cosh φξ

cosh φρ
(2.14)

By force balance, the average stress in the 90◦ plies is

〈
σ(1)

xx

〉
=

(
σ

(1)
x0 +

λω

φ2

) (
1 − cosh φξ

cosh φρ

)
(2.15)

Integrating the equations of equilibrium, the load transfer from the 90◦ plies to the (S) sublaminate

by shear at the interface is described by

d∆σ

dξ
=

τi

λ
(2.16)

where τi is the interfacial shear stress [12]. With the aid Eqs. (2.13) and (2.16), the one-dimensional

analyses give the interfacial shear stress as

τi = φ

(
σ

(1)
x0 +

λω

φ2

)
sinhφξ

cosh φρ
(2.17)

The average x-direction tensile stress in the 90◦ plies and the interfacial shear stress derived

from the one-dimensional analysis are plotted in Fig. 2.5. The plots are for a [0/902]s carbon/epoxy

laminate. As required by boundary conditions, σ
(1)
xx is zero on the microcrack surfaces. Away

from the microcrack, σ
(1)
xx increases as stress is transferred from the (S) sublaminate back into the

90◦ plies. The shear stress has a maximum at the microcrack surfaces and decays towards zero.

The non-zero shear stress on the microcrack surfaces is a violation of boundary conditions and a

deficiency of all one-dimensional analyses.

Having solved the general one dimensional analysis equation (Eq. (2.11)), the only things that

distinguishes the numerous one-dimensional theories are the procedures used to evaluate φ and
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Figure 2.5: Stresses between two microcracks in a [0/902]s carbon/epoxy laminate from a one-
dimensional analysis. The applied stress is 100 MPa, thermal load is T = −125◦C, and the microcrack
spacing is ρ = 4. The normal stress (σ(1)

xx ) is the average tensile stress in the 90◦ ply group. The
plotted shear stress (σ(1)

xz ) is the shear stress at the 90/0 interface

ω. Garrett and Bailey et. al. [12, 16] described the first one-dimensional analysis. They used

shear-lag approximations and assumed that the displacement in the 90◦ plies is a function of x but

is independent of z. They found

φ2 = G(1)
xz C1 and ω = 0 (2.18)

where G
(1)
xz is the shear modulus of the 90◦ plies in the x−z plane and C1 is defined in Eq. (2.5). We

show later that this first calculation of φ2 is nearly optimal for calculating the effect of microcracks

on longitudinal laminate modulus. We note that Garrett and Bailey [12] only solved for stresses

around an isolated microcrack. For an isolated microcrack solution, we simply place the microcrack

at the origin and solve Eq. (2.11) with new boundary conditions

∆σ(0) =
σ

(1)
x0
λ

and ∆σ(∞) = 0 (2.19)

Manders et. al. [21] repeated Garrett and Bailey’s analysis [12] with the same value of φ2 and ω

but extended it to account for neighboring microcracks.
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Ogin et. al. [42, 43] attempted to improve on the analysis of Garrett and Bailey [12] by making

a more realistic assumption that the displacement in the 90◦ plies is parabolic in z. Unfortunately,

the more complicated analysis results in only a trivial change—the value of φ2 is increased by a

factor of three. Ogin et. al. [42, 43] thus found

φ2 = 3G(1)
xz C1 and ω = 0 (2.20)

Han, Hahn, and Croman [54, 55] make the same parabolic displacement assumption and derive

results identical to those previously derived by Ogin et. al. [42, 43].

Several investigators tried to avoid specifying φ by treating it as an adjustable parameter [36,

53, 56]. Physically, the approach is to introduce a shear stress transfer layer between ply groups and

assume that this layer carries only shear stress while the plies carry only tensile stress. The effective

shear stiffness of the shear stress transfer layer enters φ2 as an adjustable parameter. Reifsnider [36]

presented the first use of a shear stress transfer layer. For the specific case of [(S)/90n]s laminates,

his analysis yields

φ2 =
Gt1C1

t0
and ω = 0 (2.21)

where G is the shear modulus of the shear stress transfer layer and t0 is its thickness. Fukanaga

et. al. [53] and Laws and Dvorak [56] adopt the same strategy as Reifsnider [36] and derive identical

results for φ2 and ω. A major disadvantage of this approach is that G
t0

or the shear stiffness of the

shear stress transfer layer is an unknown parameter that must be determined by fitting experimental

results.

Flaggs [52] derived a “two-dimensional” shear-lag analysis that accounts for both applied normal

and shear loadings. The second dimension is the y dimension while the z dimension is eliminated

by assuming zero z displacement. His analysis reduces to a system of two coupled second order

differential equations. When there is no shear loading, the only remaining equation is identical to
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the general one-dimensional analysis equation (see Eq. (2.11)) with

φ2 =

2

 1
λQ

(2)
xx

+
Q

(1)
yy −

Q
(1)
xy Q

(2)
xy

Q
(2)
xx

Q
(1)
xx Q

(1)
yy −Q

(1)
xy

2


(

1
κ2 − 1

2

)
1

G
(1)
xz

+ λ

2G
(2)
xz

and ω = 0 (2.22)

where κ is a transverse shear correction factor. Mathematically, Flaggs [52] analysis is a one-

dimensional analysis with a minor correction for Poisson’s contraction introduced by approximate

inclusion of the y dimension. In fact, if we set ν
(i)
xy = 0 and κ = 1, φ2 reduces to

φ2 =
4C1

3C4
(2.23)

where

C4 =
1

3G
(1)
xz

+
λ

3G
(2)
xz

(2.24)

This value of φ2 is similar to the results of Garrett and Bailey et. al. [12, 16] and of Ogin et. al.

[42, 43] except that G
(1)
xz is replaced by 1

C4
and the numerical prefactor

(
4
3

)
is between the prefactors

of Garrett and Bailey et. al. [12, 16] (1) and Ogin et. al. [42, 43] (3).

Another x − y plane, “two-dimensional” elasticity analysis is described by Nuismer and Tan

[57]. Their analysis eliminates the z dimension by setting the average z-direction tensile stress to

zero. Although no corresponding equation appears in their paper, their analysis reduces to the

general one-dimensional equation by setting

φ2 =
C∗

1
C4

and ω =
t1τ

′
i(a) − φ2σ

(1)
x0

λ
(2.25)

where C∗
1 is the same as C1 in Eq. (2.5) except that elements of the stiffness matrix replace the

longitudinal moduli:

C∗
1 =

1

Q
(1)
xx

+
1

λQ
(2)
xx

(2.26)

and τ ′
i(a) is the slope of the interfacial shear stress at the location of the microcrack. The equation

defining τ ′
i(a) is given in Ref. [57]. This analysis is again best characterized as a one-dimensional
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analysis with a minor correction for Poisson contraction. If we set ν
(i)
xy to zero, φ2 reduces to

φ2 =
C1

C4
(2.27)

which differs only by a numerical prefactor from the reduced Flaggs’ result (see Eq. (2.23)). The

fact that Nuismer and Tan’s [57] analysis is the only one-dimensional analysis with a non-zero ω

sets it apart from all other one-dimensional analyses. The consequence of a non-zero ω is discussed

briefly later.

2.2.3 Variational Mechanics of [(S)/90n]s Laminates

The first two-dimensional analysis for the x − z plane was derived by Hashin [1–4]. Hashin made

one and only one assumption—that the x-axis tensile stresses in each ply group depend only on x

and are independent of z. Under this assumption and force balance, the x-direction tensile stresses

of a microcracked laminate, with the inclusion of thermal stresses, are [5]:

σ(1)
xx = k(1)

m σ0 − ψ(x) and σ(2)
xx = k(2)

m σ0 +
ψ(x)

λ
(2.28)

where ψ(x) is an undetermined function of x. By integrating the stress equilibrium equations and

making use of boundary conditions, it is possible to express the shear and transverse stresses in

terms of ψ(x) [1, 2, 5]:

σ
(1)
xz = ψ′(x)z

σ
(1)
zz = ψ′′(x)

2 (ht1 − z2)

σ
(2)
xz = ψ′(x)

λ (h − z)

σ
(2)
zz = ψ′′(x)

2λ (h − z)2

(2.29)

where h = t1 + t2, z = 0 is at the midplane of the laminate, and Eq. (2.29) applies for z ≥ 0 (the

stresses for z < 0 follow by symmetry). As can be verified by substitution, the above stress state

satisfies equilibrium, traction boundary conditions, and interface stress continuity, and is therefore

an admissible stress state. By the principle of minimum complementary energy, the function ψ(x)
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that minimizes the complementary energy gives the best approximation to the microcracked cross-

ply laminate stress state. The complementary energy is minimized using the calculus of variations.

Hashin solved the elastic problem [1, 2] and Nairn extended his result to include thermal stresses

and more general mechanical properties [5, 9, 51]. The governing Euler equation for finding ψ(ξ)

is [5]:

d4ψ

dξ4 + p
d2ψ

dξ2 + qψ = −k
(1)
th T (2.30)

where p = C2−C4
C3

, q = C1
C3

, C1 and C4 are defined in Eqs. (2.5) and (2.24), and

C2 =
ν

(1)
xz

E
(1)
x

(
λ +

2
3

)
− λν

(2)
xz

3E
(2)
x

(2.31)

C3 =
1

60E
(1)
z

(
15λ2 + 20λ + 8

)
+

λ3

20E
(2)
z

(2.32)

The solution to Eq. (2.30) for the most common case of 4q/p2 > 1 is quoted from Ref. [5]:

ψ = σ
(1)
x0 φ(ξ) − k

(1)
th T (2.33)

and

σ(1)
xx = σ

(1)
x0 (1 − φ(ξ)) (2.34)

where

φ(ξ) =
2(β sinhαρ cos βρ + α cosh αρ sinβρ)

β sinh 2αρ + α sin 2βρ
cosh αξ cos βξ

+
2(β cosh αρ sinβρ − α sinhαρ cos βρ)

β sinh 2αρ + α sin 2βρ
sinhαξ sinβξ (2.35)

and

α =
1
2

√
2
√

q − p and β =
1
2

√
2
√

q + p (2.36)

The solution for 4q/p2 < 1 can be found in Ref. [5].

The x-axis tensile stress in the 90◦ plies and the interfacial shear and transverse stresses for

a [0/902]s carbon/epoxy laminate are plotted in Fig. 2.6. The tensile stress (σ(1)
xx ) is qualitatively
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Figure 2.6: Stresses between two microcracks in a [0/902]s carbon/epoxy laminate from the two-
dimensional, variational mechanics analysis. The applied stress is 100 MPa, thermal load is T =
−125◦C, and the microcrack spacing is ρ = 4. The normal stress (σ(1)

xx ) is the average tensile stress
in the 90◦ ply group. The plotted shear stress (σ(1)

xz ) and transverse stress (σ(1)
zz ) are the stresses at

the 90/0 interface

similar to the one-dimensional analysis result. It differs in detail by having zero slope at the mi-

crocrack surfaces and by reaching a different maximum stress midway between the microcracks.

The interfacial shear stress is significantly different, especially on the microcrack surfaces. Un-

like the one-dimensional analysis which has non-zero shear stress on the microcrack surfaces, the

two-dimensional analysis satisfies the zero shear stress boundary condition. In addition, the two-

dimensional analysis defines the transverse stress that remains undefined in all one-dimensional

analyses. The transverse stress at the 90/0 interface is compressive near the microcrack tips and

becomes slightly tensile away from the microcracks. The peak transverse stress in the x − z plane

is tensile and occurs at z = 0 or at the laminate midplane (plot not shown) [1, 2].

Hashin’s [1, 2] variational mechanics analysis is based on an assumed stress field and mini-

mum complementary energy. Fang et. al. [60] used assumed displacement fields and derived a

variational mechanics solution by minimizing potential energy. Their displacement field, however,

assumes zero z axis displacement. By our definition in this section, the Fang et. al. [60] analysis is
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A B C

Figure 2.7: Sketches of actual edge views of typically damaged cross-ply laminates. A. Roughly
periodic array of microcracks in a [0/904]s laminate. B. Antisymmetric or staggered microcracks
in a [904/02]s laminate. C. Two curved or oblique microcracks near one straight microcrack in a
[0/908]s laminate

a one-dimensional analysis. Although a direct comparison of their results to other one-dimensional

analyses is difficult, their stress solutions, containing single sinhφξ and coshφξ terms, are charac-

teristic of one-dimensional solutions.

2.2.4 [90n/(S)]s Laminates

The stress analysis of [90n/(S)]s laminates is more complicated than the stress analysis of [(S)/90n]s

laminates. The major complicating feature arises from the observation of a staggered microcracking

pattern in the two 90◦ ply groups [8, 10, 23] (see Fig. 2.7B).

Because the one-dimensional analyses do not include transverse stresses, they make no distinc-

tion between [(S)/90n]s and [90n/(S)]s laminates. In other words, the one-dimensional solution to
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the stresses in [(S)/90n]s laminates is simultaneously a solution to the stresses in [90n/(S)]s lami-

nates. This discloses a severe deficiency of all one-dimensional analyses. Experimental observations

show that the microcracking properties of [90n/(S)]s laminates differ from from those of [(S)/90n]s

laminates [16, 51]. It is clear that no one-dimensional analysis can predict those differences. As

stated in the Introduction, a good microcracking analysis should be able to correlate data from a

wide variety of laminates. By this criterion, it is not possible to construct a successful analysis for

microcracking using a one-dimensional stress analysis.

In contrast, a two-dimensional analysis includes transverse stresses and might be able to explain

the microcracking properties of [90n/(S)]s laminates. Nairn and Hu [10] extended Hashin’s [1,

2] two-dimensional, variational mechanics analysis to account for the staggered microcracks in

[90n/(S)]s laminates. We briefly describe the analysis results below. Details are given in Ref. [10].

The two 90◦ ply groups are labeled 1 and 4. By analogy with the analysis of [(S)/90n]s laminates,

it is assumed that after the formation of microcracks, the x-axis tensile stresses in the two 90◦ ply

groups change to

σ(1)
xx = k(1)

m σ0 − ψ1(x) and σ(4)
xx = k(4)

m σ0 − ψ4(x) (2.37)

For symmetric laminates k
(1)
m = k

(4)
m . When the microcrack in ply group 4 is midway between the

microcracks in ply group 1 (i.e. perfect stagger, see Fig. 2.4A) symmetry dictates that

ψ4 =


ψ1(ξ − ρ) for ξ > 0

ψ1(ξ + ρ) for ξ < 0
(2.38)

By virtue of Eq. (2.38), ψ1(x) and ψ4(x) are dependent functions. They can be treated as inde-

pendent functions, however, if we consider them only on the interval (0, ρ
2 ), which is one quarter of

the “unit cell” of damage, and impose appropriate boundary conditions at ξ = 0 and ξ = ρ
2 [10].

After these two independent functions on the interval (0, ρ
2 ) are obtained, the complete ψ1 and ψ4

functions can be constructed by symmetry and Eq. (2.38) [10]. The solution on the interval (0, ρ
2 )
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is determined by minimizing the complementary energy using the calculus of variations. When cast

in terms of two new functions

X = ψ1 + ψ4 and Y = ψ1 − ψ4 (2.39)

the complementary energy can be minimized analytically by solving two decoupled fourth order

differential equations (see Ref. [10]).

The x-axis tensile stress in the 90◦ plies (group 1) and the interfacial shear and transverse

stresses for a [902/0]s carbon/epoxy laminate are plotted in Fig. 2.8. The tensile stress (σ(1)
xx ) is

zero at the two microcrack surfaces as required by boundary conditions. Midway between the two

microcracks and directly opposite the microcrack in the 90◦ ply group on the opposing surface (see

Fig. 2.4A) there is a local minimum in tensile stress. This local minimum is caused by a bending

effect resulting from the asymmetric nature of the unit cell of damage. Two local maxima in tensile

stress are located at positions close to 1
3 and 2

3 of the way from the bottom microcrack to the top

microcrack. The distribution of the tensile stress shown in Fig. 2.8 can be used to explain the

tendency towards staggered microcracks. If new microcracks form at all local tensile stress maxima

in the 90◦ plies, the new damage state is equivalent to three unit cells of damage each being 1
3 as

large as the initial unit cell of damage [10] (see Fig. 2.4B). Thus, forming microcracks at positions

of local maxima in tensile stresses leads to propagation of staggered microcracks.

As required by boundary conditions, the interfacial shear stress is zero on the microcrack sur-

faces. The shear stress is also zero at ξ = 0 due to symmetry. The peak shear stress is close to the

microcrack surfaces and is similar in magnitude, but somewhat less than the peak σ
(1)
xx stress.

σ
(1)
zz plotted in Fig. 2.8 is the transverse stress along the 90/0 interface. There is a significant

transverse stress concentration at the microcrack tip. The peak transverse stress is tensile and

about twice as large as the peak σ
(1)
xx stress. In dramatic contrast, the corresponding interfacial

transverse stress in [0/902]s laminates shows a compressive stress concentration near the microcrack
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Figure 2.8: Stresses between two microcracks in the 90◦ ply group of a [902/0]s carbon/epoxy
laminate from a two-dimensional, variational mechanics analysis. The applied stress is 100 MPa,
the thermal load is T = −125◦C, and the microcrack spacing is ρ = 4. The normal stress (σ(1)

xx ) is
for the entire ply group. The plotted shear stress (σ(1)

xz ) and transverse stress (σ(1)
zz ) are the stresses

along the 90/0 interface.

tips (see Fig. 2.6). The difference between [902/0]s and [0/902]s laminates in interfacial transverse

stress is due to the bending effect caused by the asymmetric unit cell in [902/0]s laminates. It is

the same bending effect that causes the local minimum in σ
(1)
xx . This high tensile transverse stress

concentration is expected to promote mode I delamination initiating from the tips of microcracks.

The difference in transverse tensile stresses between [902/0]s and [0/902]s laminates explains why,

as observed by several authors [25, 31, 44], delamination initiation occurs more easily in [90n/0m]s

laminates than in [0m/90n]s laminates.

2.2.5 Finite Element Analysis

Finite element analysis is used to look at the stresses in the presence of microcracks (e.g. Refs. [26–

29, 38, 61]) or in the presence of microcracks and delaminations (e.g. Refs. [28, 62, 63]). Used

in this way, finite element analysis is a powerful tool for calculating the stresses in a model of a

damaged laminate. It can, for example, be used to verify the accuracy of analytical methods such
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as the shear-lag analysis or the variational analysis. It can also be used to suggest the form of the

correct solution and therefore be helpful in choosing approximations for new analytical solutions

[10].

Despite the important applications of finite element analysis, it is of limited use in develop-

ing useful micromechanics of damage models. Finite element analysis is best characterized as an

experimental technique that can measure the stresses in model specimens. Even if the stress mea-

surement is accurate, it is not sufficient for developing a microcracking analysis. A useful analysis

requires knowledge of the stresses in the presence of any amount of damage and as a function of

stacking sequence. Elucidating this information with finite element analysis may require hundreds

of separate calculations. Thus, although finite elements could be used in principle, it is relatively

intractable in practice. It is further unlikely that a finite element based analysis would find wide

acceptance. It would be inhibited by the difficult task of transferring the methods from laboratory

to laboratory. In this report, we limit our discussion of finite elements to information it gives about

specific stress states or specific energy release rate calculations.

2.2.6 Stress Analysis Predictions for Modulus Reduction

As the density of microcracks increases, the longitudinal stiffness of the laminate decreases. At

saturation microcrack density, the total modulus decrease ranges from about 5% to as much as

50% [1]. The maximum modulus reduction depends on laminate structure and material properties.

Laminates whose axial stiffness is dominated by many 0◦ plies show a small modulus reduction.

As the number of 90◦ plies increases and those plies play a greater role in the laminate stiffness,

the laminate modulus reduction increases. The ratio of the transverse modulus to longitudinal

(fiber direction) modulus of the unidirectional material is also important. The larger this ratio, the

more the 90◦ plies contribute to laminate stiffness and therefore the larger the observed modulus

reduction. To provide a critical test for theories that might predict modulus reduction, Highsmith
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and Reifsnider [23] did modulus reduction experiments on [0/903]s glass/epoxy laminates (Scotch

Ply 1003). The [0/903]s stacking sequence was purposefully chosen to provide a laminate that is

not dominated by the 0◦ plies. The ratio of the transverse modulus to longitudinal modulus of this

glass/epoxy material is higher than it is for typical carbon/epoxy materials. The modulus reduction

for glass/epoxy laminates is thus larger than it is for the corresponding carbon/epoxy laminate.

In this section we compare Highsmith and Reifsnider’s [23] experimental results—modulus as a

function of microcrack density—with the predictions made by the one-dimensional analyses and by

the two-dimensional, variational mechanics analysis.

From knowledge of the stress distribution, we can calculate the total displacement of the load

bearing 0◦ plies between two microcracks. From this result it is easy to calculate the effective

laminate modulus. Nairn and Hu [51] did this calculation for all the one-dimensional analyses

and the variational analysis. Their results, which compare the modulus reduction predictions with

experimental data, are plotted in Fig. 2.9. The first and simplest one-dimensional analysis by

Garrett and Bailey [12] agrees well with experimental observations. Later attempts for improved

one-dimensional analyses generally give worse results. The analysis by Ogin et. al., i.e., the analysis

that assumes parabolic displacements [42, 43, 54, 55], under predicts the modulus reduction. In

effect, the assumption of parabolic displacement makes the damaged 90◦ plies too stiff. Flaggs’

shear-lag analysis [52] and Nuismer and Tan’s elasticity analysis [57], which account for Poisson

effects by including the y dimension, look better than the Ogin et. al. [42, 43, 54, 55] analysis, but

they are still too stiff and worse than Garrett and Bailey’s [12] analysis. The non-zero ω(P ) function

in Nuismer and Tan’s [57] analysis has little or no effect on the modulus reduction prediction. A

plot with ω(P ) = 0 is indistinguishable from the Nuismer and Tan plot in Fig. 2.9. The Reifsnider

type analysis, or a shear-lag analysis that uses an effective shear stress transfer layer [36, 53, 56],

is in excellent agreement with experimental data. This excellent agreement, however, comes at
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Figure 2.9: Relative modulus as a function of microcrack density for a [0/903]s glass/epoxy (Scotch
Ply 1003) laminate. The data points are experimental results from Ref. [24]. The smooth lines are
theoretical predictions by various stress analysis procedures.

the cost of using an adjustable parameter—G/t0, the effective shear stiffness of the shear stress

transfer layer. Overall, Hashin’s [1, 2] variational mechanics analysis provides the best agreement

with Highsmith and Reifsnider’s [23] experimental observations. The improvement of Hashin’s

analysis over the best one-dimensional analysis, however, is only marginal.

Judged solely by their ability to fit the experimental data of Highsmith and Reifsnider [23],

we should avoid the analyses that assume parabolic displacement and the quasi-two dimensional

analyses of Flaggs [52] and Nuismer and Tan [57] as being too stiff. Of the remaining three analyses,

we should avoid the analysis that uses an effective shear stress transfer layer [36, 53, 56] because it

achieves agreement with experimental observations only by using an adjustable parameter that is

not required in the other two analyses. Between the Garrett and Bailey [12] analysis and the Hashin

[1, 2] analysis, we note that they have one assumption in common. The common assumption, which

is the only assumption in the Hashin [1, 2] analysis, is that σ
(i)
xx is independent of z. By the principles
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of variational mechanics, the Hashin [1, 2] analysis which minimizes complementary energy, is

assured of finding the best approximation for all possible stress states with σ
(i)
xx independent of z.

We can thus conclude with mathematical rigor that the Hashin [1, 2] analysis is more accurate than

the Garrett and Bailey [12] analysis.

2.3 Comparison of Microcracking Experiments to Theory

Though necessary, an ability to fit the modulus reduction data of Highsmith and Reifsnider [23]

in the previous section is not sufficient to guarantee that a particular stress analysis is capable

of providing a micromechanics of damage analysis for microcracking. The true test of any stress

analysis is its ability to be used in conjunction with failure criteria to predict laminate failure

properties. In this section we explore the various failure models that have been proposed for

predicting the initiation and propagation of microcracks. We compare the predictions to our new

experiments on several different composite materials and many different stacking sequences. When

we attempt to apply the failure criteria to make definite predictions, we do so by using Hashin’s

[1, 2, 5, 6, 10] two-dimensional, variational mechanics analysis extended to include residual stresses.

We find less incentive, except historical interest, to explore the predictions made when using any

one-dimensional analysis as we believe them to be less accurate than Hashin’s [1, 2] analysis.

2.3.1 Materials and Methods

During the course of this project we did microcracking on many different composite materials. The

materials studied included Hercules AS4 graphite/3501-6 epoxy, Hercules IM6/DuPont AvimidR© K

polymer, T300 graphite/Fiberite 934 epoxy, T300 graphite/Fiberite 977-2 thermoplastic toughened

epoxy, and Hercules AS4 graphite/ICI PEEK. For each material we made a series of laminates with

90◦ plies. The generic layups either had 90◦plies in the middle ([(S)/90n]s laminates) or had 90◦



2.3. COMPARISON OF MICROCRACKING EXPERIMENTS TO THEORY 39

plies on each free surface ([90n/(S)]s laminates). Specimens, which were nominally 12 mm wide

and 150 mm long with thicknesses determined by the stacking sequences (about 0.125 mm per ply),

were cut from laminate plates. All specimens had 19 mm by 12 mm aluminum end tabs attached

using Hysol 9230 epoxy.

All tensile tests were run in displacement control, at a rate of 0.005 mm/sec, on a Minnesota

Testing Systems (MTS) 25 kN servohydraulic testing frame. Load vs. displacement curves were

collected on an IBM PC-XT that was interfaced to an MTS 464 Data Display Device. While testing

each specimen, the experiment was periodically stopped and the specimen was examined by optical

microscopy. For [(S)/90n]s laminates we mapped the complete distribution of microcrack spacings

on either edge of the specimen. To get an average crack density, we averaged the densities on the

two specimen edges. For [90n/(S)]s laminates, microcracks could be seen on the edges and on the

faces of the specimen. We mapped the complete distribution of microcrack spacings in each of the

two surface 90◦ ply groups. To get an average crack density, we averaged the densities of the two

90◦ ply groups. The specimens were continually reloaded into the MTS frame and tested to higher

displacements until the end tabs failed, the specimen broke, or delamination began.

2.3.2 Microcrack Initiation

Garrett and Bailey [12] assumed that microcracking initiates when the x-direction stress in the 90◦

plies becomes equal to the transverse tensile strength of the unidirectional material. The theory

simply states that microcracking initiates when

σ
(1)
x0 = σT (2.40)

where σT is the transverse tensile strength of a unidirectional laminate. Solving this equation for

applied strain, we obtain the strain to initiate microcracking as

εinit =
σT − k

(1)
th T

E0
c k

(1)
m

(2.41)
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where E0
c is the longitudinal modulus of the undamaged laminate. This analysis is simply a first-ply

failure model derived using a maximum stress failure criterion.

Though simple in concept, the strength model or first-ply failure theory does not agree with

experimental observations. A straight forward experiment that demonstrates the poor agreement

is to measure the stress to initiate microcracking for a series of laminates. If that stress is σinit, we

can calculate σ
(1)
x0 at the time of microcrack initiation using

σ
(1)
x0 = k(1)

m σinit + k
(1)
th T (2.42)

If the strength theory is valid, the calculated σ
(1)
x0 should be independent of laminate structure

and for all laminates it should be equal to σT . The finding is that σ
(1)
x0 at microcrack initiation is

strongly dependent on laminate structure [20, 39]. As the thickness of the 90◦ plies decreases, σ
(1)
x0

at microcrack initiation increases.

Crossman and Wang [39] recognized that σ
(1)
y0 at failure is also nonzero and that a simple

strength criterion based solely on the magnitude of σ
(1)
x0 might be inadequate. To check for the

possibility that more “sophisticated” failure criteria, such as a quadratic failure criteria, might

work better than the simple strength criterion, Crossman and Wang [39] measured both σ
(1)
x0 and

σ
(1)
y0 at microcrack initiation. Their finding is that no rational stress or strain based criterion can

explain the dependence of microcrack initiation stress on laminate structure [39].

The only way a strength based micromechanics of damage analysis can work is if the transverse

ply strength is treated is an in situ or laminate dependent property [20]. This approach, however,

violates the principles of a good micromechanics of damage analysis [51]. A good micromechanics

of damage analysis should be definite enough that predictions can be made. Because a model that

depends on in situ properties cannot be used to make predictions, it is by definition not definite.

Some have argued that the strength model fails because a deterministic strength is used and

that it should be replaced by a probabilistic or statistical strength model [20, 31, 32, 53, 64]. In
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support of a statistical strength model, we note that σ
(1)
x0 at failure increases as the thickness of

the 90◦ plies decreases. The increase in σ
(1)
x0 could be attributed to a size affect. Thinner 90◦ plies

statistically have less flaws and therefore should have a higher effective strength. Two experimental

observations, however, argue against using statistical strength models. First consider microcracking

in [(S)/90n]s laminates vs. microcracking in [90n/(S)]s laminates. The former fails by microcracking

in a (902n) sublaminate while the latter fails by microcracking in two smaller (90n) sublaminates.

By the statistical strength theory, microcracking should form more easily in [(S)/90n]s laminates

than [90n/(S)]s laminates. The experimental observation is just the opposite—the stress to initiate

microcracking in [90n/(S)]s laminates is lower than it is in [(S)/90n]s laminates [16].

The second experimental observation discounting statistical strength theories is similar to the

measurement of σ
(1)
x0 at microcrack initiation that discounts deterministic strength theories. The

experiment is to assume that the transverse strength of the 90◦ plies follows a two-parameter Weibull

distribution and measure those parameters for 90◦ plies in different laminates. The findings are that

the Weibull parameters depend on the thickness of the 90◦ plies [20, 32]. Like the deterministic

strength theories, the only way a statistical strength theory can work is if the distribution in

transverse strength is treated as an in situ property. In short, statistical strength theories do not

yield definite micromechanics of damage analyses that have predictive capabilities.

The failure of strength based models led Parvizi et. al. [14] to propose an energy criterion. They

postulated that the first microcrack forms when the total energy released due to the formation of

that microcrack exceeds some critical value. If Gm is the energy release rate associated with

the formation of a complete microcrack, the energy failure criterion is that a microcrack forms

when Gm ≥ Gmc. We call Gmc the microcracking fracture toughness or the intralaminar fracture

toughness of the composite material system.

Since the work of Parvizi et. al. [14], the energy criterion has gained popularity and appeared
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in Refs. [5, 6, 8, 10,15–18, 25, 54–58, 61]. As will be shown later in this report, the energy criterion

works well, provided it is implemented correctly. Predicting failure on the basis of total energy

release rate, however, is an unconventional application of fracture mechanics. Conventional fracture

mechanics begins with some initial flaw and calculates the energy release rate for an incremental

amount of crack growth. Before proceeding, some qualitative comments on the total energy criterion

are warranted. Imagine an initial small flaw of size a0 in the y direction within the 90◦ plies and

let Gm(a) be the energy release rate for incremental crack growth in the y direction from a flaw of

size a. As the microcrack propagates in the y direction, the flaw size increases from a0 to the full

width of the laminate or W . The total energy released during crack growth (defined above as Gm)

is

Gm =
1

W − a0

∫ W

a0

Gm(a)da (2.43)

Conventional fracture mechanics assumes that for a flaw of size a0 that the crack will propagate

when Gm(a0) > Gmc. Lets consider the case, however, for which Gm(a) is independent of a. Then

Eq. (2.43) reduces to

Gm =
Gm

W − a0

∫ W

a0

da = Gm (2.44)

and conventional fracture mechanics predicts failure when Gm > Gmc. This criterion is identical to

the one discussed above that was proposed by Parvizi et. al. [14]. Thus, although predicting failure

on the basis of total total energy release rate is unconventional fracture mechanics, it is rigorously

equivalent to conventional fracture mechanics for the special case in which energy release rate is

independent of flaw size. Indeed, both Dvorak and Laws [65, 66] and Hahn and Johannesson [67],

on the basis of theoretical arguments, and Boniface and Ogin [22], on the basis of fatigue crack

propagation results, have suggested that Gm is independent of flaw size. The ultimate test of this

unconventional fracture mechanics, however, is how well it compares to experimental results. Those

comparisons (given latter in the report) can be viewed as more evidence that Gm is independent of
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flaw size.

To make predictions based on the energy criterion it is necessary to calculate the energy release

rate associated with the formation of the first microcrack:

Gm =
∂Ω
∂A

− ∂U

∂A
(2.45)

where Ω is external work, U is internal strain energy, and A is fracture surface area. The formation

of the first microcrack at constant load causes the total laminate displacement and internal strain

energy to increase by ∆u and ∆U respectively, and creates new fracture surface area ∆A = 2t1W .

The energy release rate due the formation of the first microcrack is

Gm =
σ0BW∆u − ∆U

2t1W
(2.46)

where σ0 is the applied stress to initiate microcracking. It is certainly possible to calculate ∆u and

∆U and therefore to calculate Gm from any approximate stress analysis. Many authors have given

roughly equivalent results for Gm calculated from one-dimensional analyses [12–15, 25, 54–58] In

view of the deficiencies in the one-dimensional analyses pointed previously, however, the application

of one-dimensional analyses to any failure criterion is only of historical interest. As previously

stated, we concentrate on using Hashin’s two-dimensional, variational mechanics analysis extended

to include thermal stresses [1, 2, 5, 6, 10]. The variational mechanics analysis for microcrack

initiation gives [68]:

Gm = 2σ
(1)
x0

2
α

√
C1C3 = σ

(1)
x0

2
t1

√
C1

(
C4 − C2 + 2

√
C1C3

)
(2.47)

where α is defined in Eq. (2.36).

By the energy criterion, the first microcrack forms when Gm ≥ Gmc. Solving Eq. (2.47) for

applied strain, we predict the strain to initiate microcracking as

εinit =
1

k
(1)
m E0

c

√√√√ Gmc

t1

√
C1

(
C4 − C2 + 2

√
C1C3

) − k
(1)
th T

 (2.48)
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This prediction is in better agreement with experimental observation than any strength model

because it correctly predicts that the strain to initiate microcracking increases significantly as the

thickness of the 90◦ plies decreases [14, 68]. The agreement for laminates with very thick 90◦ plies

is not as good. In general the energy theory predicts that the strain to initiate microcracking

decreases farther than what is experimentally observed [14]. Although the energy criterion is not a

perfect failure criterion, it appears to capture most features of the experimental observations and

to be a significant improvement over strength theories.

The inability of the energy criterion to fit all experimental microcrack initiation results may

be related to deficiencies in the stress analysis (e.g. the assumption of constant x-direction tensile

stress within ply groups). Alternatively, it may be due to practical problems associated with

microcrack initiation experiments. In microcrack initiation experiments, one looks for the first

microcrack and obtains only one data point per laminate. For imperfect laminates containing

processing flaws, these types of experiments are inherently sensitive to flaws and perhaps even

dominated by flaws. Because processing flaws do not enter the energy release rate calculation,

none of the discussed theories can explain results that are influenced by processing flaws. Recent

experimental evidence suggests that the first few microcracks are indeed associated with laminate

flaws [6]. By microscopy, the early microcracks were noted to be near obvious processing flaws [6].

These comments imply that microcrack initiation experiments may not be the best experiments for

studying the microcracking process. The preferred experiments are those that measure microcrack

density as a function of applied load. In microcrack density experiments, one obtains many data

points from a single laminate. If the first few microcracks are caused by laminate flaws, they

can be ignored and many points still remain for studying the microcracking process. Although

early microcracking investigations concentrated on microcrack initiation experiments, most recent

studies involve microcrack density experiments.
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2.3.3 Microcrack Density in [(S)/90n]s Laminates

In our microcrack density experiments, we measured the microcrack density as a function of applied

load. The goal of the micromechanics of damage analysis is to predict the experimental results.

Hopefully the prediction can be applied to a variety of laminate structures and materials. We

obtained the most results for Hercules AS4/3501-6 laminates. In this section we consider some

microcracking theories and how well they predict some of our new data.

As with microcrack initiation experiments, the first attempt at predicting microcrack density

experiments was a simple strength model [12]. From all stress analyses, the maximum tensile stress

in the 90◦ ply group occurs midway between two existing microcracks at ξ = 0. The strength theory

predicts that the next microcrack occurs when the longitudinal stress at ξ = 0 becomes equal to

the transverse tensile strength of the unidirectional material, σT . Using the variational mechanics

solution [1, 2, 5, 6, 10], the next microcrack occurs when

σT = σ
(1)
x0 (1 − φ(0)) (2.49)

where φ(0) is defined in Eq. (2.35). Solving for applied stress, we predict the stress as a function

of microcrack density to be

σ0 =
1

k
(1)
m

(
σT

1 − φ(0)
− k

(1)
th T

)
(2.50)

If σT is treated as an adjustable parameter, the strength theory predictions are in reasonable

agreement with experimental observations [12]. The problem with the strength theory is that

fitting results from the different laminate structures in our new experiments requires using different

values of σT for each laminate. In other words, the transverse tensile strength must be treated as

an in situ or laminate dependent property. Several investigators tried statistical strength theories

for microcrack densities [21, 31, 32, 53, 64]. As in the simple strength model, however, the Weibull

parameters must be treated as in situ or laminate dependent properties if one hopes to fit results
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from different laminates [32]. We thus conclude that micromechanics of damage models based on

strength theories have little useful predictive capability.

Although energy release rate failure criteria were proposed for microcrack initiation in 1978

[14], it was not until 1986 that Caslini et. al. [25] suggested using total microcrack energy release

rate to predict microcrack density as a function of applied load. The expression for energy release

rate is given by Eq. (2.46). For any of the approximate stress analyses it is a straight forward

matter to calculate W and U as functions of microcrack density. The less straight forward matter

is how to evaluate the derivative terms ∂W
∂A and ∂U

∂A . If D is the microcrack density, then the total

microcrack fracture area is A = 2t1WLD. Caslini et. al. [25] treated A as a continuous variable

and used the one-dimensional analysis of Ogin et. al. [42, 43] to derive a simple expression for Gm.

Han et. al. [54, 55] used an identical stress analysis and a crack closure technique to derive an

identical expression for Gm. As explained in the next section, this analytical derivative approach

as now been show to give very poor results. An alternative way to calculate Gm is required.

Laws and Dvorak [56] recognized that A is not a continuous variable but changes in discrete

steps of ∆A = 2t1W following the formation of each new microcrack. They advocated considering

the formation of a new microcrack at a given microcrack density as a discrete process as illustrated

in Fig. 2.3. The energy release rate for the formation of a complete microcrack is the difference in

energy between the three microcrack state in Fig. 2.3B and the two microcrack state in Fig. 2.3A.

Laws and Dvorak [56] calculated a discrete energy release rate using a one-dimensional analysis.

Nairn et. al. [5, 6, 8] calculated the microcracking energy release rate using Hashin’s variational

mechanics analysis extended to include thermal stresses [1, 2, 5, 6, 10]. Although most microcrack

density analyses assume periodic arrays of microcrack spacing, the variational mechanics analysis

can handle any distribution of microcrack spacings. Consider a specimen with N microcracks

characterized by microcrack spacings ρ1, ρ2, . . ., ρN . From the variational mechanics analysis the
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specimen compliance is [5, 6]:

C = C0 +
2C3t1Lk

(1)
m

2

B2W

∑N
i=1 χ(ρi)∑N

i=1 ρi

(2.51)

where C0 = L/BE0
c W is the compliance of the undamaged laminate and the function χ(ρ) is defined

in Refs. [1, 2, 5, 6, 10]. Physically, χ(ρ) is the excess strain energy in the laminate associated with

the presence of microcracking in the 90◦ plies. Nairn et. al. [5, 6, 8] derived an expression for Gm

in terms of a derivative of the compliance:

Gm =
B2W 2σ

(1)
x0

2

2k
(1)
m

2
dC

dA
(2.52)

Evaluating dC
dA by differentiating Eq. (2.51) results in the final energy release rate expression [5, 6, 8]:

Gm = σ
(1)
x0

2
C3t1Y (D) (2.53)

where Y (D) is a function that depends on the microcrack density, D = N
L , or more formally on the

complete distribution of microcrack spacing:

Y (D) = LW
d

dA

∑N
i=1 χ(ρi)∑N

i=1 ρi

=
d

dD

(
D〈χ(ρ)〉

)
(2.54)

where 〈χ(ρ)〉 is the average value of χ(ρ) over the N microcrack intervals.

To use Eq. (2.53), Y (D) must be evaluated. Following Laws and Dvorak [56], Nairn et. al.

[5, 6, 8] evaluated Y (D) for the discrete process of forming a new microcrack at dimensionless

position ξ = 2δ − ρk in the kth microcrack interval (see Fig. 2.3B). A discrete differentiation of

Eq. (2.54) results in

Y (D) =
∆D〈χ(ρ)〉

∆D
= χ(ρk − δ) + χ(δ) − χ(ρk) (2.55)

During a typical experiment, one does not know where the next microcrack will form and therefore

does not know ρk or δ. It is known, however that [(S)/90n]s laminates tend to form regularly spaced

microcracks, especially when microcrack density is high enough that processing flaws play no role.
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We thus might expect

ρk ≈ 〈ρ〉 and δ ≈ 〈ρ〉
2

(2.56)

where 〈ρ〉 is the average value of ρi. With these approximations

Y (D) ≈ 2χ(〈ρ〉/2) − χ(〈ρ〉) (2.57)

Liu and Nairn [6] note results that are sensitive to the distribution of microcrack spacings and

thus Eq. (2.57) is sometimes an oversimplification. From Eq. (2.53) it can be calculated that the

energy release rate is higher when the microcrack forms in a large microcrack interval than it is

when it forms in a small microcrack interval. If we assume that microcrack formation prefers

locations that maximize energy release rate, then ρk will tend to be larger than 〈ρ〉 and δ will tend

to be larger than 〈ρ〉
2 . The best way to account for microcrack spacing distribution effects is to

measure that distribution and calculate Y (D) using Eq. (2.54). This approach is very tedious and

Liu and Nairn [6] suggest a simpler approach that is in good agreement with experiments. Let the

size of the microcrack interval where the new microcrack forms be a factor f times larger than the

average microcrack interval. Then on average

ρk ≈ f〈ρ〉 and δ ≈ f〈ρ〉
2

(2.58)

which gives

Y (D) ≈ 2χ(f〈ρ〉/2) − χ(f〈ρ〉) (2.59)

Using f values between 1.0 and 1.44, Liu and Nairn [6] find good fits to results from a wide variety

of laminates. An experimental technique for measuring f , developed in this contract, verifies that

is is usually between 1.0 and 1.44 with an average value of about 1.2.

A rigorous test of the energy release rate theory requires experiments on many different lami-

nate structures. We measured the microcrack density as a function of applied load in 21 different
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Figure 2.10: Microcrack density as a function of applied load in a series of AS4/Hercules 3501-6 car-
bon/epoxy laminates. The symbols are experimental data points. The smooth lines are predictions
using the variational mechanics energy release rate theory and Gmc = 280 J/m2

layups of AS4/Hercules 3501-6 carbon/epoxy laminates. We compare a few of those results to pre-

dictions for experimental verification that the energy release rate theory predicts the microcracking

properties of [(S)/90n]s laminates. Latter in this chapter we present an master plot approach that

allows us to efficiently compare all experimental results to the theoretical predictions.

Solving Eq. (2.53) for applied stress, we obtain the stress as a function of microcrack density as

σ0 =
1

k
(1)
m

(√
Gmc

C3t1Y (D)
− k

(1)
th T

)
(2.60)

There is one unknown parameter in Eq. (2.60)—Gmc, the microcracking fracture toughness of the

composite material system. For a single laminate, we can measure Gmc by fitting Eq. (2.60) to

experimental results. If Gmc is a useful material property, however, it should be independent of

laminate structure. If a single value of Gmc predicts the results from many different laminates, then

we can claim experimental verification of a energy release rate micromechanics of damage model.

The results for [0/90n]s laminates with n = 1, 2, and 4 are given in Fig. 2.10. All results are fit
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with a single value of Gmc = 280 J/m2. This value of Gmc is similar, but slightly higher than the

delamination or interlaminar fracture toughness of this material. The fits are good but we point

out two deficiencies that should be the subject of future work. For n = 4 or for thick 90◦ ply groups,

we consistently observed experimental results rising slower than predicted. This discrepancy could

be associated with the approximate stress analysis that assumes the x-axis tensile stresses to be

independent of z [1, 2, 5, 6, 10]. When the ply groups get thick, this approximation may be an

oversimplification. For n = 1, a few microcracks start before the predicted rise in microcrack

density. These early microcracks are probably associated with laminate flaws [6]. To account for

these early microcracks, the energy theory needs to be modified to include laminate imperfections.

2.3.4 Microcracking in [90n/(S)]s Laminates

An important class of cross-ply laminates receiving significantly less study is laminates of generic

layup [90n/(S)]s or laminates having outer-ply 90◦ ply groups. The microcracking properties of

[90n/(S)]s laminates differ from those of the corresponding [(S)/90n]s laminates. In particular,

the initial microcracks form at lower loads in [90n/(S)]s laminates and at saturation damage, the

microcrack density of [90n/(S)]s laminates is lower. Furthermore, [90n/(S)]s laminates develop a

staggered or antisymmetric pattern of damage (see Figs. 2.7 and 2.4) that complicates the stress

analysis and the resulting micromechanics of damage analysis. In this section, we explore the use of

an energy based micromechanics of damage model to predict the microcrack density as a function

of applied load for [90n/(S)]s laminates.

As explained in the Stress Analysis section, a one-dimensional analysis cannot explain the

observed differences between [(S)/90n]s and [90n/(S)]s laminates—we must use a two dimensional

x− z plane analysis. Nairn and Hu [10] extended Hashin’s two-dimensional, variational mechanics

analysis [1, 2] of [(S)/90n]s laminates to [90n/(S)]s laminates having staggered microcracks. They
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cast the solution in a form similar to the [(S)/90n]s laminate analysis. The total energy release

rate for the formation a new microcrack is expressed as

Gm = σ
(1)
x0

2
C3t1Ya(D) (2.61)

where Ya(D) is

Ya(D) = LW
d

dA

∑N
i=1 χa(ρi)∑N

i=1 ρi

=
d

dD

(
D〈χa(ρ)〉

)
(2.62)

Evaluating the derivative in Eq. (2.62) by a discrete process of forming staggered microcracks and

introducing the “f” factor to account for a distribution in crack spacings results in [10]:

Ya(D) ≈ 1
2
(3χa(f〈ρ〉/3) − χa(f〈ρ〉)

)
(2.63)

Equations (2.61) and (2.62) are identical to the corresponding expressions for [(S)/90n]s lami-

nates (Eqs. (2.53) and (2.54)) except that Ya(D) and χa(ρ) replace Y (D) and χ(ρ). The subscript

a denotes laminates with antisymmetric or staggered microcracks. Physically χa(ρ) corresponds to

the excess strain energy caused by the presence of staggered microcracks in a unit cell of damage

of dimensionless spacing 2ρ (See Fig. 2.4). The function χa(ρ) is more complex than χ(ρ) and the

reader is referred to Ref. [10] for details.

To test the microcracking analysis for [90n/(S)]s laminates we compare the predictions to ex-

perimental results. Our 21 layup study of microcracking in AS4/Hercules 3501-6 carbon/epoxy

laminates included [90n/(S)]s laminates. In fact, we have a more rigorous test for [90n/(S)]s lami-

nates than we did for [(S)/90n]s laminates. The reason is that the results on [(S)/90n]s laminates

can be viewed as experiments that measured Gmc = 280 J/m2. If Eq. (2.61) correctly accounts for

outer-ply 90◦ plies and staggered microcracks, then it should be possible to fit experimental results

for [90n/(S)]s laminates with the same value of Gmc.

The results for [90/0n]s laminates with n = 0.5, 1, 2, and 4 are given in Fig. 2.11. All results

are fit with a single value of Gmc = 240 J/m2. This microcracking fracture toughness is lower
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Figure 2.11: Microcrack density as a function of applied load in a series of AS4/Hercules 3501-6 car-
bon/epoxy laminates. The symbols are experimental data points. The smooth lines are predictions
using the variational mechanics energy release rate theory and Gmc = 240 J/m2

than the toughness used to fit the results for [0n/90m]s but close enough to be within experimental

uncertainty. The fits for the [90/0n]s laminates are better than the fits for the [0n/90]s laminates.

The most important point from Figs. 2.10 and 2.11 is that a unified fracture theory can predict

results from both [(S)/90n]s and [90n/(S)]s laminates.

2.4 Master Plot Analysis

Plots like those in Figs. 2.10 and 2.11 show that the variational analysis and the energy release

rate failure criterion can predict microcracking properties of [(S)/90n]s and [90n/(S)]s laminates.

For a critical evaluation of any microcracking theory, however, it is desirable to test it with many

different layups. Comparing each laminate to theory requires many plots. If possible, it is preferable

to develop a master plot approach that uses scaling laws to plot microcracking results from all

laminates on a single plot. A single master plot will quickly reveal the adequacy of the microcracking

theory.
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In this section we develop a master plot analysis for microcracking. The master plot approach is

used to critically evaluate the microcracking analysis of the previous section. In brief, we measured

microcracking properties of 21 different layups of Hercules AS4/3501-6 laminates. Three of those

laminates failed by premature delamination, but 18 gave sufficient microcracking results to compare

to theory. The 18 laminates included some with 90◦ plies in the middles, some with 90◦ plies on

the free surface, some with supporting (S) sublaminates of (0n), and some with the supporting (S)

sublaminates of (±15) or (±30). We found that the variational analysis and the energy release rate

failure criterion works well and can correlate all experimental results.

We were able to extend the master plot technique to evaluate previous microcracking theories.

We found that no theory that uses a failure criterion other than the energy release rate failure

criterion can explain the results. In particular maximum stress or maximum strain failure criteria

were bad. We also found that all one-dimensional stress analyses, regardless of failure criterion,

gave poor results.

2.4.1 Variational Analysis of One Laminate

Multiplying Eq. (2.60) by −k
(1)
m /k

(1)
th gives

− k
(1)
m

k
(1)
th

σ0 = − 1

k
(1)
th

√
Gmc

C3t1Y (D)
+ T (2.64)

This equation leads us to define a reduced stress and a reduced crack density as

reduced stress: σR = −k
(1)
m

k
(1)
th

σ0

reduced crack density: DR = − 1
k

(1)
th

√
1

C3t1Y (D)

(2.65)

A similar analysis for microcracking in [90n/(S)]s laminates gives

− k
(1)
m

k
(1)
th

σ0 = − 1

k
(1)
th

√
Gmc

C3at1Ya(D)
+ T (2.66)
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Figure 2.12: A master curve analysis of a [902/02]s AS4/3501-6 laminate. The energy release rate
is calculated with a discrete energy derivative defined by Ya(D) in Eq. (2.61) using f = 1.2.

which leads us to define a reduced crack density for [90n/(S)]s laminates as

reduced crack density: DR = − 1
k

(1)
th

√
1

C3at1Ya(D)
(2.67)

For all types of laminates, a plot of σR vs. DR defines a master plot for microcracking experiments.

If the variational analysis and energy release rate failure criterion are appropriate, a plot of σR

vs. DR will be linear with slope
√

Gmc and intercept T . Because Gmc and T are layup independent

material properties, the results from all laminates of a single material with the same processing

conditions should fall on the same linear master plot. A critical test of the variational analysis

microcracking theory is to determine if the master plot is linear and if all laminates fall on the same

line. Furthermore, the resulting slope and intercept should define physically reasonable quantities.

A typical master curve analysis for a single [902/02]s laminate is shown in Fig. 2.12. The master

plot is linear except for a few points at the lowest reduced crack density. As previously discussed,

the low crack density results are affected by processing flaws that are not specifically included in

the microcracking analysis [6]. It is not surprising that they deviate from the master curve, and

they should be ignored when measuring Gmc. The straight line in Fig. 2.12 is the best linear fit
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Figure 2.13: A master curve analysis of all AS4/3501-6 laminates. The energy release rate is
calculated with a discrete energy derivative defined by Y (D) or Ya(D) in Eqs. (2.57) and (2.61)
using f = 1.2. Data for crack densities less than 0.3 mm−1 are not included in this plot.

that ignores the low crack density data. The slope gives Gmc = 264 J/m2 which agrees with the

fits to raw data in the previous section and with the results in other studies [6, 30]. The intercept

gives T = −93◦C, which is a reasonable number and is similar to the previously assumed value of

T = −125◦C [6]. Note that a side benefit of the master curve analysis is that the value of T does

not have to be assumed or measured. It can, in effect, be measured by analysis of the microcracking

data.

2.4.2 Variational Analysis of All Laminates

Figure 2.13 gives the master plot for the 18 laminates tested in this study. We assumed that f = 1.2

for all laminates and we ignored data with crack densities less than 0.3 mm−1. We claim Fig. 2.13

verifies both the validity of an energy release rate failure criterion and the accuracy of the variational

analysis calculation of Gm in Eqs. (2.53) and (2.61). There are three facts that support this claim.

First, all laminates fall on a single master curve plot within a relatively narrow scatter band. We

discuss the scatter more below. Second, the results for [(S)/90n]s laminates (open symbols) agree
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with the results for [90n/(S)]s laminates (solid symbols). Thus a single unified analysis can account

for both the symmetric damage state in [(S)/90n]s laminates and the antisymmetric damage state

in [90n/(S)]s laminates. Third, the slope and the intercept of the global linear fit in Fig. 2.13 result

in Gmc = 279 J/m2 and T = −93◦C. Both of these results are reasonable measured values for these

physical quantities.

There is an observable scatter band for the experimental points relative to the global, linear

master curve. This scatter band may represent deficiencies in the analysis that need further refine-

ment. Alternatively, we note that the scatter was caused more by a laminate to laminate variation

in intercept than by a laminate to laminate variation in slope. It is thus possible that the scatter is

due to real variations in T . Physically, T = Ts−T0 and because all laminates were processed under

identical conditions, T should be the same for all laminates. T , however, can also be interpreted

as the effective level of residual thermal stresses. By Eq. (2.2), when σ0 = 0 the residual stress in

the 90◦ plies is σ
(1)
xx,th = k

(1)
th T . Although all laminates were processed under identical conditions,

the laminates had different thicknesses. If the different thicknesses caused variations in thermal

history, it is possible that the level of residual stresses was layup dependent. A layup dependence

in T would cause the type of scatter observed in Fig. 2.13.

2.4.3 Master Plot Analysis for Other Microcracking Theories

As discussed in the Stress Analysis section, most previous microcracking theories are based on stress

analyses that eliminate the z-dependence of the stress state by making various assumptions about

the z-direction stress or displacement. We classified these analyses as “one-dimensional” analyses.

In this section we develop master plot analysis for one-dimensional analyses and show that all of

them give poor results.

Garrett and Bailey [12] postulated that the next microcrack forms when the maximum stress in

the 90◦ plies, which occurs at ξ = 0, reaches the transverse strength of those plies. By this failure
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Figure 2.14: A master curve analysis of all AS4/3501-6 laminates using a maximum stress failure
criterion and a one-dimensional stress analysis. Data for crack densities less than 0.3 mm−1 are not
included in this plot.

criterion and the one-dimensional stress analysis, Eqs. (2.2) and (2.15) can be rearranged to give a

strength theory master curve

− k
(1)
m

k
(1)
th

σ0 = − 1

k
(1)
th

σT(
1 − 1

cosh φρ

) + T (2.68)

where σT is the transverse strength of the 90◦ plies and, as calculated by Garrett and Bailey [12],

φ =
√

G
(1)
xz C1. Defining the reduced stress as in Eq. (2.65) and the reduced crack density as

reduced crack density : DR = − 1

k
(1)
th

1(
1 − 1

cosh φρ

) , (2.69)

and using a master curve analysis, Eq. (2.68) predicts that a plot of σR vs. DR should be linear

with slope σT and intercept T .

The result of a strength theory analysis applied to our experimental results is in Fig. 2.14. The

master curve analysis shows the theory to be very poor. The results from individual laminates

are somewhat nonlinear and they do not overlap the results from other laminates. Furthermore,

the results from [(S)/90n]s (open symbols) and [90n/(S)]s (filled symbols) laminates segregate into

two groups. This segregation is a characteristic of all one-dimensional analyses. Any analysis that
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ignores the z-dependence of the stress state will fail to make a distinction between inner and outer

90◦ ply groups. We therefore conclude that no model based on a one-dimensional stress analysis

can successfully predict results for both [(S)/90n]s and [90n/(S)]s laminates. If we draw a least-

squares linear fit through the data in Fig. 2.14, the slope and intercept give σT = 15.2 MPa and

T = +192◦C. These results are unreasonable because the transverse tensile strength of AS4/3501-6

laminates is higher than 15.2 MPa and T should be below zero for laminates that were cooled after

processing.

There are two problems with the Garrett and Bailey [12] model. First, it uses a one-dimensional,

shear-lag stress analysis. Second it uses a poor failure criterion. To investigate the limitations of the

stress analysis, we implemented the strength model using the two-dimensional, variational analysis.

This approach still gave poor results. The poor results with the more accurate stress analysis

suggest that it is the use of a strength failure criterion that is the more serious and fundamental

problem with this analysis. There have been some attempts to develop more sophisticated strength

models, such as probabilistic strength models [20, 32, 31, 53, 64]. As discussed before, however,

these models have been found to require in situ laminate strength properties and therefore would

also give poor master plots [51]. We suggest that strength models cannot adequately predict failure

in composite laminates.

Because of the problems with all strength analyses, numerous authors suggested energy failure

criteria for predicting microcracking [5, 6, 8, 10, 14, 16, 28, 25, 51, 54–56, 58]. Caslini et. al.

[25] were the first to suggest using total microcrack energy release rate to predict microcrack

density as a function of applied load. They used a one-dimensional analysis that assumes parabolic

displacements in the 90◦ plies [42, 43] to express the structural modulus as a function of crack

density. They treated crack area, A = 2t1WLD, as a continuous variable and differentiated the

modulus expression to find energy release rate. Because they take an analytical derivative as
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Figure 2.15: A master curve analysis of all AS4/3501-6 laminates using an analytical derivative
energy release rate failure criterion and a one-dimensional stress analysis. Data for crack densities
less than 0.3 mm−1 are not included in this plot.

a function of crack area, we refer to this approach as the “analytical derivative approach.” By

treating Eq. (2.53) as a definition of Y (D), the Caslini et. al. [25] result for Gm can be expressed

using

Y1D,a(D) =
C1

C3φ

(
tanhφρ − Φρ sech2φρ

)
(2.70)

where subscript “1D, a” denotes one-dimensional stress analysis and an analytical derivative ap-

proach, and φ =
√

3G
(1)
xz C1. Han et. al. [54, 55] describe a similar analysis, but used crack-close

methods to calculate Gm. Because their results are identical to those of Caslini et. al. [25], the

Han et. al. [54, 55] approach is also an analytical derivative model.

By replacing Y (D) with Y1D,a(D) we can evaluate the microcracking models in Refs. [25, 54, 55].

The results of such an analysis applied to our experimental results are in Fig. 2.15. This master

curve analysis was the worst of any model we evaluated. The results from individual laminates are

fairly linear but they give slopes and intercepts corresponding to toughnesses as high as 1012 J/m2

and T ’s that imply specimen temperatures well below absolute zero. These are clearly unreasonable

results. The least-squares linear fit through the data in Fig. 2.15 gives Gmc = 2 J/m2 and T =
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323◦C. The global fit does not pass through the data (because the data from different laminates do

not overlap) and the global fitting constants are unrealistic.

Earlier in this chapter, we argued that Caslini et. al.’s [25] original suggestion about analyzing

microcracking using energy release rate is appropriate. We are left with explaining why their

energy release rate approach is a complete failure. Our first attempt was to use the variational

mechanics stress analysis and calculate Gm by a similar analytical derivative approach. This made

slight improvements in the master curve but the overall quality and the fitting constants were

still unsatisfactory. We suggest instead that the analytical derivative approach is non-physical and

therefore Y1D,a(D) gives the wrong energy release rate. The analytical derivative energy release

rate at a given crack density corresponds to the unlikely fracture event whereby all cracks close and

then reopen again as periodic cracks with a slightly higher crack density. In real microcracking,

one microcrack forms between two existing microcracks. Apparently the energy release rate for this

process is dramatically different from that calculated with an analytical derivative.

Laws and Dvorak [56] were the first to suggest modelling the actual fracture process. They

calculated the change in energy associated with the formation of a new microcrack between two

existing microcracks. Because they model a discrete process, we call their approach the “discrete

derivative approach.” We cast Laws and Dvorak [56] results in the form of the variational analysis

by redefining Y (D) to be

Y1D,d(D) =
C1

C3φ
(2 tanh fφρ/2 − tanh fφρ) (2.71)

where subscript “1D, d” denotes one-dimensional stress analysis and a discrete derivative approach,

and f is the factor introduced earlier to account for the tendency of microcracks to prefer larger

than average microcrack intervals. Following Reifsnider [36], Laws and Dvorak [56] used a shear-lag

analysis that assumes an interlayer of unknown thickness and stiffness between the (S) sublaminate
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Figure 2.16: A master curve analysis of all AS4/3501-6 laminates using a discrete derivative energy
release rate failure criterion and a one-dimensional stress analysis. Data for crack densities less than
0.3 mm−1 are not included in this plot.

and the 90◦ plies. Their φ can be expressed as

φ =

√
Gt1C1

t0
(2.72)

where G is the shear modulus of the interlayer and t0 is its thickness.

By replacing Y (D) with Y1D,d(D) we can evaluate the Laws and Dvorak [56] microcracking

model. A drawback of their analysis is that the effective stiffness of the interlayer is an unknown

parameter. Laws and Dvorak [56] suggested a circular scheme in which G/t0 is determined by prior

knowledge of Gmc and the stress required to form the first microcrack. Because of our concern

about the sensitivity of low crack density results to laminate processing flaws, we instead used the

high crack density results from the single laminate in Fig. 2.12 to determine G/t0. We varied G/t0

until the slope of the Laws and Dvorak [56] analysis master curve gave Gmc equal to the variational

analysis result of 280 J/m2. This exercise yielded G/t0 = 4000 N/mm, a linear master curve, and an

intercept of T = −73◦C. These initial results were promising. The results of a master plot analysis

applied to all our experimental results using Y1D,d(D), G/t0 = 4000 N/mm, and f ≈ 1.2 are in
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Fig. 2.16. This master curve analysis is the most satisfactory of all previous literature models but it

still has serious problems. Most importantly, the results from individual lamina do not overlap each

other. As is characteristic of one-dimensional analyses, the results from [(S)/90n]s and [90n/(S)]s

laminates segregate into two groups. The least-squares linear fit through the data in Fig. 2.16 gives

Gmc = 44 J/m2 and T = +124◦C. The global fit does not pass through the data (because the data

from different laminates do not overlap) and the global fitting constants are unrealistic.

We believe the only problem with the Laws and Dvorak [56] analysis is its use of an oversimpli-

fied, one-dimensional stress analysis. If their failure criterion is implemented with the variational

mechanics stress analysis, the result is equivalent to the analysis first presented by Nairn [5]. As

shown in Fig. 2.13, such an analysis gives a good master plot.

It is possible to evaluate many other theories by using master plot analyses. One could com-

bine any failure criterion (strength, analytical derivative Gm, or discrete derivative Gm) with any

stress analysis (one-dimensional analyses, two-dimensional variational analyses, refined variational

analysis [69], or numerical stress analyses). We tried many such combinations and found that all

attempts at using one-dimensional stress analyses are complete failures. If nothing else, they al-

ways fail to differentiate between [(S)/90n]s and [90n/(S)]s laminates. When more accurate stress

analyses, such as the variational analysis, are used, all attempts at using strength or analytical

derivative Gm failure criteria are also complete failures. We finally concluded that only the specific

combination of a sufficiently accurate stress analysis (e.g. variational stress analysis) with a discrete

derivative evaluation of Gm is capable of producing a meaningful master plot.
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2.5 Microcracking Fracture Toughness

2.5.1 Room Temperature Results

The previous sections have shown that the variational analysis and the energy release rate failure

criterion can predict all microcracking experiments. One application of the theory is to characterize

the toughness of composite materials with respect to microcracking by measuring Gmc. Gmc can

be measured by measuring the microcracking density as a function of load and fitting raw data to

the microcracking theory or analyzing the results with a master plot. In this section we discuss

the results of measuring Gmc for several material systems. Physically, Gmc is the energy required

to form a complete microcrack or the microcracking fracture toughness. Because microcracks are

within a ply group rather than between ply groups, Gmc is also an intralaminar fracture toughness.

The higher the value of Gmc for a given composite material, the more resistant that material is to

microcracking.

Yalvac et. al. [30], and Nairn et. al. [6, 8, 70] measured Gmc for a variety of materials using the

variational mechanics theory (i.e. the energy release rates in Eqs. (2.53) and (2.61)). The results

are summarized in order of increasing toughness in Table 2.1. The lowest toughness material is

AS4/Hercules 3501-6. This material has been reported in four different references and Gmc is repro-

ducibly 250±30 J/m2. The materials with tougher matrices than Hercules 3501-6 epoxy predictably

have higher values of Gmc. Some examples include the toughened epoxies (IM7/Hercules 8551-7

and T300/Fiberite 977-2), the polycyanate matrices (AS4/Dow polycyanate and G40-800/rubber

modified Dow polycyanate), and the thermoplastic matrices (IM6/duPont AvimidR© K Polymer and

AS4/ICI PEEK). The Gmc for the toughened IM7/Hercules 8551-7 is double that of AS4/Hercules

3501-6 but similar in magnitude to other untoughened epoxy systems (e.g. T300/Fiberite 934).

The Gmc’s for the two toughest materials (T300/Fiberite 977-2 and AS4/ICI PEEK) are based on

only a few points and are regarded as approximate [6]. The AS4/PEEK results in Ref. [70] used
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Table 2.1: The microcracking fracture toughness, Gmc, of several composite material systems. All
values of Gmc were determined from an energy release rate expression derived from a two-dimensional,
variational mechanics analysis

Material Gmc J/m2 Reference

AS4/Hercules 3501-6 230 30

AS4/Hercules 3501-6 240 6

AS4/Hercules 3501-6 260 ± 20 8

AS4/Hercules 3501-6 279 This report

AS4/Dow Polycyanate 430 30

AS4/Dow Polycyanate 460 30

IM7/Hercules 8551-7 525 30

AS4/Dow TactixR© 556 550 30

T300/Fiberite 934 690 6

G40-800/rubber modified Dow Polycyanate 720 30

AS4/Dow TactixR© 696 825 30

IM6/DuPont AvimidR© K Polymer 960 6

AS4/ICI PEEK 1600 70

T300/Fiberite 977-2 1800-2400 6

AS4/ICI PEEK 3000 6
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[90n/(S)]s laminates and got more data points and probably represent a more reliable measurement

of Gmc.

The values of Gmc are qualitatively similar to delamination fracture toughness (GIc) measured

using double cantilever beam specimens. This correlation is expected because both microcracks

and delamination are predominantly mode I crack growth through the matrix. The microcracking

and delamination processes differ in detail, however, because microcracking is an intralaminar

process and delamination is an interlaminar process. For at least three materials (AS4/Hercules

3501-6, T300/Fiberite 934, and IM6/duPont AvimidR©K Polymer) we have reliable results for both

Gmc and GIc. In the two brittle epoxy materials, AS4/Hercules 3501-6 has Gmc = 250 J/m2 and

GIc = 175 J/m2 [71], and T300/Fiberite 934 has Gmc = 690 J/m2 and GIc = 140 J/m2 (John

A. Barnes, private communication). In both cases Gmc is significantly larger than GIc. The

implication is that cracks propagate more easily between plies than they do within a ply. The

higher intralaminar toughness may be associated with increased fiber bridging during intralaminar

fracture [72]. In the thermoplastic composite material (IM6/duPont AvimidR©K Polymer), we find

the opposite relation. For IM6/duPont AvimidR©K Polymer Gmc = 960 J/m2 and GIc = 1200 J/m2

[72]. For this material, cracks propagate more easily within plies than between plies. The lower

intralaminar fracture toughness may reflect the difficulty of achieving complete penetration of the

thermoplastic matrix into the carbon fibers of each ply [72].

The above experimental results discuss a new and useful material property—the microcracking

or intralaminar toughness of a composite material. Although it is truly a measured property, the

numerical accuracy of Gmc depends on the accuracy of Gm in Eqs. (2.53) and (2.61). To verify

the measured Gmc by independent experiments, we measured the transverse fracture toughness

of unidirectional AS4/3501-6 laminates and of IM6/duPont AvimidR© K polymer laminates. By

transverse toughness we mean the material toughness for a crack running parallel to the fibers,
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but normal to the plies. In other words, the propagation of an intralaminar crack. The transverse

toughness was measured using a conventional double-cantilever beam for delamination specimens

and rotating it 90◦ so that the previous interlaminar crack becomes an intralaminar crack. The

results were analyzed using the DCB specimen analysis recommended by Hashemi et. al. [73].

The transverse toughness of Hercules AS4/3501-6 was Gtc = 309 J/m2 which is close to the

Gmc = 250 ± 30 give in Table 1-1. Likewise the transverse toughness of IM6/duPont AvimidR© K

polymer was Gtc = 1000 J/m2 which is close to the the Gmc = 960 J/m2 give in Table 1-1. We claim

these results support that claim that the experimental technique accurately measures Gmc. They

further show that intralaminar fracture toughness is distinct from interlaminar fracture toughness.

A complete characterization of the fracture toughness of an advanced composite should consider

both failure modes.

The material with the largest discrepancy between Gmc and GIc is T300/Fiberite 934. The

microcracking toughness is 2-3 times larger than the delamination fracture toughness. Although

we did not measure the transverse toughness of T300/Fiberite 934, it was measured by ICI/Fiberite

and found to be Gtc = 590 J/m2 (John A. Barnes, private communication). Again, we see that that

the transverse toughness is closer to the microcracking toughness than it is to the delamination

toughness.

2.5.2 Temperature Dependent Results

To study the effect of residual thermal stresses on microcracking we tested AS4/PEEK laminates at

different temperatures. We tested two layups ([904/0]s and [904/02]s) at three different temperatures

(20◦C, -10◦C, and -50◦C). Because we varied temperature, these results cannot be plotted on a

single master plot. Both Gmc and T may be temperature dependent and thus data from different

laminates would fall on lines with different slopes and intercepts. Some analyses of raw data,
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Figure 2.17: A master curve analysis of all AS4/PEEK laminates tested at 20◦C, -10◦C, and -50◦C.
The energy release rate is calculated with a discrete energy derivative defined by Y (D) or Ya(D) in
Eqs. (2.57) and (2.61) using f = 1.2.

however, using the procedures in the Microcracking in [90n/(S)]s Laminates section indicated that

Gmc is independent of temperature or only weakly dependent of temperature in the range -50◦C to

20◦C. The major effect on the microcracking properties therefore arises from changes in the residual

thermal stresses or in T . The room temperature experiments could be fit well with T = −230◦C,

which is similar to the T = −250◦C used by Liu and Nairn [6]. Assuming linear thermoelasticity

from -50◦C to 20◦C, T at -10◦C and -50◦C should be -260◦C and -300◦C, respectively. If we accept

the previous values of T as reasonable measures of the residual thermal stresses in these laminates,

and we assume Gmc is independent of temperature, we can propose a residual stress independent

master plot. We define a modified reduced stress as

modified reduced stress: σ′
R = −k

(1)
m

k
(1)
th

σ0 − T (2.73)

A plot of σ′
R vs. DR should be linear with a slope of

√
Gmc and pass through the origin.

Figure 2.17 gives the master plot for the two AS4/PEEK laminates tested at each of the three

test temperatures. We assumed that f = 1.2 for all laminates and we included data at all crack
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densities. The slope of the best fit line that is forced to pass through the origin gives Gmc =

1500 J/m2. The experimental results conform reasonably well to the master line and the results

from the different temperatures fall on the same line. Some of the scatter may be caused by

temperature variations in Gmc, but we do not have enough data to prove of disprove this possibility.

A master plot that ignores the change in residual thermal stresses has two to three times the amount

of scatter of the master plot in Fig. 2.17. These experiments thus demonstrate the real effect that

residual thermal stresses have on microcracking properties of laminates. Finally, we note that

previous attempts at studying microcracking in AS4/PEEK laminates used [(S)/90n]s layups. The

experiments showed only a few microcracks and yielded only a rough estimate of Gmc [10]. In this

study the 90◦ plies were on the free surface instead of in the middle. The free-surface plies crack

easier and we were thus able to get more experimental results and a more precise determination of

Gmc. We recommend using [90n/(S)]s laminates when studying microcracking in laminates with

tough matrices.

2.6 Conclusions

It is relatively easy to fit approximate theories to experimental results from one or two laminates,

which is what many researchers do. When theories are required to simultaneously fit results from

many different laminates and from many different materials, however, the task is much harder.

Our large data base thus allowed us to make critical evaluations of various microcracking theories.

We found that of the existing theories, only an energy-based failure criterion implemented using a

discrete evaluation of the energy release rate, and a two-dimensional variational stress analysis was

capable of analyzing all results. The differences between various theories were best visualized using

master plot analyses. Those master plots showed that the differences between the theories are not

subtle. All attempts at using one-dimensional stress analyses, regardless of failure criterion, were
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very poor. Even the more accurate variational stress analysis gave poor results when it was used to

predict failure with an inappropriate failure criterion. The variational stress analysis and discrete

energy release rate method we recommended can be viewed as not only the best model but also as

the only acceptable model. Of course additional models that build on the recommended approach

by refining the variational analysis [69] would also produce acceptable results.

A crucial aspect of any microcracking theory is the failure criterion used to generate the pre-

dictions. We tried many failure criteria and found that only a fracture mechanics failure criterion

based on the actual fracture process provided a fundamental interpretation of all results. The frac-

ture mechanics criterion states that microcracking occurs when the energy release rate associated

with the formation of the next microcrack exceeds the microcracking toughness of the material. It

is important that the calculated energy release rate corresponds to the actual fracture process. For

microcracking this involves modeling the fracture event of a new microcrack forming between two

existing microcracks. One approach that ignores the actual fracture process is to treat crack den-

sity as a continuous variable and analytically differentiate the strain energy to get a pseudo-energy

release rate. This analytical derivative approach ignores the actual fracture process and does not

agree with experimental results.

Maximum stress or maximum strain failure criteria were particularly bad. Our results substan-

tiate this conclusion for microcracking experiments, but the conclusion is probably more general.

We suggest that simple maximum stress or even more sophisticated point stress, average stress, or

quadratic failure criteria are not based on energy principles of fracture mechanics, have no funda-

mental physical basis, and therefore should not be expected to give useful predictions about any

composite failure mode. For example, many laminated plate analyses predict the onset of failure

using first-ply failure criteria that are based on simple maximum stress rules. The initiation of mi-

crocracking in this paper can be viewed as an experimental study on first-ply failure. The inability
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of strength models to make useful predictions about our experimental results is verification that

first-ply failure models are inappropriate. If first-ply failure models are inappropriate, we further

suggest that more complicated composite failure theories that are rooted in simple strength rules

are equally inappropriate.

We found that a good failure criterion alone is not enough for developing a successful analysis

of microcracking. The failure criterion must be used in conjunction with some stress analysis

before it can make predictions. That stress analysis must be sufficiently accurate to insure good

results. We found, for example, that the qualitative stresses calculated by one-dimensional stress

analyses always gave poor results. This result may be surprising to many who previously thought

the one-dimensional theories give at least approximate understanding of microcracking. Our new

analysis shows that one-dimensional analysis give poor results even when coupled with the best

failure criterion such as in the model of Laws and Dvorak [56]. We recommend that all future

attempts at using one-dimensional analysis in modeling composite fracture be abandoned.

In contrast, the more accurate two-dimensional, variational stress analysis coupled with the

best failure criterion gave good results. If one plots the stresses calculated by a one-dimensional

analysis and those calculated by a variational analysis, the differences are marked, but hardly

dramatic [51]. We were thus initially surprised by the dramatic differences between the predictions

based on the two analyses. A qualitative interpretation of the differences can follow from realizing

that fracture is an instability event. When calculating instability processes, minor differences in

input stresses can lead to dramatic differences in predictions. In other words, the increased accuracy

in the stresses attributed to the variational analysis was crucial to the predictions of microcracking.

In contrast, non-instability properties, such as plate stiffness or in-plane displacements, are much

easier to predict. Researchers have been mislead into believing that one-dimensional analysis are

reasonably accurate due to their ability to predict such non-instability properties.
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We close with some general comments about fracture analysis of composite materials. We

claim that microcracking, in being controlled by energy release rate, is not a unique composite

failure mechanism. Instead, energy release rate is a powerful technique that should be applicable

to all composite failure mechanisms. We further suggest that because energy release rate is the

fundamental failure criterion, that composite failure models couched in stress-based failure criteria

are doomed to inadequacy unless it can be demonstrated mathematically that the stress failure

criterion is equivalent to an energy release rate criterion. A similar situation exists in fracture

of isotropic, homogeneous materials where a stress criterion or critical stress intensity factor can

predict failure because it is exactly related to energy release rate. No one would consider using

maximum stress, maximum strain, average stress, point stress, or quadratic stress functions to

predict failure in cracked isotropic, homogeneous materials. Likewise, no one should consider using

such failure criteria in composite materials.
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Chapter 3

MICROCRACKING UNDER

FATIGUE LOADS

3.1 Overview

Several investigators have measured the longitudinal stiffness of cross-ply laminates as a function

of cycle number during constant load-amplitude fatigue [23, 42, 43]. The goal is to assess the effect

of fatigue loading on mechanical properties. Analyzing such fatigue data requires the simultaneous

solution of two problems, which are the microcrack density as a function of cycle number and the

effect of microcracks on mechanical properties. If attempts to fit experimental results fail, it may

not be clear which problem introduces error. Even if data can be fit, it still may not be clear

if the physics of the problem is understood or if there is nothing but a fortunate cancelation of

errors. The preferred approach is to separate the two problems. The effect of microcrack density

on mechanical properties is a micromechanics problem that was discussed in the Stress Analysis

section of Chapter 2. The new problem discussed in this chapter is the prediction of the microcrack

density as a function of cycle number during fatigue loading.

An important conclusion from Chapter 2, is that variational mechanics analysis gives an accurate

73
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energy release rate for the formation of microcracks in cross-ply laminates. In [(S)/90n]s laminates

the energy release rate is

Gm = σ
(1)
x0

2
C3t1Y (D) (3.1)

where

σ
(1)
x0 = k(1)

m σ0 + k
(1)
th T (3.2)

is the stress in the 90◦ plies before damage, σ0 is the total applied axial stress, T is the effective

residual stress term, C3 is a constant, t1 is the semi-thickness of the 90◦ plies, and Y (D) is a function.

C3 and Y (D) are defined in Chapter 2. An extended variational analysis gives an analogous

expression for energy release rate for the formation of microcracking in [90n/(S)]s laminates [10]:

Gm = σ
(1)
x0

2
C3at1Ya(D) (3.3)

where C3a and Ya(D) are analogs of C3 and Y (D). They account for the antisymmetric damage

state in [90n/(S)]s laminates [10].

Equations (3.1) and (3.3) give microcracking energy release rate as a function of applied thermal

and mechanical load. A rational procedure for analyzing microcracking damage during fatigue is

to use a modified Paris law [74] in which the microcrack density increase per cycle is given by

dD

dN
= A∆Gn

m (3.4)

where A and n are two power-law fitting parameters. From any laminate having 90◦ plies, it is a

simple matter to calculate ∆Gm using Eq. (3.1) or Eq. (3.3). If Eq. (3.4) is valid, plotting dD
dN as

a function of ∆G on a log-log plot should yield a linear relation. All cross-ply layups of a single

material system should fall on the master Paris-law plot.

In this chapter we discuss application of the variational analysis to the interpretation of fatigue

experiments. The energy release rate expressions (Eqs. (3.1) and (3.3)) include both mechanical and
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thermal terms, Therefore, in principle we should be able to interpret mechanical fatigue, thermal

cycling fatigue, and combined thermal and mechanical fatigue. Most fatigue data can be analyzed

well. There are some important details, however, that precluded the possibility of superposing

thermal and mechanical fatigue results on a single Paris-law plot.

3.2 Mechanical Fatigue

We did constant load-amplitude fatigue experiments on various cross-ply laminates of IM6/duPont

AvimidR© K Polymer laminates and on T300/Fiber 934 laminates. The experimental details are

described in Ref. [41]. In this section we summarize the results.

The first problem when analyzing fatigue fracture results is to determine the crack driving force.

A difficulty with conventional Paris-law fatigue crack propagation experiments is that during the

experiment, both the dependent variable (crack length) and the independent variable (∆G or ∆K

- stress intensity factor) change [74]. A fortunate feature of microcracking fatigue experiments,

however, is that the calculated independent variable (∆G) remains constant up to reasonably high

microcrack densities. Figure 3.1 plots ∆G as a function of microcrack density for a typical fatigue

experiment on a [02/904]s laminate. ∆G is constant up to a microcrack density of about 0.20 mm−1

and then drops rapidly to a lower value.

Some typical microcrack densities as a function of cycle number are shown in Fig. 3.1. At low

microcrack density, where ∆G is constant, Eq. (3.4) predicts that microcrack density should increase

linearly with cycle number
(

dD
dN = constant

)
. The observation is that there is an initial rapid

increase in microcrack density that is followed by a slower linear increase in microcrack density. In

Fig. 3.1 the slower linear increase is from a microcrack density of 0.13 mm−1 to 0.23 mm−1. Liu and

Nairn [41] suggested that the initial rapid rise in microcrack density is due to laminate processing

flaws and that the slower linear increase is a Paris-law region that characterizes the material’s
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Figure 3.1: Microcracking fatigue data for a [02/904]s carbon/epoxy laminate. The solid line shows
∆G as a function of microcrack density. The symbols show the microcrack density as a function of
cycle number. The straight line through the microcrack density data shows the Paris-law region of
constant microcrack density growth rate.

resistance to fatigue induced microcracking. The suggestion that the initial results are dominated

by processing flaws is consistent with the similar observation made during static microcracking

experiments [6].

Two experimental observations support the use of the modified Paris-law in Eq. (3.4). First,

the rate of increase in microcrack density dramatically decreases at a microcrack density similar

to the point where ∆G begins to decrease (see Fig. 3.1). Second, Fig. 3.2 plots the slope of the

Paris-law region defined in Fig. 3.1 as a function of ∆G for three different IM6/duPont AvimidR©

K Polymer laminates. The results for all laminates fall on a single master curve that is linear over

a wide range in ∆G. The two points near ∆G = 1000 J/m2 deviate above the linear Paris-law

line which indicates a rapid increase in microcrack density. A rapid increase in microcrack density

at this level of ∆G is reasonable because the static microcracking toughness of this material is

Gmc = 960 J/m2 [6]. The lowest ∆G point deviates below the linear Paris-law and may be an

indication of a threshold limit.

In summary, the variational energy release rate analysis is useful in analyzing mechanical fatigue
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Figure 3.2: The microcrack density growth rate (in microcracks per mm per cycle) as a function
of applied ∆G for AvimidR© K Polymer/IM6 laminates. As indicated on the figure, the results are
from three different cross-ply layups.

experiments. The results in Fig. 3.2 along with similar results for T300/Fiberite 934 in Ref. [41]

show that all results for a single material fall on a master Paris-law plot. In other words the

Paris-law plot can be viewed as a characterization of a material’s resistance to fatigue induced

microcracking. The plots from two materials can be used to rank materials. In conjunction with

stiffness loss equations and loss limits, the Paris law plot can be used to predict fatigue lifetimes.

3.3 Thermal Cycling

A similar Paris-law analysis can also be applied to thermal cycling fatigue experiments or to com-

bined thermal and mechanical fatigue. Whatever the loading conditions are, Eqs. (3.1) and (3.3)

can be used to calculate ∆G. For example, during thermal cycling

∆G = Gm(Tmin) − Gm(Tmax) (3.5)

where Tmin and Tmax are the minimum and maximum temperatures of the thermal cycle. We built

a computer controlled thermal cycling chamber that can do thermal cycling experiments It was
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Figure 3.3: The microcrack density growth rate (in microcracks/mm per cycle) as a function of
applied ∆G for AS4/Hercules 3501-6 during thermal cycling. As indicated on the figure, the results
are from six different cross-ply layups and from two different thermal cycling temperature ranges.

used to test the ability of the variational analysis to correlate thermal cycling data from different

laminates.

We tested the modified Paris-law on six different [0m/90n]s layups of Hercules AS4/3501-6

graphite/epoxy composites. As seen in Fig. 3.3, all laminates fall on the the same Paris-law line.

We must emphasize that the data is from many different layups. Furthermore, the thermal cycling

was between −150◦C and +150◦C or between −100◦C and +150◦C. Some samples were dead weight

loaded and some were tested unloaded. Despite the variety of layups and loading conditions, all

results can be interpreted with a single curve. The Paris-law analysis gives a universal curve that

characterizes a given material’s resistance to thermally induced microcracking damage. The Paris-

law curve should therefore be viewed as a useful, layup independent, material toughness parameter.

We did similar thermal cycling experiments on Fiberite T300/934 graphite/epoxy composites.

The thermal cycling results are plotted in Fig. 3.4. Also plotted in Fig. 3.4 are our mechanical
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Figure 3.4: Thermal cycling and mechanical fatigue results for Fiberite T300/934 graphite/epoxy
laminates. The straight lines indicate regions of Paris-law behavior.

fatigue results [41]. Both the thermal cycling results and the mechanical fatigue results show

evidence of a threshold limit. Below the threshold ∆G the crack density growth rate decreases

rapidly. Above the threshold limit the crack density growth follows a Paris law. At high ∆G the

mechanical fatigue tests show a rapid increase in growth rate. This rapid increase occurs when ∆G

reaches the Gc for this material system of 690 J/m2 [6].

An important question is whether thermal cycling fatigue results can be correlated with me-

chanical fatigue results? The results in Fig. 3.4 are not the same for thermal vs. mechanical loading,

although they do parallel each other. In the thermal cycling experiments, the cracks probably form

at the maximum stress intensity or at the maximum energy release rate. The maximum energy

release rate occurs when the temperature is at the low temperature end of the thermal cycle or be-

tween -100◦C and -150◦C. The thermal cycling fatigue experiments should thus be viewed as fatigue

damage induced at low temperatures. In contrast, the mechanical fatigue experiments should be
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Figure 3.5: Mechanical fatigue results for Fiberite T300/934 graphite/epoxy laminates as a function
of test temperature.

viewed as fatigue damage induced at room temperature. It is possible that the shift of the thermal

cycling results to more rapid crack growth rates is a consequence of them being low temperature

vs. room temperature results.

To test the hypothesis in the previous paragraph, we did low temperature mechanical fatigue

tests on T300/Fiberite 934 composites. The results of several low-temperature fatigue experiments

are in Fig. 3.5. From room temperature down to −75◦C, the mechanical fatigue experiments were

independent of temperature which is inconsistent with the increase in rate of fatigue damage ob-

served during thermal cycling. There are two possible explanations. First, the hypothesis from

the previous paragraph may be wrong. There instead must be some other mechanism that causes

thermal cycling induced damage to occur more rapidly than mechanical fatigue induced damage.

Second, there may be an abrupt transition at low temperature that eventually results in a coinci-

dence of thermal cycling and mechanical fatigue results. We could not test this second possibility

because of limited cooling capabilities in the environmental chamber on our MTS fatigue frame.
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Figure 3.6: Crack density (in cracks per mm) as a function of number of thermal cycles for thermal
cycling of an unloaded and of a 20 MPa loaded Hercules 3501-6 epoxy/AS4 graphite laminates.
Thermal cycling was between -100◦C and +150◦C.

3.4 Combined Mechanical and Thermal Fatigue

To test the effect of combined mechanical and thermal loading we did some preliminary thermal

cycling experiments in which the sample was simultaneously dead-weight loaded. The typical

experimental results in Fig. 3.6 show a surprising result. The raw data in Fig. 3.6 shows that the

application of axial load retards the formation of microcracks. This observation is at odds with

the Paris-law (Eq. (3.4)). An axial load increases ∆Gm and therefore the rate of microcracking

formation should increase. Once the microcracks begin to form the crack formation rate or the

slope of the crack density vs. cycle number plot is slightly larger for the sample with load than

for the sample without load. This result agrees with the Paris law analysis. There is, however, no

obvious explanation of the low-cycle results.

One possible hypothesis is that the dead-weight load effect results from a stress-activated cure

of the epoxy matrix. Epoxy cure reactions are ring-opening reactions. It is reasonable to expect,
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Figure 3.7: Crack density (in cracks per mm) as a function of number of thermal cycles for thermal
cycling of 50 lb loaded Hercules 3501-6 epoxy/AS4 graphite laminates. Thermal cycling was between
-100◦C and +150◦C. One sample was post cured on the first thermal cycle by holding at +170◦C for
2 hours. The other sample was not post cured.

by Le Chatelier’s principle, that an applied tensile load will enhance the cure reaction. It is thus

possible that the applied stress induces post-cure reactions when the temperature is at the high-

temperature end of each thermal cycle. Such post cure might “heal” laminate flaws and thereby

retard the formation of microcracks. There are two ways to test this hypothesis. First we could

do thermal cycling on thermoplastic matrices that have no possibility of stress-activated chemical

reactions. Second, we could post cure epoxy matrix composites before thermal cycling and look

for a reduction or elimination of the applied load effect. We did experiments on post cured epoxy

matrix composites.

Our first experiments were on AS4/3501-6 laminates. The results were very dependent on the

post cure conditions. The best results were obtained by post curing under load in the thermal

cycling chamber at +170◦C. In effect we cycle up to high temperature and hold for 2 hours. These

samples were then thermal cycled under applied load and compared to an identically prepared
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Figure 3.8: Crack density (in cracks per mm) as a function of number of thermal cycles for thermal
cycling of 50 lb loaded T300 graphite/Fiberite 934 epoxy laminates. Thermal cycling was between
-100◦C and +150◦C. One sample was post cured on the first thermal cycle by holding at +170◦C for
2 hours. The other sample was not post cured.

sample whose only difference was that there was no hold time on the first thermal cycle. Some

typical results are in Fig. 3.7. The post cured sample showed no lag in the onset of microcracking.

We suggest that the post cured samples were completely cured and thus had no potential for

additional cure during the thermal cycling experiment. In the specimens that were not post cured,

initial flaws that developed during early thermal cycles may be “healed” by additional cure. The

“healing” of the initial flaws delays the onset of microcracking. In contrast, when initial flaws

cannot be “healed” the crack density begins to increase in the first few thermal cycles. The final

slopes of the crack density vs. thermal cycles plot were similar for the post cured and the non-post

cured samples. The post cure thus had little effect on the inherent microcracking toughness of the

laminates. It only affected the initial flaw “healing” mechanism.

Some similar experimental results for T300/Fiberite 934 are given in Fig. 3.8. At first these

results seemed contradictory to the AS4/3501-6 results. There was little difference between the two

laminates during early thermal cycles while there was a considerable difference in the final slopes.
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We suggest that the post cure process had two effects on these laminates. First, it eliminated

the “healing” mechanism as observed for AS4/3501-6. Second, it improved the microcracking

toughness. The improvement in toughness caused the slope of the post-cured sample results to

be lower. If we extrapolate the high cycle results (data at more than 200 cycles) back to zero

crack density, the non-post cured sample shows an intercept of about 100 cycles which indicates a

significant delay in the onset of microcracking. In contrast the post-cured sample extrapolates to

near zero cycles which indicates little or no delay in the onset of microcracking. In brief, the effect

of post cure on the “healing” mechanism in T300/934 laminates was real, but it was masked by

a simultaneous improvement in the inherent microcracking toughness effected by the post curing

process.

In conclusion, our post curing experiments are consistent with the hypothesis that the observed

delay in the onset of microcracking in loaded specimens is due to a stress-activated post curing

process that is capable of “healing” laminate flaws caused by the early thermal cycles. Post curing

eliminates the initial lag. Post curing may additionally affect the inherent resistance of the material

to thermal cycling fatigue damage. Our post cure had no effect on the inherent fatigue damage

rate in AS4/3501-6 laminates, but significantly improved it in T300/934 laminates.

3.5 Conclusions

During static tests (see Chapter 2), the variational analysis was shown to accurately give the

energy release rate associated with the formation of microcracking in the 90◦ plies of composite

laminates. In this chapter, we showed that the same energy release rate analysis can be used to

analyze fatigue experiments. In brief, the energy release rate expression was used to find ∆Gm

during fatigue cycling and the fatigue results were interpreted by plotting crack density growth

rate as a function of ∆Gm. Out findings were that the results from many different layups for a
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single material fall on the same dD/dN vs. ∆Gm curve. We claim that such a curve characterizes

that materials resistance to fatigue induced microcracking.

We did mechanical fatigue, thermal cycling fatigue, and combined mechanical loading and

thermal cycling fatigue. There are many similarities in the results suggesting that the energy release

rata analysis can explain them all with a single unified analysis. On closer inspection, however,

there are important differences in the thermal cycling results. The differences are probably caused

by temperature dependent effects in the material system. For example, we suggested that the

effect of adding a dead-weight load during thermal cycling was not simply its effect on ∆Gm.

Instead, the dead-weight load influenced the chemistry of the epoxy matrix thereby influencing

the fatigue results. To explain all details of thermal cycling, it will first be necessary to study the

effect of temperature on composite properties such as toughness and chemical stability. Once these

effects are understood, it should be possible to predict fatigue lifetimes for any structure under any

combination of thermal and mechanical fatigue loading.
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Chapter 4

MICROCRACK-INDUCED

DELAMINATION

4.1 Introduction

An important detrimental effect of microcracks is that they promote delamination. Considering the

importance of delamination damage, the efforts aimed at explaining microcrack-induced delamina-

tions are limited. O’Brien [75, 76] developed the first analytical method for the energy release rate

associated with the growth of microcrack-induced delaminations by using simple load sharing rules

and ignoring residual stresses. In regions adjacent to delaminations, the 90◦ plies are assumed to

carry no load and thus the uncracked plies carry proportionately increased loads. In regions where

there is no delamination, the stresses in all plies are identical to the stresses in the undamaged

state. The resulting energy release rate is [75, 76]:

Gd =
σ2

0B
2

4

(
1

2t2E
(2)
x

− 1
BE0

c

)
(4.1)

where subscript d denotes delamination. This Gd is independent of delamination size and is shown

in subsequent calculations to be in reasonable agreement with three-dimensional finite element

analysis [62]. Because stresses in regions where there is no delamination are assumed to be the

87
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same as that of the undamaged laminate, O’Brien’s result is a limiting special case that applies

to delaminations induced by isolated microcracks [9]. Experimental observations, however, show

that microcrack-induced delaminations usually do not appear until after the formation of many

microcracks [27, 37]. Thus, instead of analyzing delaminations induced by isolated microcracks,

it is important to consider delaminations induced by microcracks in the proximity of neighboring

microcracks.

Dharani and Tang [77] described a consistent shear-lag theory analysis for both microcracking

and microcrack-induced delaminations. They predict failure using numerical stress calculations

and a point-stress failure criterion. Many of their predictions are in qualitative agreement with

experimental results. Like O’Brien’s analysis [75, 76], however, Dharani and Tang’s delamination

study is limited to delamination at isolated microcracks.

Several authors did three-dimensional finite element analyses for free-edge and microcrack-

induced delaminations [28, 62, 63]. Fish and Lee [63] considered delaminations near the free edge

that are inclined 45◦ with respect to the microcrack. The crack shape they assumed is reasonable for

free-edge delaminations in the absence of microcracks but is not a good representation of microcrack-

induced delaminations (see Refs. [27] and [37]). Wang et. al. [28] assumed a specific delamination

growth process and calculated the energy released as the delamination grows. Because they assumed

a specific growth process, their results are only useful in a qualitative sense. Salpekar and O’Brien

[62] presented the most comprehensive results including 45◦ inclined crack fronts, 10.6◦ inclined

crack fronts, and through-the-width delaminations. They calculated mode I, mode II, and mode

III energy release rates as functions of position along the various crack fronts. In general, the three-

dimensional finite element analyses provide important information about edge effects that cannot

be learned from two-dimensional analyses. Their practical utility is limited, however, because by

restricting the models to isolated microcracks they fail to account for the effect of neighboring
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microcracks.

We extended the variational analysis of microcracking to include delaminations emanating from

the microcracking tips. We thus derived an analytical, variational mechanics analysis for the stresses

in the presence of microcracking and delamination damage. The analysis works for any microcrack

spacing and is not limited to isolated microcracks. In this chapter, we describe the variational

analysis and calculation of the energy release rate for growth of a delaminations. There are relatively

few experimental results on microcrack-induced delaminations. The variational analysis, however,

is consistent with those available experimental results.

4.2 Variational Analysis of Delaminations

To analyze microcrack-induced delaminations, we extended the variational analysis of microcracking

in 90◦ plies [1, 2, 5, 6, 10] to account for delaminations emanating from microcrack tips. Figure

4.1 shows two microcracks having delaminations of length d1 and d2 emanating from the top and

bottom microcrack tips. As implied by Fig. 4.1, we only considered [(S)/90n]s laminates. Applying

Hashin’s [1, 2] only assumption that σ
(i)
xx is independent of z, the stresses in regions I and III of

Fig. 4.1 reduce to a simple stress state. The 90◦ plies carry no load and the (S) sublaminate carries

the load lost by the 90◦ plies in simple uniaxial tension. In regions I and III, the stresses reduce

to [9]:

σ
(1)
xx = 0

σ
(1)
xz = σ

(1)
zz = 0

σ
(2)
xx = σ

(2)
x0 + σ

(1)
x0
λ = 1+λ

λ σ0

σ
(2)
xz = σ

(2)
zz = 0

(4.2)

In region II, the boundary conditions imply the stresses are identical to the stresses that exist

between two microcracks separated by a dimensionless half spacing of ρ − δ instead of the original

spacing ρ, where

δ =
d1 + d2

2t1
(4.3)
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Figure 4.1: Edge view of a [0n/90m]s cross-ply laminate with microcracks and delaminations ema-
nating from the tips of those microcracks. The dashed lines demarcate regions I, II, and III for the
stress analysis
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Consider a sample having N microcrack intervals characterized by dimensionless spacings ρ1, ρ2,

. . ., ρN and dimensionless delamination lengths δ1, δ2, . . ., δN . We used the new two-dimensional,

variational mechanics stress state in the previous paragraph to find the sample compliance [9]:

C = C0 +
2t1E

(1)
x

2

B2WE0
c
2

(
C3(L − d)

∑
χ(ρi − δi)∑
(ρi − δi)

+ C1d

)
(4.4)

where d is the sum of the lengths of all delaminations. Knowing all the stresses and the compliance

as a function of microcracking and delamination, it is a straightforward problem to calculate the

energy release rate for the growth of delamination damage. The details of the calculation are given

in Ref. [9]. From that paper, the energy release rate for the growth a single, through-the-width

delamination in microcrack interval k is:

Gd = σ
(1)
x0

2
C3t1

χ′(0) − χ′(ρk − δk)
2

(4.5)

The same χ(ρ) function that appears in the energy release rate expressions for microcrack formation

(see Eqs. (2.53) and (2.54)) now appears differentiated in the energy release rate expression for

delamination. Unlike O’Brien’s [75, 76] simple result, the Gd in Eq. (4.5) depends on delamination

size through δk. Taking the limit of Gd in Eq. (4.5) as ρ → ∞ and setting T = 0 (which appears in

σ
(1)
x0 ) gives a result which is the energy release rate for growth of a delamination from an isolated

microcrack in the absence of residual thermal stresses; the result is identical to O’Brien’s [75, 76]

result (see Eq. (4.1)). The new variational mechanics analysis [9] can thus be viewed as a correction

to O’Brien’s [75, 76] result to account for microcrack growth in small microcrack intervals and to

account for thermal stresses.

The variational mechanics delamination analysis can be used to discuss competition between

microcracking and delamination and to make comparisons to experimental results. The next section

discusses these topics.
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4.3 Delamination Predictions

The first form of damage in cross-ply laminates is usually microcracking. Once the first microcrack

has formed, we can ask if a delamination will initiate at that microcrack or if instead another

microcrack will form. Comparing the energy release rate expression for microcracking (Eq. (2.53))

to the one for delamination (Eq. (4.5)), the predicted failure mode depends on the values of Gmc

and Gdc (the delamination fracture toughness) and on the relative magnitudes of “dimensionless”’

energy release rates for microcracking

2χ(ρ/2) − χ(ρ) (4.6)

and for delamination

1
2

(
χ′(0) − χ′(ρ)

)
(4.7)

Assuming for the moment that Gmc and Gdc are the same (they both represent crack growth through

the matrix, albeit possibly by different fracture modes — mode I vs. mode II), the predicted failure

mode can be determined by plotting the the dimensionless energy release rates as a function of

microcracking density. Figure 4.2 gives such a plot for a typical [02/904]s carbon/epoxy laminate.

Figure 4.2 shows that at low microcrack densities, microcracking is the preferred mode of fail-

ure. At some critical microcrack density (0.51 mm−1 in Fig. 4.2), however, the energy release

rate for a through-the-width delamination surpasses the energy release rate for microcracking and

delaminations are expected to initiate at the microcrack tips. Once delaminations initiate, micro-

cracking will cease and the delaminations will dominate failure. The critical microcrack density

for delamination depends on the laminate structure. In agreement with experimental observations

[27, 37], the more 90◦ plies, the lower the critical microcrack density for delamination. In other

words, delaminations initiate more easily from microcrack tips in thick 90◦ ply groups.

Figure 4.3 plots the critical crack density for delamination as a function of the number of 90◦ plies
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for three different [(S)/90n]s laminates. The critical microcrack density is virtually independent of

the sublaminate (S) supporting the 90◦ plies. Although sublaminate (S) has little effect on critical

microcrack density, it has a significant effect on the load at which the critical microcrack density is

reached. The stiffer the sublaminate (S), the higher the load required to reach a given microcrack

density and therefore the higher the load required to induce delamination.

Although we previously assumed that Gmc = Gdc, the conclusions drawn from Fig. 4.2 are

easily generalized for Gdc �= Gmc. We merely need to normalize the dimensionless energy release

rates by dividing them by the critical energy release rates. The trends in the dimensionless energy

release rates remain the same but one of them (e.g. the microcracking energy release rate) moves

up or down relative to the other, depending on Gmc < Gdc or Gmc > Gdc. Consequently the

critical microcrack density increases (for Gmc < Gdc) or decreases (for Gmc > Gdc). In the limit of

low delamination fracture toughness, the formation of the first microcrack might be immediately

followed by initiation of delamination.

4.4 Three-Dimensional Effects

Experimental observations indicate that delamination and its propagation is not a through-the-

width process [27, 37]. The delamination analysis problem is thus not two-dimensional. To explain

three-dimensional effects, we constructed a quasi-three dimensional analysis using an array of par-

allel, two-dimensional springs. The details of the analysis are in Ref. [9]. This section discusses the

predictions of the quasi-three-dimensional model.

Experimental observations [27, 37] suggest that delaminations initiate at a free-edge with an

angled crack front (see Fig. 4.4A). In Fig. 4.5 we use the quasi-three-dimensional analysis of Ref. [9]

to plot the energy release rate as a function of position along an angled edge delamination. The

sample calculation is for a 12.7 mm wide [02/904]s carbon fiber/epoxy laminate with a 45◦ crack
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Figure 4.4: A schematic view of the predicted growth of a delamination emanating from a micro-
crack tip. A. An initial delamination growth with a 45◦ crack front. B. If a 45◦ delamination front
develops, it would be predicted to grow by extending along the microcrack tip or across the sample
width.

front that has grown 1 mm into a microcrack interval in which the microcracks are 2 mm apart.

The energy release rate has its minimum at the free-edge, where the axial extent of delamination is

the largest, and monotonically increases along the crack front as the axial extent of delamination

monotonically decreases. When axial extent of delamination becomes zero the energy release rate

reaches a maximum and constant value. Assuming that delamination growth occurs at locations

of maximum Gd, the quasi-three-dimensional model implies that delamination growth will proceed

from regions where there is currently little or no delamination extending from the tip of the micro-

crack. As illustrated in Fig. 4.4B, we expect delamination growth to proceed along the microcrack

tip. This form of crack growth will be preferred over self-similar propagation of the angled crack

front. The predicted crack growth in Fig. 4.4B qualitatively agrees with experimental observations

in Refs. [27] and [37].

Two qualifications need to be placed on the predictions of the quasi-three-dimensional model.

First, the tendency towards delamination growth from the regions of minimal current delamination

is strong only for the small microcrack intervals typical for those beyond the critical crack density for
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delamination. In relatively large microcrack intervals, the energy release rate remains constant over

a wide range of initial delamination length and consequently there will be no dominant delamination

growth direction [9]. Second, the quasi-three dimensional model cannot account for free-edge

interlaminar stresses. Three-dimensional finite element analysis shows that the free-edge stresses

increase the loading for mode I fracture near the edge [62]. The increased mode I component

may be responsible for the initiation of the delamination and for the initial observation of angled

crack fronts. Once delamination growth has proceeded a few ply depths into the laminate, the

quasi-three-dimensional analysis described here will provide adequate predictions.

4.5 Delamination in [90n/(S)]s Laminates

The delamination analysis and predictions discussed above are for [(S)/90n]s laminates or laminates

with interior 90◦ plies. Experimental observations show that laminates with microcracks in outer-

ply 90◦ plies (e.g. [90n/(S)]s laminates) are more susceptible to microcrack-induced delaminations
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than the corresponding [(S)/90n]s laminate [25, 31, 44]. The variational mechanics analysis of

[90n/(S)]s laminates described in Chapter 2 and in Ref. [10], explains this increased tendency

towards delamination by noting that the asymmetry of the characteristic damage state leads to a

bending effect that enhances the mode I character of the delamination process. No one has been

able to analytically calculate the energy release rate for delamination in [90n/(S)]s laminates. Work

in progress shows that the two-dimensional, variational mechanics analysis of [90n/(S)]s laminates

can be extended to account for delaminations.

4.6 Assessment of Accuracy

We consider the expected accuracy of the variational mechanics analysis of microcrack-induced

delaminations. The only approximation made in the analysis is that within the ply groups, σ
(i)
xx

are functions of x but independent of z. This approximation is most severe near the microcrack

tips and consequently results in expected stress singularities being ignored. Our fracture analysis,

however, is not based on crack tip stress state, but rather on global strain energy. Despite missing

stress singularities, we claim the global strain energy given in Ref. [9] is sufficiently accurate. There

are three pieces of evidence to support this claim. First, all limiting values are correct; i.e. the

strain energy, modulus, and thermal expansion coefficient all give the correct results in the limit

of zero or complete delamination [9]. Second, there are precedents for laminate energy release rate

analyses that ignore stress singularities to give accurate results. Two examples are double cantilever

beam delamination [78] and edge delamination [79]. We suggest that the approximation used in

our delamination analysis is the tensile loading analog of the standard beam theory approximation.

This suggestion implies that our results have an accuracy similar to that of beam theories for

delamination. The third piece of evidence supporting sufficient accuracy is that all predictions agree,
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at least qualitatively, with experimental observations. A more quantitative test of the analysis will

require more detailed experiment results.

An alternative delamination analysis could be developed using the one-dimensional shear-lag

methods discussed in Chapter 2. Like the variational analysis, the one-dimensional models also

assume that σ
(i)
xx is a function of x only. Unlike the variational analysis, however, the one-dimensional

models make additional assumptions that remove the z coordinate from the analysis and leave

the transverse normal stresses undefined. Our new experiments on microcracking show that the

extra assumptions render the one-dimensional stress analyses severely inadequate for interpreting

microcracking experiments [51]. In contrast, the variational analysis can satisfactorily explain a

wide body of microcracking results. We claim that the requirements of an approximate stress

analysis for delamination are even more severe. While the validity of the variational approach to

delamination remains to be experimentally verified, the likelihood that a one-dimensional shear-lag

analysis will provide any useful results is very low.

4.7 Conclusions

We have extended the variational analysis to account for delaminations emanating from the tips

of microcracks. The stress analysis was used to calculate the energy release rate for propagation

of a microcrack-induced delamination. This analysis along with the stress analysis of [90n/(S)]s

laminates leads to five important conclusions:

1. Microcracks can induce delaminations but they only initiate after the microcrack density

reaches some critical crack density for delamination.

2. The critical crack density for delamination is independent of the supporting sublaminate

(S), but it may depend on the relative material toughnesses for the two failure modes of

microcracking and delamination.
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3. Microcrack-induced delaminations form more easily as the thickness of the 90◦ plies increases.

4. Delaminations that initiate on a free edge will tend to propagate across the width of the

laminate as opposed to propagating axially or parallel to the applied load.

5. [90n/(S)]s laminates are more susceptible to microcrack-induced delaminations than the cor-

responding [(S)/90n]s laminate.

All these conclusions agree qualitatively with experimental observations.

To prove the validity of the new delamination analysis it is important to do a quantitative

comparison between theory and experiments. These experiments are difficult because microcrack-

induced delaminations may form at any microcrack. When there are many microcracks, it is

difficult or impossible to watch them all and to observe the delamination process. We suspect

that the preferred experiments will be bending experiments on [90n/(S)]s laminates. The use of

[90n/(S)]s laminates will promote the delamination process. The use of bending loads will focus

delamination damage into a small region. The only problem is that interpreting the experiments

will require some new and non-trivial variational analyses. We recommend that future work include

analysis of delamination experiments in [90n/(S)]s laminates under bending loads.
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Chapter 5

EXTENSIONS TO VARIATIONAL

ANALYSIS TECHNIQUES

5.1 Introduction

Chapter 2 showed that a variational stress analysis coupled with a energy release rate failure crite-

rion can explain virtually all the microcracking properties of [(S)/90n]s and [90n/(S)]s laminates.

Chapter 3 showed that the the energy release rate analysis can correlate experimental results during

mechanical fatigue, thermal cycling, and combined mechanical loading and thermal cycling. The

success of the variational stress analysis and the resulting energy release rate calculations suggests

that more work along these lines would produce useful results for explaining composite failures. The

first extension of the variational analysis was described in Chapter 4. The variational delamination

analysis was found to qualitatively agree with all delamination experimental observations.

In this chapter we describe some additional, albeit less complete, extensions to the variational

analysis. The next section discusses curved microcracks. Although we cannot predict the stresses in

the presence of curved microcracks, we can predict the geometric effects that lead to the formation of

curved microcracks as opposed to straight microcracks. The third section discusses generalizations

101
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A B

Figure 5.1: Sketches of actual edge view of typically damaged [(S)/90n]s laminates. A. Toughly pe-
riodic array of straight microcracks in an AS4/PEEK [0/904]s laminate. B. Two curved microcracks
near one straight microcrack in an AS4/PEEK [0/908]s laminate.

of the variational analysis. The generalizations are mostly preliminary and presented in an abstract

manner. The main purpose of including them in this report is that they illustrate the range of

problems that can be solved with the variational stress analysis. Some of the problems can be

solved immediately with only minor extensions to the theory. Other problems will require more

extensive analysis and perhaps development of numerical methods. The fourth section discusses an

axisymmetric variational analysis that gives the stresses around breaks in embedded single fibers.

We expect this analysis to be helpful in interpreting interface tests such as single-fiber fragmentation

tests [80–83], fiber pull-out tests [84], or microdrop debond tests [85].

5.2 Curved Microcracks

At low microcrack densities microcracks in [(S)/90n]s laminates are straight (see Fig. 5.1A). The

tendency towards periodic arrays of straight microcracks implies that new microcracks form approx-

imately midway between existing microcracks. At high microcrack densities curved microcracks

that make an angle of 40-50◦ with respect to the 90/(S) interface (see Fig. 5.1B) are observed
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[12, 15, 24, 33, 34, 86]. Curved microcracks are always associated with existing straight microc-

racks and form at a position about one-ply thickness away from the straight microcrack [33, 34, 86].

Groves et. al. [34] described the only attempt at understanding the mechanism behind curved mi-

crocracks. They tried many failure criteria and postulated that curved microcracks form at local

maxima in principle stress and that the curvature of the microcracks is determined by the trajectory

of the maximum principle stress [34]. Their claims are qualitatively supported by finite element

calculations that show a principle stress maximum near existing straight microcracks that occurs

near the 90/(S) interface. In agreement with experimental observations, the principle stress trajec-

tories at the location of the maximum principle stress make an angle of 40–60◦ with respect to the

90/(S) interface [34]. The location of the principle stress maximum, however, is only in qualitative

agreement with experimental observations. The finite element analysis predicts that the maxi-

mum principle stress is closer to the straight microcrack than the initiation site of experimentally

observed curved microcracks [34].

It is interesting to apply Hashin’s [6, 1, 2, 5] two-dimensional, variational mechanics analysis to

the prediction of curved microcrack formation using the maximum principle stress model proposed

by Groves et. al. [34]. There are two goals to this exercise. First, if successful, we have further

evidence that the stress components of Hashin’s two-dimensional analysis are of sufficient accuracy

for the basis of models on composite fracture. Second, we can derive analytical tools that might

be useful in understanding curved microcracks.

In the x − z plane, the maximum principle stress is

σmax =
σxx + σzz

2
+

√(
σxx − σzz

2

)2
+ σ2

xz (5.1)

Applying the two-dimensional, variational mechanics stress state for the 90◦ plies of [(S)/90n]s
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Figure 5.2: The maximum principal stresses along the 0/90 interface in a typical [0/902]s car-
bon/epoxy laminate for four values of the microcrack spacing. ρ is a dimensionless microcrack
spacing defined by ρ = a/t1. The critical crack density is approximately 2.5.

laminates in Eqs. (2.28) and (2.29) gives

σmax =
k

(1)
m σ0 − ψ(x) + ψ′′(x)

2 (ht1 − z2)
2

+

√√√√√k
(1)
m σ0 − ψ(x) − ψ′′(x)

2 (ht1 − z2)
2

2

+ ψ′(x)2z2 (5.2)

Plotting Eq. (5.2) over the entire 90◦ ply group shows that the maximum principle stress always

occurs at the 90/(S) interface, but its location on the interface depends on the microcrack density

and on laminate structure [86]. Figure 5.2 plots the maximum principle stresses along the 90/0

interface of a [0/902]s carbon/epoxy laminate for four different microcrack densities. For low

microcrack densities (ρ ≥ 3.0 in Fig. 5.2) there is a broad maximum in principle stress midway

between the two existing microcracks. The principle stress trajectory midway between two existing

microcracks is normal to the 90/0 interface. The prediction is that only straight microcracks form

when the microcrack density is low. At high microcrack densities (ρ ≤ 2.0 in Fig. 5.2) there are

two local maxima in principle stress. In agreement with experimental observations, the local stress

maxima are approximately one to two ply thicknesses away from the existing microcracks. The

location of the principle stress maxima is in better agreement with experimental observation than



5.2. CURVED MICROCRACKS 105

the finite element calculations by Groves et. al. [34].

We are enlightened by Fig. 5.2 that for any laminate structure there is some critical microcrack

density where the local principle stress maxima near existing microcracks are equal to the local

principle stress maximum midway between existing microcracks. For the laminate in Fig. 5.2

the critical microcrack density is when ρ = 2.5. When the microcrack density is below the critical

microcrack density, straight microcracks midway between existing microcracks will dominate. When

the microcrack density is above the critical microcrack density, curved microcracks near existing

straight microcracks will dominate. These predictions agree with our new experimental observations

[86].

Groves et. al. [34] suggested that the shape of curved microcracks can be approximated by

the trajectory of the maximum principle stress that exists before the curved microcrack forms.

This simple suggestion ignores the effect that a propagating curved microcrack has on principle

stress trajectories, but it appears to be qualitatively correct [34]. The maximum principle stress

trajectory in the x − z plane can be determined from the differential equation

dz

dx
=

σxx − σzz

2σxz
+

√(
σxx − σzz

2σxz

)2
+ 1 (5.3)

Substitution of the variational mechanics stress state gives

dz

dx
=

k
(1)
m σ0 − ψ(x) − ψ′′(x)

2 (ht1 − z2)
2ψ′(x)z

+

√√√√√k
(1)
m σ0 − ψ(x) − ψ′′(x)

2 (ht1 − z2)
2ψ′(x)z

2

+ 1 (5.4)

Numerical integration of Eq. (5.4) starting at the principle stress maximum on the 90/(S) interface

gives a prediction of the shape of the curved microcracks. Two typical predictions for actual curved

microcracks are shown in Fig. 5.3. The initial angle and the overall trajectory are a reasonable

agreement with experimental observations [86].
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Figure 5.3: Predicted trajectories of two curved microcracks in an AS4/PEEK [90/08]s laminate
compared to experimentally observed shapes.
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5.3 Generalized Analysis

The variational analysis has been successful and it is worth considering ways to generalize the

technique to solve a wider variety of composite fracture problems. There are two features to the

variational analysis of [(S)/90n]s and [90n/(S)]s laminates in Chapter 2 that require generalization:

1. The stresses in the undamaged laminate

2. The number of ply groups

5.3.1 The Initial Stress State

Hashin’s variational analysis [1–2] and our extensions to that analysis [5, 6, 8–10, 51] all assumed

a simple initial stress distribution in the undamaged laminate. In most cases the initial stresses

were assumed to be simple uniaxial tension in which all stresses were constant and independent of

x and z. To generalize the analysis we should consider initial stresses that are any general function

of x and z. In this section we outline some of the problems that can be solved with a more general

initial stress state.

When laminates are cooled slowly from the processing temperature, the thermal stresses within

any ply are usually assumed to be constant. If the laminate is quenched, however, the temperature

distribution during cool down will cause the matrix in the outer plies to solidify before the matrix

in the inner plies. Subsequent thermal shrinkage of the inner plies will tend to put the outer plies

in compression. This thermal gradient effect will superpose on ply-level thermal stresses that result

from disparate thermal expansion coefficients between plies oriented in different directions. Hu and

Nairn [7] calculated the distribution of thermal stresses following various cool-down procedures on

a thermoplastic cross-ply laminate. Some typical results for a [902/02]s graphite/PEEK laminate

are shown in Fig. 5.4. Following slow cooling, the stresses in the outer 90◦ plies are constant and
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Figure 5.4: The distributions of x-axis residual stresses in a [902/02]s laminate cooled under uniform
temperature distribution (slow cooling), by convection and radiation, and by quenching to room
temperature.

tensile. These constant thermal stresses correspond to the thermal stresses assumed in Chapter 2.

If the laminate is quenched, however, this is a significant compression effect on the outer surface.

Differences in the distribution of thermal stresses should be expected to play a role in the

fracture properties of laminates. For a large plate, the thermal gradient effect will give initial

thermal stresses that are functions of the thickness direction, z, but still independent of the axial

direction, x. We generalized the variational analysis of [(S)/90n]s and [90n/(S)]s laminates to

handle any arbitrary distribution of initial stress in the z coordinate. We found that all equations

still apply; only the constants C1–C4, C2a, C3a, and C∗
1–C∗

4 change. For any given distribution

of initial stresses, simple formulas were derived to calculate the new constants. Once the new

constants are found, the microcracking properties can be analyzed in a manner identical to the

procedures in Chapter 2.

Besides thermal gradients, other effects can cause the initial stresses in each ply to vary in the z

direction. A simple example is bending loads. Under bending, the stresses will vary linearly across
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Figure 5.5: Three microcracking specimen geometries in which the initial stresses depend on z
and perhaps also on x. A: Four point bending of a [(S)/90n]s laminate. B: Four point bending of
a [90n/(S)]s laminate. C: Four point bending of a laminate with a brittle coating. D: Three point
bending of a [90n/(S)]s laminate with delaminations.

each ply. For pure bending, the stresses will depend only on z and be independent of x. Thus the

generalization that was developed for non-uniform thermal stresses can also be applied to bending

geometries. Figure 5.5A and B give two four point bending geometries that might be useful for

studying microcracking. Figure 5.5A is an [(S)/90n]s laminate under bending. This loading will

eventually cause microcracking in the 90◦ plies. The microcracks probably will not span the entire

cross section of the 90◦plies; instead compression effects will confine them to the tension side of the

beam. The variational analysis can be useful in predicting microcrack formation during bending.

The results will be helpful in designing composites that are subjected to bending loads.

Figure 5.5B shows bending experiments on [90n/(S)]s laminates. For these specimens one

of the surface 90◦ply groups will be on the tension side of the beam and the other will be on the

compression side. The expectation is that the tension side will microcrack. The variational analysis

can be used to predict the microcrack density as a function of bending loads. A related experiment
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is a composite that has been surface treated with a coating. If the coating is relatively brittle

compared to the composite, the first form of failure will be cracking in the coating (see Fig. 5.5C).

If an intact coating is crucial to the performance of the composite part, it will be important to

understand coating failure and to characterize coating fracture toughness. The variational analysis

can be used to predict failure in coatings; in fact, it has already been used to predict failures of

coatings on polymeric and metallic parts [87]. It should also be possible to predict coating failures

on composite substrates.

Figure 5.5D shows a three-point bending experiment. The initial stresses in this specimen

depend on both x and z. The x-direction dependence complicates the variational analysis. The

governing equation for minimizing the complementary energy is different than the one in Chapter 2.

The equation is still a fourth order differential equation, but it can no longer be solved analytically.

It can, however, be rapidly solved numerically to give a variational solution to a new class of

fracture problems. For the [90n/(S)]s laminate specimen in Fig. 5.5D, we would expect a single

microcrack at the point of maximum tensile load which is immediately under the mid-span loading

position. The microcrack may soon be followed by delamination emanating from the microcrack tip.

We recommend this specimen as the preferred way to study microcrack induced delamination. In

ordinary microcracking specimens, delaminations may form at any microcrack and may propagate

simultaneously from many different microcracks. As explained in Chapter 4, it is difficult to get

experimental results on such delamination processes. By focusing the failure zone using the three-

point bending geometry, we have a better hope of obtaining quantitative experimental results on

microcrack induced delaminations.

If we treat initial stresses that depend on x and z as an arbitrary state of x–z plane loading, we

have the analysis illustrated in Fig. 5.6. This most general analysis will contain all other analyses

as special cases. One possible use of a general in-plane loading analysis is as a component of a
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Figure 5.6: An [(S)/90n]s laminates are an arbitrary state of x–z plane loading. The arrows
indicate tensile and shear loads.

global-local finite element analysis. A global finite element analysis could be used to predict the

stress near the off axis plies. The proven variational analysis and energy release rate criterion could

then be used to predict the development of microcracking and delamination damage.

5.3.2 Number of Ply Groups

The variational analysis of [(S)/90n]s and [90n/(S)]s laminates was derived using a relatively small

number of ply groups. For [(S)/90n]s laminates, symmetry reduced the problem to two ply groups—

the 0◦ plies and the 90◦ plies. For [90n/(S)]s laminates, the antisymmetric damage states necessi-

tated analysis of all four ply groups. The variational analysis of coatings requires three layers [87].

It was fortunate that we could derive realistic models with relatively few ply groups. The analyses

with two or three layers reduced to a single fourth order differential equation. The analysis with
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four layers reduced to two fourth order differential equations that decoupled due to other symme-

tries. These fourth order differential equations all had constant coefficients and could be solved

analytically.

A more general analysis would remove the limit of two to four ply groups. We have worked

out the general complementary energy for a sample with any number of layers. This analysis can

potentially solve a wide variety of composite fracture problems. The only disadvantage is that

future results may require more numerical methods. For a sample with n ply groups, minimizing

the complementary energy will require solving n − 1 or n − 2 fourth order differential equations.

In general the equations will be coupled, but various symmetry relations may decouple some or

all of the equations. We can imagine a complementary based finite element package that solves

these differential equations. The new numerical methods might offers advantages such as speed,

accuracy, or adaptability to fracture predictions, over conventional finite element analyses. If so, it

is an analysis technique worth pursuing.

5.4 Embedded Single Fibers

The single-fiber fragmentation test [80–83] is often used to study the fiber/matrix interface in

composites. In brief, the fiber is embedded in a matrix and the specimen is loaded in tension

under a microscope. As the load increases the single fiber fractures into a roughly periodic array

of fragments. The test is interpreted using a simple elastic-plastic analysis of the interface. The

smaller the final fiber fragment size, the better the fiber/matrix interface. A major limitation of the

single-fiber fragmentation test is that data interpretation always relies on simplistic stress analysis

such as elastic-plastic or shear-lag models. One could hope to get more quantitative results from

that test if there were better stress analysis techniques available.
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Figure 5.7: An axisymmetric stress analysis for a single embedded fiber. A single fragment of
length l. There are breaks at the top and bottom of the fragment (at z = ±l/2) B: A cross-section
of the specimen showing the fiber of radius r1 and the matrix of radius r2.

As a spin-off from our microcracking theory, we noted that matrix microcracking and fiber

fragmentation have much in common. Both involve periodic cracking of a relatively more “brittle”

phase embedded in a relatively more “tough” phase. The variational stress analyses of these

specimens are thus mathematically related. The only difference is the specimen geometry. The

microcracking analysis is a two-dimensional analysis (see Fig. 2.3). As illustrated in Fig. 5.7, the

single-fiber fragmentation test is an axisymmetric analysis.

We extended the two-dimensional variational analysis of microcracking to the axisymmetric

geometry in Fig. 5.7 (for details see Ref. [88]). The resulting analysis is a single fiber analysis and

it gives an accurate stress state for the stresses around breaks in single fiber specimens. Besides

analyzing single-fiber fragmentation tests, it can be used to analyze fiber pull-out tests [84] and

microdrop debond tests [85]. We applied the analysis to the microdrop debond test [89, 90]. We

proposed several failure criteria and used the new analysis to predict experimental results as a

function of size of the matrix microdrop. We pointed out that the correct failure model can only
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be verified by comparison to a large body of experimental results.

The current state-of-the art in single fiber interface testing is to use strength based models. The

interface is characterized in terms of an interfacial shear strength and the interface is assumed to

fail when the interfacial shear stress equals or exceeds its strength. In our microcracking studies we

found that strength based models never work. There is no reason to expect they will be any better

for interface characterization. By using the new variational mechanics analysis of stresses in embed-

ded fibers, it is possible to calculate the energy release rate for propagation of interfacial damage.

We can hope that such analysis will make it possible to develop a more useful characterization of

the fiber/matrix interface.



Chapter 6

LONGITUDINAL SPLITTING

6.1 Introduction

Figure Fig. 6.1A is a double-edge notched (DEN) fracture specimens that can be used to study

fracture in isotropic, homogeneous materials. The analysis of fracture in such specimens is well

understood, providing the failure is not dominated by plastic yielding processes. For mode I loading,

the stress intensity factor is

KI = σ2Y (a/W )
√

a (6.1)

where σ is applied tensile stress, a is crack length, and Y (a/W ) is a geometric calibration function.

By linear elastic fracture mechanics, the specimen will fail when KI equals or exceeds KIc where

KIc is the critical mode I stress intensity factor. Stated equivalently, if failure occurs when σ = σc,

than KIc for the material is

KIc = σ2
cY (a/W )

√
a (6.2)

For isotropic materials, the critical stress intensity factor is simply related to the critical stress

intensity factor. For plain-strain fracture the relation is

GIc =
(1 − ν2)K2

Ic

E
(6.3)

where E and ν are the modulus and Poisson’s ratio of the material.
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Figure 6.1: Double edge notched specimens for isotropic homogeneous materials. A: Sample under
pure mode I loading. B: A sample under mixed mode loading which fails by non-self-similar crack
growth at an angle θ with respect to the loading direction.

For composite materials, the fracture analysis process is much more complex. Stated simply,

composites differ from isotropic, homogeneous materials, because they are instead anisotropic,

heterogeneous materials. We consider each of these differences, how they affect failure, and how

one might analyze fracture experiments.

Sih, Paris, and Irwin [91] solved for the crack tip stresses in anisotropic materials. A profound

result from their paper is that stress intensity factors for cracks in anisotropic materials are identical

to those in isotropic materials. There are some important qualifications that need to placed on this

finding, however, before one approaches fracture analysis of composite materials. The invariant

stress intensity factors only apply to cracks lying along a symmetry plane of the material and to

cracks in infinite sheets. When either of these qualifications are not obeyed, Eq. (6.2) must be

modified before analyzing fracture.

If the crack is not along a symmetry plane, then pure mode I loading can result in both mode
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I and mode II loading along the crack plane. This situation complicates the fracture analysis, but

also opens the possibility of doing mixed-mode fracture testing using simple mode I type specimen

geometries. As described below, we make use of this type of mixed-mode loading to study mixed-

mode longitudinal splitting in unidirectional composites.

If the specimen is not infinite, the stress intensity factor in an anisotropic sheet will differ from

that in a finite sheet. For the simple case of a crack along a symmetry plane, the effect of using a

finite sheet of an anisotropic material is that KI must be replaced by

KI = σ2Ya(a/W )
√

a (6.4)

where Ya(a/W ) is a new geometric calibration function for the anisotropic sheet. The effect of

specimen size can be understood by visualizing the crack tip singular stress field. For an infinite

sheet the stress intensity or magnitude of the singular stress field is independent of the mechanical

properties of the material. The shape of that stress field, however, does depend on the mechanical

properties. In a unidirectional composite for example, the high stress concentration around the

crack tip extends farther along the fiber direction than it does in a similarly notched isotropic ma-

terial. Because the shape of the stress field depends on material properties, the effect of encroaching

on that stress field by choosing finite specimen dimensions will also depend on material properties.

We thus expect changes, albeit possibly minor changes, in the stress intensity factor. We noted

in Chapter 2 that small changes in the stress analysis can lead to large changes in the fracture

predictions. Likewise small changes in the stress intensity factor can lead to large differences in the

fracture analysis of notched composites. Before we can expect a valid fracture analysis of compos-

ite fracture, we must therefore address the effect of material anisotropy. Analyses that ignore this

problem and indiscriminately apply isotropic geometric correction factors are not likely to succeed.

A perhaps more significant difference between isotropic materials and composite materials is

that composite materials are heterogeneous. Because they are heterogeneous, failure can follow
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different paths depending on the material properties in a given direction. In isotropic materials,

the properties are the same in all direction. During mode I loading of an isotropic DEN specimen

as in Fig. 6.1A, the crack will always propagate by self-similar crack growth normal to the loading

direction. Mixed-mode loading of isotropic DEN specimens will give non-self-similar crack growth

at some angle θ (see Fig. 6.1B). The angle, however, is determined by the stress state at the crack tip

and not by directionally dependent properties of the material. In contrast, composites often have

a weak fracture plane. The cracks grow along this weak plane regardless of the loading conditions.

This effect of material heterogeneity has two consequences on the analysis of composite fracture.

First, the energy release rate for the actual fracture process is no longer uniquely related to the

stress intensity factor at the time of failure. To understand this effect, consider the DEN specimen

in Fig. 6.1B in which the crack grows at some angle θ determined by the material heterogeneity

(e.g. it may fail be crack growth along the fiber direction). The stress intensity factor for such

a specimen is a function of specimen geometry, crack length, material properties, and material

orientation. The energy release rate depends on all these factors, but also depends on the crack

growth angle θ. In other words for a given stress intensity factor, the energy release rate will

be different for crack growths in different directions. It is not possible to have a unique relation

between a single stress intensity factor and the multitude of possible energy release rates.

The second and related effect of material heterogeneity is that stress intensity factor is only

of limited use and cannot be the basis for a thorough fracture analysis of composite fracture. To

understand this problem, consider the single-edge notched, unidirectional specimens in Fig. 6.2.

For a given crack length and applied stress, the stress intensity factors are only weakly dependent

on the fiber orientation angle θ. In contrast, we measured the failure load and found it to be

strongly dependent on θ. In other words the concept of failure at a critical value of KI does not

correctly predict the θ dependence of failure load in notched unidirectional composites. In contrast,
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Figure 6.2: A single-edge notched specimen for testing mixed-mode longitudinal splitting in unidi-
rectional laminates. The fibers make an angle θ with respect to the loading direction. Upon loading,
the initial edge crack of length a grows at an angle θ or parallel to the fibers. The ratio of mode I
to mode II depends on a and θ.

an energy release rate approach can predict the experimental results. Unlike KI , the energy release

rate for crack growth along the fiber direction is a strong function of θ. The preferred approach

to fracture mechanics of composites is to say failure occurs when G = Gc where Gc is the critical

energy release rate for failure by the observed mechanism.

The difficult task of analyzing composite fracture is to develop stress analysis techniques that

can give G for crack growth by various failure mechanisms. In this chapter we limit ourselves to

intralaminar crack growth in unidirectional composites. In 1962, Hedgepeth outlined a useful shear-

lag method for analyzing stress concentrations around broken fibers or notches in unidirectional

composites [92]. Since his work, many authors have applied the shear-lag model to stress analysis
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of unidirectional composites [93–100]. Unfortunately, all of them analyzed infinite sheets and none

made calculations of energy release rates. In contrast, Nairn [101, 102] used the shear-lag model

to solve for the stresses around cracks in finite width DEN specimens with the fibers aligned in

the loading direction (see Fig. 6.3). The stresses were used to calculate the energy release rate for

self-similar crack growth through the fibers, GF , or for longitudinal splitting parallel to the fibers,

GL. The result for GL is

GL =
σ2a

4Ec
SL(a/W ) (6.5)

where Ec is the tensile modulus of the composite and SL(a/W ) is a geometric calibration function

that is specific for longitudinal splitting. SL(a/W ) is given in Ref. [101] where is was noted to

be similar to the Y (a/W ) function for isotropic DEN specimens. The minor differences are a

consequence of the anisotropy of unidirectional composites. The energy release rate for self-similar

crack growth through the fibers is

GF = 2GL

√
Ec

µc
(6.6)

where µc is the shear modulus of the composite.

Equations (6.5) and (6.6) can be used to predict failure in notched unidirectional composites.

If the composites fail be self-similar crack propagation, failure would be expected to occur when

GF = GFc where GFc is the critical energy release rate for fiber fracture. If the composites fail by

longitudinal splitting, failure would be expected to occur when GL = GLc where GLc is the critical

energy release rate for fiber fracture. Conversely, if one knows GLc and GFc, it possible to predict

the failure mode. In other words one can predict whether failure proceeds by self-similar crack

growth or by longitudinal splitting. If GLc/GFc is less than GL/GF then the composite should fail

by longitudinal splitting. Otherwise, the composite should fail by self-similar crack propagation. All

reported experiments on organic matrix composites indicate that notched unidirectional composites

always fail by longitudinal splitting [100–103]. Thus for organic matrix composite GLc/GFc <
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Figure 6.3: The double edge notched specimen geometry. L is total sample length, 2W is total
sample width, B is sample thickness, a is notch length, ∆ is the length of the four longitudinal splits,
and σ is applied stress. The fiber direction is parallel to the longitudinal splits.



122 CHAPTER 6. LONGITUDINAL SPLITTING

GL/GF .

A problem with the analysis in Ref. [101] is that it does not account for the possibility of fibers

bridging across the longitudinal split fracture surface. In this project, we modified the shear-lag

analysis of longitudinal splitting to account for fiber bridging. In this chapter we discuss using the

new analysis to interpret longitudinal splitting experiments on DEN specimens. We found that

the fiber bridging analysis agreed better with experimental observations than did an analysis that

ignores fiber bridging. More importantly, we demonstrated that care must be taken in characterizing

the toughness of composite materials. If one indiscriminately applies energy release rate equations,

one is likely to misinterpret the results.

The longitudinal splitting experiments were interpreted in terms of total energy release rate for

failure. In an attempt to characterize the mixed-mode toughness for longitudinal splitting, we ran

experiments with two different specimen geometries—single edge notched unidirectional composites

and unidirectional composites in asymmetric four-point bending. Surprisingly, the mixed-mode

failure envelope for the two different specimens were drastically different. We concluded that the

asymmetric four-point bending test was the best. The single edge notched tests were influenced

by fiber bridging that precluded measuring the true material toughness for intralaminar fracture

toughness.

6.2 Materials and Methods

Unidirectional Hercules AS4 carbon/3501-6 epoxy composites were made from Hercules prepreg

and autoclave cured according to the manufacturer’s recommendations. All Hercules IM6/DuPont

AvimidR© K Polymer composites were supplied by duPont. The testing specimens were 12.7 mm

wide by 127 mm long. The thicknesses ranged from 1.25 mm to 4 mm depending on number of

plies. We tested 10, 20, and 32 ply laminates.
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Included in the AvimidR© K Polymer laminates were same laminates with intentionally var-

ied matrix properties and processing conditions. The neat matrix toughnesses were measured by

duPont from the same batch of matrix that was used to make the composites. The toughnesses

varied from 300 to 1500 J/m2 and were controlled by varying the molecular weight. They were

measured according to ASTM E399 [104] procedures using single-edged notched bending specimens.

The processing conditions were varied by varying the final consolidation temperature. The final

temperature was varied from 650◦F to 680◦F.

Most specimens were notched using a 10 mil diamond wheel on a DoAll cutting machine. Some

specimens were double-edge notched (DEN) and others were single-edged notched (SEN). The

lengths of the cracks were measured using a traveling microscope. Before testing, each specimen

had aluminum end-tabs glued in place and was painted with white correction fluid in the areas of

anticipated crack growth. The white correction fluid aided observation of crack initiation.

All experiments were run an on MTS 810 servohydraulic testing frame under displacement con-

trol. The load was recorded with a 25 kN load cell. The displacements were recorded with a 50 mm

gage length extensometer. The long gage-length extensometer was used to record displacements re-

mote from the crack tips. The load and displacement data were collected on an IBM PC interfaced

to an MTS 464 Data Display Device.

6.3 Longitudinal Splitting

6.3.1 Analysis Ignoring Fiber Bridging

We tested DEN, unidirectional laminates with the fibers perpendicular to the notches (see Fig. 6.3).

All our experiments were found to fail be longitudinal splitting parallel to the fibers and parallel to

the applied load. To analyze the experiments we first turned to the shear-lag analysis in Ref. [101].

That analysis gives the the energy release rate for initiation of a longitudinal split (see Eq. (6.5)).
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Figure 6.4: A master plot analysis of longitudinal splitting in AS4/3501-6 DEN, unidirectional
laminates. The symbols are the experimental points. The line is the prediction of a shear-lag
analysis that ignores fiber bridging.

In the spirit of the microcracking analysis in Chapter 2 we constructed a master plot analysis by

assuming the longitudinal splitting initiates when GL = GLc. Rearranging Eq. (6.5) gives

σc

√
W =

√
4EcGLc
a
W SL

(
a
W

) (6.7)

Equation (6.7) suggests defining a reduced stress and reduced crack length as

reduced stress: σR = σc

√
W

reduced crack length: aR = a
4EcW

SL

(
a
W

) (6.8)

A plot of σr vs. 1/
√

aR should be linear, pass though the origin and have a slope
√

GLc.

Nairn [102] reports experimental results for longitudinal splitting of AS4/3501-6 laminates.

We repeated those experiments using new material. The experimental results in the form of σR

vs. 1/
√

aR are given in Fig. 6.4. The slope gives GLc = 330 J/m2 which agrees well with GLc =

300 J/m2 reported in Ref. [102].

A close look at the results in Fig. 6.4 reveals some deficiencies that caused concern. The data

on the left half of Fig. 6.4 (region A) are the data for long crack lengths. These data appeared
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systematically below the theoretical line. The data on the right have of Fig. 6.4 (region B) are

the data for short crack lengths. These data appeared systematically above the theoretical line.

These discrepancies may result from inaccuracies in the analysis. One of our first thoughts was

fiber bridging effects. Observations during the tests or of fracture surfaces after the test confirmed

a significant amount of fibers bridging across the longitudinal splits. Because the bridging fibers

are parallel to the applied load, they can potentially carry large loads and significantly affect the

stresses in the specimen. The next section discusses a modification of the shear-lag analysis to

account for fiber bridging.

6.3.2 Fiber Bridging Analysis

As discussed above and in Ref. [101], the energy release rate for the initiation of a longitudinal split

from the tip of a notch in double edge notched specimens tested in tension was shown to be:

GL =
σ2a

4Ec
SL(a/W ) (6.9)

where σ is the applied stress, a is the notch depth, 2W is the sample width, Ec is the longitudinal

modulus of the unidirectional composite, and SL(a/W ) is a geometric calibration factor that is

tabulated in Ref [101]. The analysis that led to Eq. (6.9) was for stress-free longitudinal split

fracture surfaces. When fibers bridge across longitudinal splits the fracture surfaces will not be

stress free and the amount of energy released will be less than predicted by Eq. (6.9). In other

words, Eq. (6.9) will give an amount of energy release that differs from the amount that is released

during the actual fracture process.

To account for the presence of bridging fibers, we derived a modified shear-lag analysis that

gave a fiber-bridging correction factor. We define FB(τB, a/W ) as the ratio between the actual

energy release rate and the energy release rate calculated by assuming that the fracture surfaces
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Figure 6.5: An N fiber unidirectional composite in which the first β fibers were broken and a
longitudinal split of length ∆ exists between fiber β and fiber β + 1. The longitudinal split fracture
surface is loaded by a constant fiber bridging stress of τB .

are stress free:

FB(τB, a/W ) =
GL(actual)
GL(τB = 0)

(6.10)

where τB is the fiber bridging stress on the longitudinal split fracture surface. The corrected energy

release rate becomes

GL(actual) =
σ2a

4Ec
SL(a/W )FB(τB, a/W ) (6.11)

Figure (6.5) shows the shear-lag model used to calculate FB(τB, a/W ). In brief, we modeled

an N fiber unidirectional composite in which the first β fibers are broken and a longitudinal split

of length ∆ exists between fiber β and fiber β + 1. To model fiber bridging the surfaces of the

longitudinal split were assumed to be held back by a shear traction of τB. When τB = 0 we recover

the model in Ref. [101] and the energy release rate in Eq. (6.9). When τB �= 0 we have a fiber

bridging model and a model for calculating FB(τB, a/W ).

The fiber bridging correction factor, FB(τB, a/W ), potentially depends on τB, a/W , and speci-
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men dimensions. We varied the specimen width, by varying the number of fibers in the model, N ,

and varied the crack length a. The calculation of FB(τB, a/W ) requires a large numerical calcula-

tion. A remarkable results, however, is that all numerical results can be reproduced with a simple

analytical formula [72]:

FB(τB, a/W ) = 1 − τ ∗
(

1 − a
W

a
W

)0.4193

(6.12)

where

τ ∗ =
τ√
W

(6.13)

and τ is a dimensionless fiber-bridging stress defined in Ref. [72]. For more details on the evaluation

of FB(τB, a/W ), the reader in referred to Ref. [72]. The next two sections discuss using the fiber

bridging analysis to interpret longitudinal splitting experiments on DEN, unidirectional composites.

6.3.3 AS4/3501-6 Splitting

We measured the stress to initiate longitudinal splitting as a function of notch depth in AS4/3501-

6 laminates. To analyze the experiments we assumed that longitudinal splitting initiates when

GL = GLc. Figure (6.6) compares the fits to experimental data using either an analysis that

ignores fiber bridging or an analysis that includes fiber bridging. The fit labeled τ ∗ = 0 is the fit

that ignores fiber bridging. The fit is linear on the master plot of σR vs. 1/
√

aR. The slope of the

line gives GLc = 330 J/m2. The fit labeled τ ∗ = 0.190 is the fit that includes fiber bridging. The

fiber bridging fit is non-linear because of the FB(τB, a/W ) factor in Eq. (6.11). To calculate GLc

for this material we used a different master plot in which reduced crack density is redefined as

reduced crack length: aR = a
4EcW

SL

(
a
W

)
FB(τB, a/W ) (6.14)

On this new master plot (figure not shown) the theoretical fit is linear and the slope gives GLc =

221 J/m2.
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Figure 6.6: A master plot analysis of longitudinal splitting in AS4/3501-6 DEN, unidirectional
laminates. The symbols are the experimental points. The line labeled τ ∗ = 0.0 is the prediction of
a shear-lag analysis that ignores fiber bridging. The curved line labeled τ ∗ = 0.190 is the prediction
of a shear-lag analysis that includes fiber bridging.

The fits in Fig. 6.6 show that the fit that includes fiber bridging gave a better fit. In particular

it resolved the difficulties at both short and long crack lengths. The better fit, together with the

observations that fibers clearly bridged the longitudinal split led us to accept the GLc = 221 J/m2

from the fiber bridging analysis as the true material toughness of AS4/3501-6 composites.

An important result is that accounting for the effect of fiber bridging significantly alters one’s in-

terpretation of the material toughness. If we ignored fiber bridging we would claim GLc = 330 J/m2.

When we included fiber bridging, we concluded that GLc is actually 50% lower or 221 J/m2. The

dogma in the literature usually interprets fiber bridging as a mechanism for increasing fracture

toughness. We claim that this interpretation is wrong. Fiber bridging may increase the load to

cause failure, but it can only increase toughness if it increases the actual energy released during

fracture or, in other words, increases the true toughness. If it only increases an apparent energy
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release rate in an analysis that ignores fiber bridging, then it is wrong to claim that fiber bridging

increases toughness. We discuss this subject further in the discussion.

6.3.4 DuPont AvimidR© K Polymer Splitting

A series of DuPont AvimidR© K Polymer laminates were tested with various neat resin toughnesses,

laminate thicknesses, and processing conditions. The data analysis results were similar to those for

AS4/3501-6 laminates. In all samples, an analysis that included fiber bridging gave a better fit than

an analysis that ignored fiber bridging. We claim that the analyses that included fiber bridging

gave the most reliable measure of laminate toughnesses. Table 6.1 summarizes the experimental

results for GLc and τ ∗. In this section we discuss what the experiments told us about fiber bridging

and about processing of AvimidR© K Polymer laminates.

We investigated the effect of thickness on splitting toughness and fiber bridging stress. We

tested three sets of K Polymer laminates with resin toughnesses of 990 J/m2. They had 10, 20,

and 32 plies, respectively. The first three lines of Table 6.1 give the GLc and τ ∗ values. GLc ranged

from 252 J/m2 to 308 J/m2 or GLc = 280± 30 J/m2. As a true material toughness, GLc should be

independent of laminate thickness. The small observed variation in GLc following large changes in

thickness suggests that GLc is a true material toughness. In contrast, τ ∗ is a structural parameter

that depends on the amount of fiber bridging. The results show that it increased as the laminate

thickness increased. The thicker laminates had more plies and therefore had more opportunities

to have misaligned plies or fibers that can easily bridge across longitudinal splits. We suggest that

it is therefore reasonable for τ ∗ to increase with thickness. As a corollary, we observe that single

ply laminates would have the lowest τ ∗. Because the load to induce longitudinal splitting for a

given GLc increases as τ ∗ increases, it is easier to cause longitudinal splitting in single plies than in

multiple plies. In multi-axial laminates, we suggest that more longitudinal splitting damage will be
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Table 6.1: Longitudinal splitting fracture results for K Polymer/IM6 laminates. GLc is the longi-
tudinal splitting fracture toughness. τ ∗ is the fiber bridging stress.

Thickness Proc. Matrix GIc GLc τ ∗

(Plies) Temp. (◦F) J/m2 J/m2

10 650 990 308 0.182

20 650 990 265 0.260

32 650 990 252 0.395

32 650 320 486 0.160

32 650 440 423 0.320

32 650 760 321 0.287

32 650 990 252 0.395

32 650 1310 215 0.328

20 650 1780 257 0.165

20 665 1590 329 0.115

20 680 1450 414 0.125



6.3. LONGITUDINAL SPLITTING 131

200 400 600 800 1000 1200 1400

Matrix Toughness (G  ) (J/m  )Ic
2

200

500

400

300

C
om

po
si

te
 G

   
 (

J/
m

  )2
Lc

0.1

0.2

0.3

0.4

F
iber B

ridging S
tress (   *)

τ

Figure 6.7: The Composite GLc (©) and fiber bridging stress (τ ∗) (�) as a function of the neat
matrix toughness for a series of K Polymer laminates.

observed in ply groups having single plies than in ply groups having multiple plies with the same

fiber orientation.

By varying the molecular weight of K Polymer, it is possible to produce matrices with a range

of neat matrix toughnesses [105]. We measured GLc and τ ∗ for laminates with various neat matrix

toughnesses. The results are given in lines four to eight of Table 6.1 and plotted in Fig. 6.7. An

increase in neat matrix toughness led to a decrease in composite GLc—and inverse correlation.

Conversely, the fiber bridging stress was larger for neat resins with higher toughnesses. From

Fig. 6.7, there is much more scatter in the τ ∗ data than in the GLc data. In general, τ ∗ is more

sensitive to experimental errors in measured failure loads than is GLc. Besides experimental scatter,

however, the variation in the τ ∗ values may represent real variations in the fiber bridging effect due

to real variations in processing conditions, prepreg quality, etc..

There are two possible explanations for the observed trend in GLc. First, the neat matrix

toughnesses were measured in a mode I test. In longitudinal splitting failure, however, mode II

failure is significant and perhaps the dominant failure mechanism. Unfortunately, we do not have
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neat matrix mode II fracture toughnesses that can be compared to the composite GLc. Second, the

neat matrix toughness is controlled by molecular weight [105]. The higher toughness matrices have

a higher molecular weight, but also have a higher melt viscosity at a given processing temperature.

Because all laminates in Fig. 6.7 were processed at the same temperature, 650◦F, it is possible that

the lower toughness matrices with the lower melt viscosities gave laminates with better consolidation

and better wet-out of the fibers. We suggest that it was consolidation that led to higher GLc’s in

the composites with lower toughness matrices.

Wedgewood and Grant [106] showed that AvimidR© K polymer laminates autoclave processed a

650◦F with resin toughness of 1250±40 J/m2, have a significant amount of matrix cracking running

normal to the ply direction. Because these cracks run in the same direction as the longitudinal

splits, it is reasonable that they will reduce the value of GLc. The photomicrographs in Ref. [106]

show that a reduction of resin viscosity by an increase in processing temperature eliminates these

cracks and gives improved laminates. We suggest a similar mechanism applies to the increase in

GLc that results from a decrease in resin viscosity effected by a decrease in molecular weight or

resin toughness. The improved laminate quality may also imply less fiber bridging as suggested by

the lowest value of τ ∗ for the lowest toughness resin.

To further study the hypothesis that lower resin viscosity leads to improved GLc and to reduced

fiber bridging, we examined the effect of processing temperature. Wedgewood and Grant [106]

showed that increasing the processing temperature from 650◦F to 680◦F eliminates the matrix

cracks. We tested 20 ply laminates processed at 650◦F, 665◦F, and 680◦F. The results for GLc and

τ ∗ are given in the last three lines of Table 6.1. When the processing temperature increased from

650◦F to 680◦F, the longitudinal splitting toughness, GLc, increased from 257 J/m2 to 414 J/m2

and the fiber bridging stress, τ ∗, decreased slightly. These results are consistent with the suggestion

that lowering the resin viscosity leads to better consolidated laminates with a higher GLc and a
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lower τ ∗.

The longitudinal splitting tests proved useful in studying processing of K Polymer laminates.

We found that the best laminates were the ones that produced the highest value of GLc. For

laminates with tough matrices, it was important to use a sufficiently high processing temperature

to insure that the matrix penetrates into the intraply regions of all plies. Another way to char-

acterize laminate toughness is the more common delamination fracture toughness test. We did

delamination experiments that agreed with delamination results in Ref. [72]. They showed that the

higher toughness resins always gave a higher delamination toughness. Furthermore increasing the

processing temperature from 650◦F to 680◦F caused a decrease in delamination toughness. At first

these results seem contradictory to the longitudinal splitting results because they indicate a lower

processing temperature as the one that produces the best laminate. We suggest that the higher

delamination toughness at the lower processing temperature is a results of a poorly consolidated

laminate. Instead of penetrating into the plies, the matrix remains preferentially at the ply inter-

face. The excess matrix at the ply interface improves the delamination toughness. However, this

improvement comes at the expense of other laminate properties and at the expense of overall lami-

nate quality. The clear picture is that characterizing the fracture toughness of advanced composites

is a complex process. If the studies are limited to a single failure mode, such as delamination, it

will be easy to reach invalid conclusions. A complete understanding of composite toughness can

only follow from a battery of tests that examine various failure modes. For K Polymer laminates,

it was important for that battery of tests to include longitudinal splitting experiments.

The τ ∗ parameter has a physical interpretations as the amount of fibers bridging the fracture

surfaces in the test specimen. The K Polymer results suggest that it also an indicator of laminate

quality. Other things being equal, a decrease in τ ∗ indicates an improvement in laminate quality.

A lower τ ∗ can indicate better fiber alignment or a better fiber/matrix interface. Both of these
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factors tend to reduce the amount of fibers that can bridge across fracture surfaces. We therefore

recommend longitudinal splitting experiments that measure τ ∗ as a method for evaluating com-

posite processing. The only drawback is that τ ∗ is sometimes difficult to measure precisely and is

prone to experimental scatter. Therefore, unless careful multi-specimen experiments are available,

experimental variations in τ ∗ might mask real variations in τ ∗ resulting from laminate quality.

6.4 Mixed-Mode Longitudinal Splitting

Longitudinal splitting is an example of non-self similar crack propagation. The initial crack is

perpendicular to the fibers. Loading causes the crack to change direction and propagate parallel

to the fibers. In a general laminate having plies at angles other than 0◦, we might expect to see

longitudinal splitting running parallel to fibers in the off-axis plies. The general description of

longitudinal splitting can be described as the general analysis of non-self similar crack growth in

unidirectional laminates. To approach this general problem, we did mixed-mode longitudinal split-

ting experiments on Hercules AS4/3501-6 laminates. We studied the problem using two difference

specimen geometries. The next two sections describe the results of those experiments.

6.4.1 Single-Edge Notched Specimens

We did simple tension tests on single edge notched (SEN) unidirectional samples with the fibers at

an angle θ with respect to the loading direction. The sample geometry is shown in Fig. 6.2. The

sample has an initial crack length a. Failure occurs by crack growth parallel to the fibers or at

an angle θ with respect to the loading direction. As θ varies from 90◦ to 0◦, the crack tip stress

state varies from pure mode I to increasing amounts of mode II loading. In brief, we measured the

load to initiate longitudinal splitting as a function of a/W and θ. To evaluate mixed-mode fracture

toughness, we calculated GI and GII using finite element analysis.
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Figure 6.8: Typical coarse mesh for analysis of non-self-similar crack growth in single edge notched
unidirectional laminates. The thick line is the initial crack; it consists of a machined in notch
(horizontal portion) and an assumed initial bent crack (angled portion).
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Figure 6.9: Fraction mode II component as a function of fiber angle for longitudinal splitting in
single edge notched unidirectional laminates with initial a/W = 0.5.

A sample finite element mech for a θ = 45◦ sample is shown in Fig. 6.8. The mesh in Fig. 6.8 is

a coarse mesh. Using convergence checks, we subdivided each element in Fig. 6.8 into many more

elements. Final meshes of 2500-5000 nodes gave good results. We calculated GI and GII for growth

of an assumed initial bent crack using crack closure methods [107]. Our experimental interest is in

the initiation of bent crack growth and not in the propagation of an an existing bent crack. To find

these energy release rates we calculated GI and GII as a function of assumed bent crack length

and extrapolated the results to zero bent crack length. A plot of the fraction of the total G that is

mode II is given in Fig. 6.9. As expected, the 0◦ sample gives the most mode II character—about

50% mode II. Spanning angles from 0◦ to 90◦ allows us to test longitudinal splitting under various

amounts of mixed-mode loading. A limitation of the SEN test is that we could not do pure mode

II tests, or even mostly mode II tests.

The experimental results were analyzed by the following methods. For each specimen, we used
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the initial crack length and calculated the mode I and mode II energy release rates for crack growth

along the fiber direction for a sample under an arbitrary axial load. Denoting these energy release

rates as GI,FEA and GII,FEA we converted each to a reduced energy release rates, gI,FEA and

gII,FEA, using

gI,FEA =
GI,FEA

σ2W
and gIIO,FEA =

GII,FEA

σ2W
(6.15)

The reduced energy release rates depend on the dimensionless crack length or a/W . They have units

of 1/modulus and will therefore depend on the mechanical properties of the composite material.

As confirmed by calculations, the reduced energy release rates are independent of applied load and

sample width and depend only weakly on sample length. After calculating gI,FEA and gII,FEA for

each experimental crack length, we can calculate a GI and GII for each experiment using

GI = σ2
expWexpgI,FEA and GII = σ2

expWexpgII,FEA (6.16)

where σ2
exp and Wexp are the experimental values for failure stress and sample width.

The GI–GII failure envelope for AS4/3501-6 laminates tested with SEN specimens is given

in Fig. 6.10. Each point corresponds to a different specimen with various values of a/W and θ.

We found a surprising result. As the amount of mode II loading increased the mode I toughness

increased. These results are atypical for mixed-mode fracture. They agree with similar longitudinal

splitting experiments by Wang et. al. [108], but we suspected something wrong with the SEN

specimens. The next section discusses an alternative specimen geometry that can be used to

measure the same mixed-mode fracture toughness data.

6.4.2 Asymmetric Four-Point Bending

There were two problems with the SEN specimens. First, SEN specimens are limited to mixed mode

fracture that is at least 50% mode I. Second, as discussed above, the SEN results were atypically

for mixed-mode fracture and we suspected them to be wrong. For an alternate specimen, we choose
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Figure 6.10: Mixed-mode fracture toughness of AS4/3501-6 unidirectional laminates of off-axis
SEN specimens.

the asymmetric four point bending geometry in Fig. 6.11. By varying A, B, C, and D, the notch

length a, and the fiber angle θ, it is possible to vary the ratio of mode I to mode II loading. The

same specimen type can be used to vary the mixed mode loading from pure mode I loading to pure

mode II loading.

The asymmetric four-point bending specimen was first proposed for mixed-mode testing of

isotropic, homogeneous materials. A numerical stress analysis that gives the mixed-mode stress

intensity factors in isotropic, homogeneous materials is available. Unfortunately, those results are

not useful for analysis of composite fracture. We therefore used finite element analysis to interpret

our experiments. In brief, we used the mesh in Fig. 6.8 except that the tensile loading was replaced

by the bending loads shown in Fig. 6.11. Otherwise, the numerical analysis and the application

of the numerical results to in interpretation of the four-point bending data were identical to the

procedures described in the Single Edge Notched Specimens section.
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Figure 6.11: The asymmetric four-point bending test specimen. By varying A, B, C, and D, the
notch length a, and the fiber angle θ, it is possible to vary the mixture of mode I and mode II
loading.

The GI–GII failure envelope from experiments on asymmetric four-point bending AS4/3501-6

specimens is in Fig. 6.12 (open circles). Each data point corresponds to a different specimen with

various values of a/W and θ; all specimens as θ equal to a small angle and most had θ =0◦. This

new mixed-mode failure envelope is more typical of mixed-mode fracture results. The GI–GII

locus of failure roughly defines a quarter of an ellipse extending from pure mode I loading with

GIc of about 300 J/m2 to pure mode II loading with GIIc of about 650 J/m2. Superimposed on

Fig. 6.12 are the the results from SEN specimens. The four-point bending experiments and the

SEN specimens agreed for pure mode I testing, but as the amount of mode II loading increased the

two specimens disagreed dramatically.

Although we cannot give a quantitative explanation of the differences between SEN specimens

and four-point bending specimens, we qualitatively attributed the differences to fiber bridging

effects. In all experiments, the energy release rate is calculated by an finite element analysis analysis

that assumes that the fracture surfaces are stress free and therefore are not bridged by any load

carrying fibers. If load is carried across the fracture surfaces, however, the finite element analysis

will give the wrong energy release rate. Like the longitudinal splitting analysis discussed earlier in
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Figure 6.12: Mixed-mode longitudinal splitting of AS4/3501-6 laminates. The filled symbols are
results from off-axis single-edge notched specimens. The open symbols are results from asymmetric
four-point bending specimens.

this chapter, by ignoring the energy stored in the bridging fibers, the finite element analysis will

give an energy release rate that is higher than the actual amount of energy released during the

fracture event [72]. The magnitude of the error will depend on the amount of load carried by the

bridging fibers. If the fibers carry much load, the error will be large. If the fibers carry little load,

the error will be small.

We qualitatively interpret our results by considering the orientation of the fibers with respect

to the applied loads. To make the analysis conceptually simple we considered the orientation of the

main sample loads in the corresponding unnotched specimen. In the four-point bending specimens

which had θ = 0 or some other small angle, the main bending loads were parallel to the long

axis of the specimen and thus perpendicular to the fibers. Any fibers that bridge a crack will be

perpendicular to the main loads and thus carry only minimal loads. We therefore expect that a

finite element analysis that ignores fiber bridging will give acceptable results. In other words we

trust the four-point bending results and claim that they represent the true mixed-mode longitudinal
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splitting properties of AS4/3501-6 laminates. On the contrary, in SEN specimens, as θ goes from

90◦ to 0◦ the fibers become increasingly aligned with the applied load. The θ = 90◦ specimens

corresponds to a pure mode I specimen. As θ goes from 90◦ to 0◦, the amount of load II loading

increase. Because increasing alignment with the applied load will cause increasing error in the

finite element analysis calculation, we claim that the SEN specimen results are increasingly in error

as the amount of mode II loading increases. We concluded that the observed increase in mode I

toughness resulting from an increased level of mode II loading is an artifact of fiber bridging in the

SEN specimens. In support of these conclusions we note that the SEN specimens and the four-

point bending specimens give the same results for pure mode I loading. They agree because the

pure mode I, SEN specimens have their fibers perpendicular to the applied load and are relatively

unaffected by fiber bridging.

These new results show the importance of accounting for fiber bridging when interpreting frac-

ture experiments on composite materials. Fiber bridging effects can produce results that are better

classified as effective or apparent fracture toughnesses. A fundamental understanding of composite

failure, however, involves measuring the true material toughness. In our experiments the SEN

specimens gave an effective fracture toughness, while the four-point bending specimens gave a true

material toughness. In the Conclusions section we further discuss the meaning of true material

toughness.

6.5 Conclusions

We studied longitudinal splitting in unidirectional composites using double edge notched (DEN)

specimens, single edge notched specimens (SEN), and asymmetric four-point bending specimens.

The DEN specimens were analyzed by a shear-lag model; the other specimens were analyzing

using finite element analysis. An important finding was that the experimental results had to be
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interpreted by accounting for fiber bridging. Equivalently, if one analyzes fracture data and ignores

the possibility of fiber bridging, than one is likely to misinterpret the results. In the shear-lag

analysis of DEN specimens, we accounted for fiber bridging by modifying the shear-lag analysis of

Ref. [101] to include fiber bridging stresses on the fracture surface. In the mixed-mode longitudinal

splitting experiments, we accounted for fiber bridging by choosing a specimen geometry, four-point

bending, that appears to minimize the effect of bridging fibers.

In describing the results, we often referred to a material’s true fracture toughness. We claim that

it is always the true fracture toughness that characterized the fracture toughness of a composite. We

therefore should define and discuss the concept of true material toughness. There is no ambiguity.

The true fracture toughness by any composite damage mode is equal to the amount of energy

released during the fracture event per unit damage area. Any other measure of fracture toughness

cannot be a true fracture toughness.

In characterizing the fracture toughness of composites, we need techniques that can measure

the true material toughness. The most direct method is the area method. Consider the load dis-

placement diagram for a linear elastic material experiencing damage in Fig. 6.13A. The triangular

area between the load-displacement curves at two levels of damage is exactly equal to the energy

required to cause that damage. That area divided by the amount of new fracture area is unambigu-

ously the true fracture toughness. Unfortunately there are several problems with the area method.

First, measuring the area between two load-displacement curves is inherently prone to experimental

error. The differential area, ∆A, is the difference of two similar numbers. Such differences are al-

ways difficult to measure precisely. Second, it can be difficult to precisely measure the new fracture

surface area. The difficulties are compounded when the fracture surfaces are rough or when some

of the damage is interior to the laminate (e.g. microcracking damage). Third, the area method

cannot be used for fracture modes in which an increase in damage causes only a small increase in
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Figure 6.13: Two type of load-displacement curves for a material during crack propagation. A:
Fracture experiment in which the compliance changes rapidly with fracture area growth. B: Fracture
experiment in which the compliance changes slowing with fracture area. The lines labeled A0, A1,
A2 are loading lines for specimens with A0, A1, and A2 total fracture area with A0 < A1 < A2.

specimen compliance. As illustrated in Fig. 6.13B, when the slope of the load-displacement curve

changes on slightly after an increase in damage area, a precise measurement of ∆A is impossible.

The microcracking damage mode studied in Chapter 2, and the longitudinal splitting damage mode

studied in this chapter are two examples of failure modes in which the damage has a small effect

on specimen compliance. For these and other related damage modes, the area method cannot be

used.

Because of difficulties in using the area methods, it is common to develop hybrid fracture anal-

ysis methods. By hybrid fracture analysis methods we mean methods that combine experimental

measures of the failure load with a theoretical analysis of the energy release rate to measure the

specimen toughness. In brief, the hybrid methods use theoretical results to convert measured failure

loads, Pc, into critical energy release rates. A common example is delamination fracture in double

cantilever beam specimens. If the crack initiates at a load of Pc, simple beam theory gives the

fracture toughness as [78]:

Gc =
12P 2

c a2

EB2D3 (6.17)

where a is the delamination length, E is the modulus, B is the thickness, and D is the beam
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depth. This simple beam analysis is sometimes replaced by more advanced theories that account

for effects such as nonlinear deformations or crack tip rotations [73]. Conceptually similar are the

equations that give energy release rate for longitudinal splitting for a given load to cause that

splitting. Equation (6.9) is an equation that ignores fiber bridging; Eq. (6.11) is one that includes

the fiber bridging effect.

The success of the hybrid method is contingent on the accuracy in which the analysis converts the

failure load to a fracture toughness. If the theory that give the Gc–Pc relation is overly simplistic

or if it ignores real effects such as fiber bridging, it will give the wrong fracture toughness. By

wrong fracture toughness we mean a fracture toughness that is not the true toughness or a fracture

toughness that differs for the area method fracture toughness. The effect of fiber bridging on the

analysis of DEN longitudinal splitting experiments is a good illustration of the care that must be

taken in developing successful hybrid fracture analysis methods. If we ignored fiber bridging, we

would use Eq. (6.9) and calculate the wrong energy release rate. As shown by the fiber bridging

analysis, Eq. (6.9) overestimate the fracture toughness. The true fracture toughness is actually

lower and is more accurately given by the fiber bridging analysis in Eq. (6.11).

Fiber bridging is often invoked as a mechanism for increasing the fracture toughness during crack

propagation in composite materials. For example, consider a double cantilever beam specimen. If

fibers bridge across the delamination front and if those fibers carry a significant amount of load, it

is clear that the load required to cause delamination will be higher than it would be in the absence

of fiber bridging. If the failure loads are then substituted into Eq. (6.17), or into more advanced

beam theories, one could draw the erroneous conclusion that fiber bridging causes an increase in

toughness. This conclusion is a misinterpretation of the experimental results. When fiber bridging

becomes significant, Eq. (6.17), or related equations that also ignore fiber bridging, will give the

wrong energy release rate. They can therefore not be used to draw conclusions about the effect of
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fiber bridging on fracture toughness. The correct interpretation of the results is that fiber bridging

increases the load required to induce damage. Whether or not the fiber bridging also increases the

fracture toughness can only follow from using analyses that account for fiber bridging.

The double cantilever beam specimen is an ideal specimen for area method measurements. The

specimen compliance changes significantly as the delamination propagates and under favorable

conditions accurate area method measurements can be made. By comparing area method results

to beam theory results it is possible to see if the beam theory analyses give accurate fracture

toughnesses or if important effects such as fiber bridging have been ignored. Williams et. al. [73]

did such experiments. The measured load as a function of crack length and interpreted the results

using an area method and various beam theory methods. They found that simple beam theory is in

poor agreement with the area method and therefore gives the wrong energy release rate. In contrast

a beam theory correct for non-linear displacement effect and crack tip rotations agrees well with

area method. The implication is that using those theories in a hybrid method fracture analysis give

the true energy release rate. A significant observation is that Williams et. al. [73] did not need

to include fiber bridging to get good agreement be the area method and the hybrid method. The

implication is that fiber bridging does not contribute significantly to the energy released during

delamination. Although fibers can be observed to bridge across delaminations, they probably carry

too little load to significantly affect the analysis.

Our longitudinal splitting results contrast to the delamination results. Fibers that bridge across

longitudinal splits are aligned with the applied axial load and apparently significantly affect the

energy released during longitudinal splitting. The fiber bridging effect is best demonstrated by the

two stress analyses with and without fiber bridging. For a given applied load, the presence of fiber

bridging leads to 50% or more reduction in the true energy release rate. In delamination it appears

acceptable to ignore fiber bridging, In longitudinal splitting, the fiber bridging effect is large and
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cannot be ignored.

Our mixed-mode longitudinal splitting tests on SEN specimens and on four-point bending speci-

mens are two more examples of the importance of being aware of fiber bridging effects. We analyzes

the fracture results for these specimens using finite element analysis. Because it was very difficult

to include fiber bridging in the finite element analysis, we used an analysis that ignored fiber bridg-

ing. When such an analysis is used to interpret experiments that are affected by fiber bridging,

the analysis will give poor results no matter how accurate the finite element calculations might be.

Like the longitudinal splitting experiments, the SEN specimens with θ �= 90◦, were influenced by

fiber bridging. We claim the observation that GI increases as GII increase is an artifact due to

misinterpretation of the true energy release rate. We likewise conclude that similar results in the

literature by Wang et. al. [108] were misinterpreted. In contrast, we claim that the fibers that

bridge across the splits in the four-point bending specimens had little effect of the energy release

rate and thus the analysis that ignores fiber bridging gives accurate results. In other words, the

four-point bending specimen is similar to the double cantilever beam specimen in that bridging

fibers have little influence of the energy release rate. We claim that the GI–GII failure envelop

from the four-point bending specimens gives the true mixed-mode, longitudinal splitting fracture

toughness of AS4/3501-6 laminates.

Characterizing the fracture toughness of composite structures is a complicated process. To get

a complete characterization of any material it is necessary to analyze many different failure modes.

This process will generally involve a battery of tests such as delamination tests, microcracking

tests, longitudinal splitting tests, and more. Each fracture test most also be carefully studied to

verify that is gives a true fracture toughness. Among other things the verification most account

for fiber bridging or demonstrate that fiber bridging does not affect the results of its particular

specimen. The toughest composite will generally be the one with the best overall balance of
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properties. Increasing the toughness by one failure mechanism (e.g. delamination) at the expense

of other failure modes may lead to structure whose overall toughness performance is worse.
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