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Abstract—A recently derived variational mechanics analysis of stresses in embedded single
fibers has been applied to the analysis of the stresses in the microdrop debond specimen. The
new analysis is more accurate than the commonly applied shear-lag or elastic-plastic analyses.
The results from a sample stress state calculation suggest that interfacial failure between the
fiber and the microdrop may be by mode I or opening mode failure at the beginning of the
microdrop. The opening mode failure is caused by a large tensile radial stress at the fiber/matrix
interface. Previous analyses of microdrop debond data have been in terms of an average shear
stress. We suggest that these analyses misrepresent microdrop debond results and recommend
alternative failure analyses using energy release rate, average energy, or maximum stress. The
energy failure analyses can be used to define an interfacial fracture toughness.

INTRODUCTION

To study the fiber/matrix interface, many researchers rely on single-fiber model composite tests.
These tests include single-fiber fragmentation tests (Wadsworth and Spilling, 1968; Frasier et al.,
1975, 1983; Drzal et al., 1980, 1982, 1983, 1985; Rich and Drzal, 1986; Bascom and Jensen,
1986; Folkes and Wong, 1987; DiLandro and Pegoraro, 1986; DiLandro et al., 1988; DiBenedetto
and Lex, 1989; Netravali et al., 1989), fiber pull-out tests (Piggott et al., 1985, Piggott, 1987,
Penn et al., 1983), microindentation tests (Mandell et al., 1980), and microdrop debond tests (Gaur
and Miller, 1989). The results of these various tests are significant, but the quantitative interpre-
tation of the results has been limited by the near universal use of simplistic stress analyses such as
shear-lag models (Cox, 1952, Rosen, 1964, Amirbayat and Hearle, 1969) or elastic-plastic analyses
(Kelly and Tyson, 1965). A recent paper by Nairn (1992) describes a new approach to the anal-
ysis of stresses in embedded single fibers. The new analysis uses variational mechanics, achieves
a closed-form solution, and is more accurate than previous analyses. In this paper we apply the
variational mechanics analysis to the specific analysis of stresses in a microdrop debond specimen.
A precursor to this paper appeared in Scheer and Nairn (1991). This latter reference, however, was
based on a preliminary version of Nairn (1992) that contained a less accurate variational mechan-
ics analysis. This paper replaces Scheer and Nairn (1991) by using the final, accurate variational
mechanics analysis in Nairn (1992). This paper also contains new detail about microdrop specimen
failure analysis.

The geometry for the analysis of stresses in embedded single fibers is shown in Fig. 1. The fiber
is embedded in a cylinder of matrix. The interface between the fiber and matrix is assumed to be
intact. The stress analysis thus applies up to the point of interfacial failure. The stress state at the
time of interfacial failure will give us information about the level of fiber-matrix adhesion. In other
words, although the stress analysis does not explicitly include an imperfect interface or interphase,
the stress solution can be useful for interpreting experiments aimed at measuring the fiber-matrix
adhesion. The stresses in the embedded single fiber specimen (see Fig. 1) are axisymmetric. The
presence of breaks or discontinuities in the fiber or matrix does not disturb the axial symmetry. The
analysis in Nairn (1992) makes only one assumption. It assumes σzz within each cylinder (fiber or
matrix) depends only on the z coordinate and is independent of the r coordinate. A general stress
state for a transversely isotropic fiber in an isotropic matrix that satisfies the one assumption as well
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Fig. 1. The two-cylinder model used for the axisymmetric stress analysis. A single fragment of
length l showing the axial and radial coordinates in both dimensioned and dimensionless forms. B:
A cross-section of the two- cylinder model showing the fiber of radius r1 and the matrix of radius
r2.

as stress equilibrium, traction boundary conditions, and some compatibility conditions is quoted
from Nairn (1992). The stresses in the fiber are:

σzz,1 = ψ (1)

τrz,1 = −ξψ
′

2
(2)
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ψ′′
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The stresses in the matrix are:
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+

(
1 +

1

ξ2V1

)(
A3ψ +A4σ0 +A5∆T

A0

)
(8)

where V1 and V2 are the volume fractions of the fiber and the matrix, νT is the transverse Poisson’s
ratio of the fiber, νm is the Poisson’s ratio of the matrix, A0 to A5 are constants defined in the
Appendix, σ0 is the total axial stress applied in the z direction, ∆T = Ts − T0 is the temperature
difference between the specimen temperature (Ts) and the stress-free temperature (T0), ξ is a di-
mensionless radial coordinate defined by ξ = r/r1, and the applied radial stress is zero. The stresses
are defined in terms of a single unknown function ψ(ζ), where ζ is a dimensionless axial coordinate
defined by ζ = z/r1. By axial symmetry, the unspecified shear stresses are all zero.

The stresses in eqns (1)–(8) constitute an admissible stress state. By the principles of variational
mechanics, the best approximation to the true stress state is found by finding the ψ(ζ) that minimizes
the total complementary energy. In Nairn (1992), a calculus of variations approach was used to derive
a fourth order differential equation for ψ(ζ):

ψiv + pψ′′ + qψ = qψ0 (9)

where ψ0 is a constant defined by (Nairn, 1992):

ψ0 = −C13σ0 +D3∆T

C33
. (10)

Cij , Di, p, and q are constants that are defined in the Appendix. We can write the solution to eqn
(9) as

ψ(ζ) = ψ0 − φ(ζ) (11)

where φ(ζ) is the solution to the homogeneous, fourth-order differential equation

φiv + pφ′′ + qφ = 0. (12)

MICRODROP SPECIMEN ANALYSIS

A typical microdrop debond specimen with a microdrop of length l and aspect ratio ρ (ρ = l/2r1)
is shown in Fig. 2A. Microdrops are nearly elliptical. A meniscus may form where the fiber enters
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Fig. 2. A matrix microdrop of dimensionless length 2ρ. A: The microdrop specimen. B: An
idealized microdrop specimen showing the boundary conditions relevant to the microdrop debond
test. σf is the background fiber tensile stress. σm is the stress applied to the microdrop during the
test.
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the microdrop. Observations, however, show that a typical meniscus is small and does not signifi-
cantly distort the elliptical shape (Gaur and Miller, 1989). In the typical experiment, a fiber with a
microdrop is loaded into a tensile testing jig. A small amount of fiber load may be used to achieve
fiber alignment. A pair of knife edges contact the matrix microdrop near the fiber and the fiber is
pulled until the interface fails (Gaur and Miller, 1989).

We idealize the microdrop specimen by replacing the microdrop with a cylinder and by replacing
the knife edge loading with uniform axisymmetric loading. The length of the cylinder is chosen to
match the length of the microdrop. The radius of the cylinder is chosen to preserve the effective
volume fraction of the fiber within the microdrop. The initial fiber alignment load or background
load is σf . This load is typically small and may be negligible. The reactive compressive load on the
matrix, σm, that results from pulling on the fiber is distributed as a uniform stress over the top of
the matrix cylinder. The compressive load on the matrix balances the pulling force and thus the
total applied axial stress remains constant and is σ0 = V1σf . If the alignment load is negligible the
total applied stress is approximately zero. Our analysis is in terms of dimensionless coordinates.
The dimensionless coordinates for the idealized microdrop specimen are shown in Fig. 2B.

From Fig. 2B, the idealized microdrop debond test boundary conditions are

ψ(ρ) = σf −
σmV2

V1
ψ(−ρ) = σf ψ′(±ρ) = 0

φ(ρ) = ψ0 −
σ0 − σmV2

V1
φ(−ρ) = ψ0 −

σ0

V1
φ′(±ρ) = 0.

(13)

Using these boundary conditions, there are two solutions to eqn (12) depending on the roots to the
characteristic equation. We express both solutions as

φ(ζ) =

(
ψ0 −

σ0

V1
+
σmV2

2V1

)
φe(ζ) +

(
σmV2

2V1

)
φo(ζ) (14)

where φe(ζ) and φo(ζ) are even and odd functions of ζ. When p2 − 4q < 0

φe(ζ) =
2h′2(ρ) coshαζ cosβζ − 2h′1(ρ) sinhαζ sinβζ

β sinh 2αρ+ α sin 2βρ
(15)

φo(ζ) =
2h′4(ρ) sinhαζ cosβζ − 2h′3(ρ) coshαζ sinβζ

β sinh 2αρ− α sin 2βρ
(16)

where

h1(ρ) = coshαρ cosβρ h3(ρ) = sinhαρ cosβρ α =
1

2

√
2
√
q − p

h2(ρ) = sinhαρ sinβρ h4(ρ) = coshαρ sinβρ β =
1

2

√
2
√
q + p

(17)

and h′i(ρ) is the derivative of hi(ρ) with respect to ρ. When p2 − 4q > 0

φe(ζ) =
β coshαζcschαρ− α coshβζcschβρ

β cothαρ− α cothβρ

φo(ζ) =
β sinhαζsechαρ− α sinhβζsechβρ

β tanhαρ− α tanhβρ

(18)

where

α =

√
−p

2
+

√
p2

4
− q β =

√
−p

2
−
√
p2

4
− q. (19)

As shown in Nairn (1992), the constant ψ0 defines the stress state far from the sample ends. In
other words, setting ψ(ζ) = ψ0 and substituting in eqns (1)–(8) gives the stresses in two infinitely
long concentric cylinders. Because the one assumption of σzz being independent of r is correct for
infinitely long cylinders, the resulting stress state is exact. By eqn (11), we see that φ(ζ) defines a
perturbation stress or the change in stress due to finite size microdrops. φ(ζ) will be largest near
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the ends of the microdrop and approach zero far from the ends. If the microdrop is not very long,
however, φ(ζ) will not reach zero before encroaching on the opposite end of the microdrop.

For possible energy release rate calculations it is useful to calculate the total strain energy in the
microdrop specimen. The total strain energy is

U =
1

2

∫
V

~σ ·K~σdV (20)

where ~σ is the stress tensor and K is the compliance tensor. The integration is identical to the
evaluation of the complementary energy in Nairn (1992) except that some terms are dropped. The
result in terms of ψ is

U = πr3
1

[
2ρC11σ

2
0 +

∫ ρ

−ρ
dζ
(
C33ψ

2 + 2C35ψψ
′′ + C55ψ

′′2

+ C44ψ
′2 + 2C13σ0ψ + 2C15σ0ψ

′′)] (21)

where Cij are constants that are defined in the Appendix. Because of the zero shear-stress boundary
conditions on the microdrop ends ∫ ρ

−ρ
ψ′′dζ = 0. (22)

Integrating eqn (9) from −ρ to ρ we quickly achieve∫ ρ

−ρ
ψdζ = 2ρ

[
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(
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2V1
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)
χe(ρ)

ρ

]
(23)

where we have defined a new function χe(ρ) = −φ′′′e (ρ). Following Hashin (1985) we multiply eqn
(9) by C33ψ and integrate from −ρ to ρ. After integration by parts we quickly achieve∫ ρ

−ρ
dζ
(
C33ψ

2 + 2C35ψψ
′′ + C55ψ

′′2 + C44ψ
′2)

= 2ρ

{
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2
o + C55
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)2
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ρ

}
(24)

where we have defined a new function χo(ρ) = −φ′′′o (ρ). Combining eqns (21)–(24), a closed-form
expression for the total strain energy is

U = 2ρπr3
1

{
C11σ

2
0 + C33ψ

2
0 + 2C13σ0ψ0 +

C55χ0(ρ)

ρ

(
σmV2

2V1

)2
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[((
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− ψ2
0
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+
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The two new functions, χe(ρ) and χ0(ρ), have the following explicit forms. When p2 − 4q < 0

χe(ρ) = 2αβ
(
α2 + β2

) cosh 2αρ− cos2βρ
β sinh 2αρ+ α sin 2βρ

(26)

χo(ρ) = 2αβ
(
α2 + β2

) cosh 2αρ+ cos2βρ

β sinh 2αρ− α sin 2βρ
. (27)

When p2 − 4q > 0

χe(ρ) = αβ
(
β2 − α2

) 1

β cothαρ− α cothβρ
(28)

χo(ρ) = αβ
(
β2 − α2

) 1

β tanhαρ− α tanhβρ
. (29)
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In typical microdrop experiments (Gaur and Miller, 1989, Jakubowski, 1990), the background
fiber stress (σf ) is much less than the fiber stress required to break the fiber/matrix bond (−σmV2/V1).
When this situation holds, all terms involving σf are negligible and we can simplify the analysis by
assuming that σf = σ0 = 0. The total strain energy reduces to

U = 2C55ρπr
3
1

[
D2

3∆T 2

C2
33

(
C33

C55
− χe(ρ)

ρ

)
+

(
σmV2

2V1

)2(
χe(ρ) + χo(ρ)

ρ

)]
. (30)

Because variational mechanics specifically minimizes energy, we expect eqn (30) to give a good
approximation to the total microdrop strain energy. With unusual geometries for which the basic
assumptions are invalid, however, the approximate strain energy can give poor results. The main
problem is as ρ gets small. In the limit as ρ approaches zero, χo(ρ) approaches ∞ which causes
the strain energy to diverge. By investigating microdrops of different sizes, we concluded that eqn
(30) is valid as long as the microdrop is longer than it is wide; i.e. as long as l ≥ 2r1. In terms of
dimensionless quantities, this requirement translates to ρ ≥ 1/

√
V1. In the next section we quote

some typical experimental results where V1 = 5% (Jakubowski, 1990) and thus we require ρ ≥ 4.5.
Fortunately, experimental microdrops are always longer than this required minimum length and we
therefore expect eqn (30) to be a good approximation for all real microdrops.

SAMPLE STRESS STATE

A microdrop debond experiment begins with a fiber and microdrop under little or no load
(σf = 0 or σf small). The knife edges are placed near the microdrop and the fiber is pulled. The
pulling will put compressive stress on the matrix and the magnitude of σm will increase as the fiber is
pulled. For a sample calculation we pick a low value of σf (σf = 10 MPa) and set σm to −100 MPa.
To include thermal stresses we pick a typical ∆T of −125◦C. Lastly, we pick fiber volume fraction
and microdrop length. Typical experimental results have V1 = 5% and length = 10 fiber diameters
or about 80 µm when using graphite fibers (Jakubowski, 1990). The fiber and matrix properties
used are listed in the Appendix. The far-field axial fiber stress for σ0 = V1σf = 0.5 MPa and
∆T = −125◦C is ψ0 = −300 MPa. The far-field fiber stress is compressive due to axial thermal
shrinkage of the microdrop relative to the fiber. The far-field radial stress at the fiber/matrix
interface is

σrr,1(1) (far field) = −V2

V1

(
A3ψ0 + A5σ0 + A5∆T

A0

)
= −11.1 MPa. (31)

0 1 2 3 4 5 6 7 8 9 10
Distance (Fiber Diameters)

2000

1500

1000

500

0

-500

St
re

ss
 (M

Pa
)

Fiber Axial Stress

Interfacial Radial Stress

Interfacial Shear Stress ψ0

Fig. 3. The fiber axial stress, interfacial shear stress, and interfacial radial stress in a microdrop
specimen. The horizontal line labeled ψ0 is the far-field fiber axial stress. The distance axis is
distance from the knife edges. The compressive stress applied to the matrix is −100 MPa; the
background fiber stress is 10 MPa; the total microdrop length is 10 fiber diameters.
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The far-field radial stress is compressive due to a shrink-fit of the matrix around the fiber caused by
radial thermal contraction of the matrix.

The stresses that result from the assumed loading conditions in the previous paragraph are given
in Fig. 3. The ordinate gives distance from the knife edges in units of fiber diameters. The axial
fiber tensile stress at the knife edges is

σzz,1(ζ = +ρ) = σf −
V2σm
V1

= 1910 MPa. (32)

At the opposite end of the microdrop the fiber stress is equal to the background stress, σf , or 10 MPa.
Away from each end of the microdrop the fiber stress asymptotically approaches the far-field stress
of ψ0 = −300 MPa. A 10 fiber diameter microdrop with V1 = 5% is short, however, and the fiber
stress never gets close to ψ0. Calculations with longer microdrops and the same V1 show that the
fiber stress reaches ψ0 in 15-20 fiber diameters. In other words, for long microdrops (say 1000 fiber
diameters) the fiber stress will be nearly equal to ψ0 at positions more than 15-20 fiber diameters
from either end. For microdrops with V1 6= 5%, the distance required to reach ψ0 decreases as V1

increases.
The interfacial shear stress is zero on both ends of the microdrop as required by boundary

conditions. Near the knife edges the shear stress peaks at −180 MPa and then returns towards
zero. Near the opposite end of the microdrop there is a small peak in shear stress of 19.5 MPa.
The form of the shear stresses differs significantly from that predicted by simplistic shear-lag mod-
els (Cox, 1952, Rosen, 1964, Amirbayat and Hearle, 1969, Kelly and Tyson, 1965). The simplistic
models predict a maximum shear stress at the two ends of the microdrop. A peak shear stress
at the microdrop ends, however, violates boundary conditions and results in an inadmissible stress
state (Whitney and Drzal, 1987). We suggest that the variational mechanics analysis gives a more
accurate description of the true interfacial shear stresses.

Near the knife edge, the interfacial radial stress is tensile and peaks at 366 MPa. The radial
tensile stress concentration is caused, in part, by the matrix compressive stress and the resulting
differential Poisson’s contraction between the fiber and matrix (Broutman and McGarry, 1962). The
radial stress decreases to a plateau value that is similar in magnitude but more compressive than
the far-field radial compressive stress. If the microdrop was longer, the radial stress would be nearly
equal to the far-field radial compressive stress at positions more than 15-20 fiber diameters from
either end (for V1 ≈ 5%). At the opposite end of the microdrop, the radial stress has a slight
tensile stress concentration of 33 MPa. We note that simplistic, one-dimensional stress analyses
(Cox, 1952, Rosen, 1964, Amirbayat and Hearle, 1969, Kelly and Tyson, 1965) do not determine the
radial stress. Because the interfacial radial stress is tensile and is larger in magnitude that the
interfacial shear stress, it probably plays a significant role in interfacial failure and therefore should
not be ignored.

FAILURE ANALYSES

The goal of the microdrop debond test is to characterize the quality of the fiber/matrix interface.
The experimental observable is the force required to dislodge the microdrop from the fiber; i.e. the
force required to break the interface. Previous microdrop debond experiments used a simplistic anal-
ysis [e.g. shear lag (Cox, 1952, Rosen, 1964, Amirbayat and Hearle, 1969) or elastic-plastic (Kelly
and Tyson, 1965) analyses] and calculated an interfacial shear strength or the critical interfacial
shear stress, τic, using

τic =
F

2πr1l
. (33)

In eqn (33), F is the failure force above the background force and l is the length of the microdrop.
In terms of the stresses used in this paper, eqn (33) becomes

τic = − 1

4ρ

σmV2

V1
. (34)

We let σd = −σmV2/V1 = F/πr2
1 be the fiber stress above background at the force that causes the

fiber and microdrop to debond. For a constant interfacial strength, eqn (33) predicts that σd will
be proportional to ρ.
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For a specimen that would fail under the stress example in Fig. 3, the interfacial shear strength
would be τic = 48 MPa. This interfacial shear strength does not correspond to any obvious feature
of the microdrop specimen stress state. To get a physical interpretation of τic we express it in terms
of ψ(ζ) as

τic =
1

4ρ

(
ψ(ρ)− ψ(−ρ)

)
=
r1

l

∫ ρ

−ρ

ψ′(ζ)

2
dζ =

1

l

∫ l/2

−l/2
τrz(r1, z) dz = 〈τrz(r1)〉 . (35)

In other words, the simplistic failure analysis equates the interfacial shear strength with the aver-
age interfacial shear stress along the length of the microdrop at the time of failure. Considering
the complexity of the microdrop specimen stress state, it is unlikely that the average shear stress
controls interfacial failure. Instead, fiber/matrix debonding should be expected to initiate at local
stress concentrations and later propagate to cause complete debonding. Two interfacial stress con-
centrations are the tensile radial stress at the knife edges and the peak shear stress that occurs near
the knife edges. The larger of these interfacial stresses is the radial stress. Because the peak radial
stress is tensile, a likely failure mechanism is mode I or opening mode fracture initiating at the knife
edges. If, as suggested, the peak force in the microdrop debond experiment corresponds to tensile
failure of the interface, it is inappropriate to use eqn (33) and claim to be measuring an interfacial
shear strength.

To appropriately analyze microdrop debonding experiments, it is essential to use a failure analysis
that corresponds to the real interfacial failure process. Without extensive experimental results it is
not possible to accept or reject any particular failure model, but, using the new variational stress
analysis we can explore alternative failure criteria. Three potential failure criteria, all of which
should be more realistic than the simple average shear stress approach, are:

(1) Maximum Stress: assume that interfacial failure occurs when some local interfacial
stress reaches a critical value.

(2) Total Energy: assume that interfacial failure occurs when the total strain energy in the
microdrop reaches a critical value.

(3) Energy Release Rate: assume that interfacial failure occurs when the energy release
rate for initiation of a fiber/matrix debond at the knife edges exceeds a critical value.

The maximum stress model simply states that the microdrop will debond when either the maxi-
mum interfacial radial stress exceeds the interfacial tensile strength or the maximum interfacial shear
stress exceeds the interfacial shear strength. The maximum interfacial radial stress occurs at ζ = ρ.
If the interface fails in tension, the variational stress state gives the interfacial tensile strength as
σic = σzz (r1, l/2) or

σic =
ψ′′(ρ)

16

(
3 + νm +

2(1 + νm) lnV1

V2
− V2A1

V1A0

)
− V2

V1

(
A3ψ(ρ) +A4σ0 +A5∆T

A0

)
. (36)

The maximum interfacial shear stress occurs near the knifes edges—typically less than one fiber
diameter from the knife edges. If the interface fails in shear, the variational stress state gives the
interfacial shear strength as

τic = max

(
ψ′(ζ)

2

)
. (37)

The maximum stress model is more reasonable than the average shear stress model, but it still
has two limitations. First, predicting failure at the value of one component of the stress in a
multiaxial stress state is probably an oversimplification. Second, it requires accurate determination
of the maximum stress. The variational stress analysis is approximate and the approximations are
most severe near the specimen ends. The inaccuracies near the specimen ends are due, in part, to
the assumption of σzz,2 being independent of r, and, in part, to the idealization of the boundary
conditions. Thus, while the variational analysis accurately represents the overall stress and strain
energy in a microdrop specimen, it should not be expected to provide quantitative predictions of
specific maximum interfacial stresses. One thing that can be said in favor of the average shear
stress approach is that eqn (33) can be derived from equilibrium arguments and therefore gives the
exact average shear stress. The fact that it is one of the few exact relations available, however, is
insufficient justification for using it to describe interfacial failure.
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A major disadvantage of both the average shear stress and the maximum interfacial stress ap-
proaches is that they focus on a single stress component. In an attempt to account for all stress
components we might try predicting interfacial failure when the total strain energy reaches a critical
value—the total energy model. An advantage of this model is that we only require the variational
analysis to provide total strain energy, which, as discussed above, is the most accurate feature of
the analysis. Dividing eqn (30) by total interfacial area (A = 2πr1l = 4ρπr2

1), the total energy per
unit interfacial area is

Gi =
C55r1

2

[
D2

3∆T 2

C2
33

(
C33

C55
− χe(ρ)

ρ

)
+

(
σmV2

2V1

)2(
χe(ρ) + χo(ρ)

ρ

)]
. (38)

The total energy model predicts that the fiber and matrix will debond when Gi reaches the interfacial
toughness or critical energy release rate Gic. Solving eqn (38) for the fiber stress to cause debonding
gives

σd = 2

√√√√ 2ρGic

r1C55
− D2

3∆T 2

C2
33

(
ρC33

C55
− χe(ρ)

)
χe(ρ) + χo(ρ)

. (39)

In contrast to eqn (33), which predicts a linear relation between debond stress and microdrop length,
eqn (39) is nonlinear in microdrop length. A simple limiting result is found for long microdrops. As ρ
gets large, both χe(ρ) and χo(ρ) approach constants and eqn (39) predicts that σd is asymptotically
proportional to

√
ρ. The value of ρ required to obtain this limiting result depends on the mechanical

properties of the fiber and matrix and on the dimensions of the microdrop.
The third, and perhaps most sophisticated model, is to use fracture mechanics and assume that

the interface will fail when the energy release rate for initiation of an interfacial crack at the knife
edges, Gi, exceeds the interfacial toughness or critical interfacial energy release rate, Gic. The first
step of this model is to calculate Gi. The calculation involves finding the stresses in the presence
of an interfacial crack as illustrated in Fig. 4. The originally intact microdrop specimen now has a
crack of length a or dimensionless length 2δ where δ = a/2r1.

The stress analysis of the cracked specimen involves finding the stresses in region I, the region
near the cracked interface, and the stresses in region II, the remainder of the microdrop. Because
the radial stress is tensile before failure, the crack should open and result in stress free fracture
surfaces. Stress-free fracture surfaces mean that the only possible stress state in region I which has
σzz independent of r is simple uniaxial stress. From the boundary conditions at the top of region I,
the stresses in the fiber are:

σzz,1 =
σ0 − σmV2

V1
and τrz,1 = σrr,1 = σθθ,1 = 0 (40)

and the stresses in the matrix are

σzz,2 = σm and τrz,2 = σrr,2 = σθθ,2 = 0. (41)

The total strain energy in region I is

UI = 2δπr3
1

[
1

2EA

(
σ0 − σmV2

V1

)2

+
V2σ

2
m

2V1Em

]
. (42)

When σf is negligible, as in typical experiments,

UI = 2δπr3
1

[
σ2
mV2

2V1

(
V2

V1EA
+

1

Em

)]
. (43)

At the top of region II, the boundary conditions are identical to the microdrop boundary con-
ditions in eqn (13). In region II the stresses are thus the stresses that exist in a microdrop of
dimensionless length 2(ρ− δ). From eqn (30), the strain energy in region II when σf is negligible is

UII = 2C55(ρ− δ)πr3
1

[
D2

3∆T 2

C2
33

(
C33

C55
− χe(ρ− δ)

ρ− δ

)
+

(
σmV2

2V1

)2(
χe(ρ− δ) + χo(ρ− δ)

ρ− δ

)]
(44)
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The total strain energy in the cracked microdrop specimen is U = UI + UII or

U = 2πr3
1

{
δ

[
σ2
mV2

2V1

(
V2

V1EA
+

1

Em

)]
+ (ρ− δ)D

2
3∆T 2

C33
.

+ C55

[((
σmV2

2V1

)2

− D2
3∆T 2

C2
33

)
χe(ρ− δ) +

(
σmV2

2V1

)2

χo(ρ− δ)

]}
(45)

The total energy release rate associated with the growth of the fiber/matrix debond in Fig. 4 is

Gi =
∂W

∂A
− ∂U

∂A
(46)

where W is external work, U is internal strain energy, and A = 2πr1a = 4πr2
1δ is total debond area.

We consider the knife edges as fixed. When the debond extends at constant load, the only external
work is the work done by the fiber stresses:

∂W

∂A
=

1

4πr2
1

∂W

∂δ
=

1

4

[
σf
∂ (uf + ud)

∂δ
− σmV2

V1

∂ (uf − um)

∂δ

]
(47)

where uf , um, and ud are the total debonded fiber displacement, debonded matrix displacement, and
bonded microdrop displacement relative to the tip of the fiber/matrix debond (see Fig. 4). When

ζ

−ρ

0

ρ

σf

σm

σm
V1

V2σf

σm

ξ

V1

10

Matrix
  Microdrop

Fiber
ρ−2δ

I

II

1

uf

ud

um

Fig. 4. An idealized matrix microdrop specimen of dimensionless length 2ρ having an interfacial
crack of dimensionless length 2δ emanating for the top of the microdrop. Region I is the cracked
region above the dashed line. Region II is the uncracked region below the dashed line.
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σf is negligible we only need to consider the second term in eqn (47). By integrating the strains,
the relevant displacement is

uf − um = 2δr1

[(
αA − αm

)
∆T − σm

(
V2

V1EA
+

1

Em

)]
. (48)

Differentiating eqns (45) and (48), the final expression for energy release rate when σf is negligible
is

Gi(δ) =
r1

2

{
σ2
mV2

2V1

(
V2

V1EA
+

1

Em

)
− σmV2

V1

(
αA − αm

)
∆T

+ C55

[
D2

3∆T 2

C2
33

(
χ′e(0)− χ′e(ρ− δ)

)
+

(
σmV2

2V1

)2 (
χ′e(ρ− δ) + χ′o(ρ− δ)

)]}
(49)

The required derivatives are as follows. When p2 − 4q < 0

χ′e(ρ) = 4αβ
(
α2 + β2

)2 sinh 2αρ sin 2βρ

(β sinh 2αρ+ α sin 2βρ)2
(50)

χ′o(ρ) = −4αβ
(
α2 + β2

)2 sinh 2αρ sin 2βρ

(β sinh 2αρ− α sin 2βρ)2
. (51)

When p2 − 4q > 0

χ′e(ρ) = α2β2
(
β2 − α2

) csch2αρ− csch2βρ

(β cothαρ− α cothβρ)2
(52)

χ′o(ρ) = −α2β2
(
β2 − α2

) sech2αρ− sech2βρ

(β tanhαρ− α tanhβρ)2
. (53)

In deriving eqn (49) we made use of the limiting relation

lim
ρ→0

χ′e(ρ) = χ′e(0) =
C33

C55
. (54)

Because the strain energy in region II is only accurate for ρ− δ ≥ 1/
√
V1, the energy release rate in

eqn (49) is only valid for 0 ≤ δ ≤ ρ − 1/
√
V1. Finally, an analogous energy release rate expression

for σf 6= 0 can easily be derived, but the additional terms will normally be negligible.
By the energy release rate model, the fiber and matrix will debond when the energy release rate

for initiation of a debond at the knife edges, Gi(0), is equal to the fracture toughness of the interface,
Gic. From eqn (49), the stress to cause fiber and matrix debonding is predicted from the quadratic
equation

σ2
d

[
1

2

(
1

EA
+

V1

V2Em

)
+
C55

4

(
χ′e(ρ) + χ′o(ρ)

)]
+ σd(αA − αm)∆T

=
2Gic
r1
− C55

D2
3∆T 2

C3
33

(
χ′e(0)− χ′e(ρ)

)
. (55)

Equation (55) predicts a nonlinear relation between debonding stress and microdrop length. A new
limiting result is found for long microdrops. As ρ gets large, both χ′e(ρ) and χ′o(ρ) approach zero and
eqn (55) predicts that σd is asymptotically independent of ρ. The value of ρ required to obtain this
limiting result depends on the mechanical properties of the fiber and matrix and on the dimensions
of the microdrop.

CONCLUSION

We have described a variational mechanics analysis for the stresses and strain energy in micro-
drop debond specimens. The new stress analysis was used to develop several potential methods for
analyzing microdrop debonding experimental results. All methods have one thing in common—each
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predicts that the higher the debonding stress, the higher the interfacial strength or toughness. Thus,
if your only goal is to rank interfaces in nominally identical specimens, any approach will suffice.
In fact, measuring only the debonding stress without any attempt at reducing it to an interfacial
strength or toughness will also suffice. If your goal, however, is to understand interfacial failure, if
your goal is to compare results from different size specimens, or if your goal is to measure a physically
valid interfacial strength or toughness that can be compared to other toughness results, it is essential
to interpret microdrop debond results with a realistic model and an accurate stress analysis.

The three failure analysis models described in this paper can only be accepted or rejected by
experimental studies. For example, the simple average shear stress model predicts that σd will be
linear in ρ, while the total energy and energy release rate model predict that σd will asymptotically be
proportional to

√
ρ or be constant, respectively, as ρ gets large. Experiments over a sufficiently wide

range of ρ, including large ρ, can determine which model, if any, is preferred. Although some have
measured σd as a function of microdrop length(Jakubowski, 1990), the current range of data and the
unfortunate scatter precludes us from determining which of our failure criteria is most accurate. We
suggest that more extensive microdrop debond experiments are required. We further suggest that
the scatter needs to be reduced. Two possible sources of scatter are real variations in the interfacial
properties and experimental technique. If all the scatter is due to real variations in the interfacial
properties than there is little hope of achieving a quantitative analysis of microdrop debond data.
We can hope, however, that refinement of experimental technique will reduce the scatter. For
example, we suggest replacing the knife-edge loading with axisymmetric loading. Axisymmetric
loading might improve reproducibility and it at least more closely matches the boundary conditions
of the variational stress analysis. Combining improved experimental technique with the improved
failure analyses suggested in this paper can potentially result in a very useful microdrop debond
method for characterizing the fiber-matrix interface.

Finally, we acknowledge the possibility that improved data may not fit any of our proposed
failure analysis models. Such a negative result does not necessarily mean that we should reject
the variational stress analysis and start over. More likely, we would only need to reject the failure
criteria. Any new failure criteria that might seem appropriate can be developed into a microdrop
failure model by using the variational stress analysis in this paper to predict the debonding stress.
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APPENDIX

In Nairn (1992), the complementary energy was expressed in terms of constants that depend on
the sample dimensions and on the mechanical properties of the fiber and the matrix:

A0 =
V2(1− νT )

V1ET
+

1− νm
Em

+
1 + νm
V1Em

(A1)

A1 =

(
1− νT
ET

− 1− νm
Em

)
(1 + νm)

(
1 +

2 lnV1

V2

)
+

2(1− νm)

V2Em
(A2)

A2 =
1− νT
ET

− 1− νm
Em

(A3)

A3 = −
(
νA
EA

+
V1νm
V2Em

)
(A4)

A4 =
νm
V2Em

(A5)

A5 = αT − αm (A6)

C33 =
1

2

(
1

EA
+

V1

V2Em

)
− V2A

2
3

V1A0
(A7)
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C35 =
1

16

[
A3

[
(1 + νm)

(
1 +

2 lnV1

V2

)
− V2A1

V1A0

]
− 2A4

]
(A8)

C55 =
1

256

{
1− νT
ET

[
5 + 2νT

3
+ νm(2 + νm)

]
+

4A2(1 + νm)2 lnV1

V2

(
1 +

lnV1

V2

)
− V2A

2
1

V1A0

+
1− νm
Em

[
V 2

2 (1 + νm)(5 + 3νm)− 3V2(1 + νm)(3 + νm) + 6(5 + 3νm)

3V1V2
+

8(1 + νm) lnV1

V 2
2

]}
(A9)

C44 =
1

16

[
1

GA
− 1

Gm

(
1 +

2

V2
+

2 lnV1

V 2
2

)]
(A10)

C13 = − 1

2V2Em
− V2A3A4

V1A0
(A11)

C11 =
1

2V1V2Em
− V2A

2
4

V1A0
(A12)

D3 = −V2A3

V1A0
[αT − αm] +

1

2
[αA − αm] . (A13)

In these equations, EA and ET are the axial and transverse tensile moduli of the fiber, GA is the
axial shear modulus of the fiber, νA and νT are the axial and transverse Poisson’s ratios of the fiber,
αA and αT are the axial and transverse thermal expansion coefficients of the fiber, and Em, Gm, νm,
and αm are the tensile modulus, shear modulus, Poisson’s ratio, and thermal expansion coefficient
of the matrix. The constants in eqns (9) and (12) are:

p =
2C35 − C44

C55
and q =

C33

C55
(A14)

The sample stress state calculated in this paper is for a typical epoxy microdrop on a graphite
fiber. We assumed the following properties for the fiber and matrix:

EA = 220000 MPa

ET = 14000 MPa

GA = 35000 MPa

νA = 0.20

νT = 0.35

αA = −0.36× 10−6 C−1

αT = 18.0× 10−6 C−1.

Em = 4300 MPa

Gm = Em

2(1+νm) = 1604 MPa

νm = 0.34

αm = 40.0× 10−6 C−1

(A15)


