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Abstract: The Material Point Method (MPM), whichbut the problem actually partitions into three distinct
is a particle-based, meshless method that discretizes prablems that can be solved independently:

terial bodies into a collection of material points (the par-

ticles), is a new method for numerical analysis of dy-1. Analysis of explicit cracks The first problem is
namic solid mechanics problems. Recently, MPM has to develop numerical methods that can evaluate
been generalized to include dynamic stress analysis of stresses and displacements around explicit cracks.
structures with explicit cracks. This paper considers eval- ) o
uation of crack-tip parameters, such &éntegral and 2. Calculation of fr_acture parameters: Once_ explicit
stress intensity factors, from MPM calculations involv-  Ccrack analysis is possible, each numerical method
ing explicit cracks. Examples for both static and dynamic  N€€ds techniques to evaluate key crack-tip parame-
problems for pure modes | and Il or mixed mode loading (€S Such ad integral, energy release rate, stress in-
show that MPM works well for calculation of fracture  (€NSity factors, or various other local crack-tip prop-
parameters. The MPM results agree well with results ob- ©€rties.

tained by other numerical methods and with analyticab

_ Prediction and inclusion of crack propagation
solutions.

Once crack tip parameters are available, the next
issue is to predict what conditions are required for
crack propagation and in what direction the crack
will propagate. This problem is a material science
problem and not dependent on the particular numer-
1 Introduction ical method chosen for analysis. For a particular nu-

_ _ _ ~ merical method to be effective, however, it should
Many experimental methods are available for investi- o capable of modeling crack propagation in arbi-

gating the dynamic fracture properties of materials and trary directions and continuing the analysis as the
structures. Because of the very short time scales for 50k grows.

dynamic fracture events, it is difficult to directly mea-

sure physical fracture quantities suchJamitegral, en- One of the earliest applications of numerical methods to
ergy release rates, or stress intensity factors, partigynamic fracture problems is the finite difference method
larly in opaque specimens or structures of practical i(F‘DM) developed by Chen and Wilkens (1977). Later, fi-
terest. Computational calculations have the potentialdge element analysis (FEA) became the preferred numer-
overcome the difficulties associated with interpreting dy| tool [Nishioka and Atluri (1983), Nishioka (1995),
namic fracture mechanics experiments. The approa@Rhioka (1983), Nishioka (1997), Nishioka, Tokudome,
would be to use calculations to evaluate physical fractygd Kinoshita (2001), Nishioka and Stan (2003)]. The
quantities of a dynamic crack tip at any instant of timgnalysis of explicit cracks in FEA is easily handled by
during the experiment. The advancement of dynanjgroducing cracks in the mesh, but FEA can have diffi-
fracture mechanics, therefore, relies heavily on advanggrty dealing with crack surface contact. FEA can evalu-
ments of numerical fracture methods. ate fracture parameters by methods such as crack closure
The numerical analysis of dynamic fracture is often cofRybicki and Kanninen (1977)], but encounters difficul-
sidered as a package using various numerical methdis in coping with crack propagation, especially crack

keyword: Material point method (MPM), dynamic
fracture,J integral, stress intensity factor.
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propagation in arbitrary directions [Nishioka, Tokudomearded or reused for the next time step in its initial, undis-
and Kinoshita (2001)]. Another problem of FEA is diftorted form. This combination of Lagrangian and Eule-
ficulty with problems having large deformations or rotatan methods has proven useful for solving solid mechan-
tions, where the finite element mesh could become diss problems, particularly for problems with large defor-
torted requiring re-meshing methods and causing a gresitions and rotations. Despite the use of a background
decrease in calculation efficiency. A dual boundary intetesh, a recent derivation of a generalized MPM method
gration method was developed to obtain dynamic str¢éBardenhagen and Kober (2004)] shows that MPM is a
intensity factors [Wen, Aliabadi, and Rooke (1998)Petrov-Galerkin method having more in common with
Because the crack opening displacements are usedtteer meshless methods than with finite element meth-
calculate stress intensity in this method, attention musts.

be paid, and some techniques have to be used, t0 #Re standard derivation of MPM enforces continuous
prove the accuracy of crack opening displacements ngaplacements. Although such an analysis can handle
crack tips before stress intensity factors are reliable. Jome fracture properties with special symmetries [Tan
avoid mesh problems of FEA and to better handle cragkq Nairn (2002)], it can not handle arbitrary explicit
propagation in arbitrary directions, some meshless methycks. Recently we have developed a new MPM algo-
ods [Atluri and Shen (2002), Han and Atluri (2003b)jthm called CRAMP for cracks in material point calcula-
have been developed for dynamic fracture analysis [Bgmns [Nairn (2003)]. This new algorithm solves the first
lytschko, Lu, and Gu (1994), Organ, Fleming, and Bgroblem in numerical analysis of fracture on the analy-
lytschko (1996), Batra and Ching (2002), Han and Atlugjs of explicit cracks. It handles cracks naturally with
(2003a)], as well as a cell method [Ferretti (2003)]. F@ke full accuracy of MPM. In other words, it is compa-
example, Batra and Ching (2002) extended the Meshlegsie to FEA in the ease of including explicit cracks and
Local Petrov-Galerkin (MLPG) method for inclusion ohas advantages over other meshless methods by not re-
cracks and evaluation of stress intensity factors (prfiring crack approximations such as node-visibility or
lems 1 and 2 above). As in other meshless methoggess-diffraction rules [Organ, Fleming, and Belytschko
however, the inclusion of cracks in MLPG required defc’lg%), Batra and Ching (2002)]. CRAMP may also have
nition of particle “influence” zones near crack surfaces #ivantages over both FEA and other meshless methods
be able to handle explicit cracks. These influence zofgsts ability to fully model crack surface contact in-
have to be evaluated by approximate node-visibility gfding frictionless sliding, sliding with friction, or stick
stress-diffraction rules [Organ, Fleming, and Belytschik@nditions [Nairn (2003), Bardenhagen, Guilkey, Roes-

(1996), Batra and Ching (2002)]. Furthermore, it mighty, Brackbill, Witzel, and Foster (2001), Bardenhagen,
be hard to incorporate contact algorithms for handlifgackbill, and Sulsky (2000)].

crack surface contact in MLPG. Now that MPM/CRAMP can handle explicit cracks, the
A new particle-based method, called the material pogal of this paper was to address the second problem in
method (MPM), is developing into a new numerical to@lymerical analysis of fracture or to develop MPM meth-
for solving dynamic solid mechanics problems [Sulskygs for calculating fracture parameters and to verify that
Chen, and Schreyer (1994), Sulsky, Zhou, and Schreygs\ js suitable method for such calculations. We found
(1995), Sulsky and Schreyer (1996), Nairn (2003), Bafat MPM is well-suited to efficient and accurate calcula-
denhagen, Guilkey, Roessig, Brackbill, Witzel, and Fogon of J integral around cracks. By tracking crack open-
ter (2001), Bardenhagen and Kober (2004)]. In the majgy displacements, it was further possible to condert
rial point method, the object being analyzed is discretizgflegral results into mode | and mode I stress intensity
into a collection of particles or material points. As thctors. These results suggest that MPM is an excellent
dynamic analysis proceeds, the solution is tracked on f@didate for the last fracture problem or the implemen-
particles by updating all required properties such as Rgion of failure criteria to predict both crack growth and
sition, velocity, acceleration, stress statéc. At each growth direction. Because the MPM solution and the
time step, the equations of motion for the particles akgyck definition are defined on particles, it is easy to im-
solved on a background grid; this solution is used to0 Uement crack propagation in arbitrary directions. Per-
date the particles and the background mesh can be figss MPM will combine the algorithmic efficiencies of
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FEA for analysis of explicit cracks with the flexibility of fields, solve the equations of motion for each veloc-
meshless methods for describing arbitrary crack paths. ity field separately.

4. To prevent non-physical overlap at displacement

2 Numerical Methods . L
discontinuities, implement contact rules at all nodes

2.1 MPM Calculations with Explicit Cracks with multiple velocity fields [Nairn (2003), Bar-
. . . . denhagen, Guilkey, Roessig, Brackbill, Witzel, and
The material point method (MPM), as originally derived, Foster (2001)].

extrapolates particle information to a background grid

for solution of the equations of motion [Sulsky, Chen,5  ysing the nodal solutions, interpolate back to the
and Schreyer (1994), Sulsky, Zhou, and Schreyer (1995), particles and update the solution on the particles
Sulsky and Schreyer (1996)]. Because this extrapolation gsych as particle stress, strain, velocity, and displace-

enforces continuous velocities on the grid, the original ment. The interpolation back to the particles uses
method could not accommodate cracks which are math- the appropriate velocity field as determined in step

ematically described by velocity or displacement discon- 2.

tinuities. To extend MPM to crack problems, we de-

veloped a new algorithm called CRAMP for cracks in6. Finally, update the crack position within the body.

material point method calculations. This section gives a In the previous paper [Nairn (2003)], this step up-

brief review of the CRAMP algorithm; the detailed al- dated the position of all crack particles by using

gorithm is in Nairn (2003). The key difference in MPM  the center-of-mass velocity field. In this work, we

with cracks are: added an extra update of crack information to track
crack surfaces or crack opening displacements (see

1. To account for cracks, modify the MPM extrapo-  Pelow).
lation of particle information to the grid to allow
nodes near cracks to have multiple velocity field8.2 CRAMP-Modified MPM Equations
The separate velocity fields contain information f

the solution on opposite sides of the cracks. %Eonader a solid body containing a crack subjected to

body force per unit volum& and surface forc& which

2. To determine which nodes need multiple velociﬂ(as been resolved into forces applied directly to particles,
fields, cracks are introduced in the problem by abie (see Fig. 1). The virtual work principle for the system
ditional mass-less particles. ID2roblems the ad- ¢&n be expressed by [Cook, Malkus, and Plesha (1989)]:
ditional particles are connected by line segments to
define the crack path. InCBproblems, crack def- / B-dudV+ z Fp- 8 = / G-dedV
inition requires defining a crack surface [Guo and v P v
Nairn (2004)]. When extrapolating any partigeo + / pdiU
nodei, a line is drawn from the particle to the node v dt?
and each patrticle/node pair is assigned a field num- _ _ ' _ o . .
berv(p,i) which isv(p,i) = 0 if the line crosses noWherep is densitydy is a damping coefficiend, €, ando
crack {.e., conventional MPM)v(p,i) = 1 if the are the displacement, strain, and stress, respectively, and
line crosses a crack and the particle is above this time. The termdU denotes an arbitrary virtual dis-
crack, orv(p,i) = 2 if the line crosses the crackelacement that is allowed physically. In MPM, the body
and the particle is below the crack. The concept igfdivided into a collection of particles each assigned a
“above” or “below” the crack is relative to a coordiimass ofm, consistent with the material density. All the
nate system with the crack tip at the origin and t¥@riables needed to solve the problesrg( position, ve-

crack direction in the negativedirection (or crack l0City, stressetc) are carried on the particles. To solve
plane in the negative-z plane in 3D problems).  the equations of motion for the particles, MPM uses a

background computational grid, as shown in Fig. 1. In-
3. Solve the equations of motion by conventiong&rpolating particle properties and virtual displacement
MPM methods, but for cracks with multiple velocityto the grid and numerically evaluating the integrals using

-5UdV+/dkdU-5UdV QD
v dt
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Schreyer (1994)] all need modification to account for the
possibility of multiple velocity fields. The lumped mass
matrix at a node is

M =3 MpN: pBy(piy (k=0,1,2) 3)
p

The total nodal forces are the sum of the external forces
and the internal forces:

fiet = £+ i (k=0,1,2) 4)

where

—,

; i
f& = S FoNipdkyipi) — — Y MpVpNi pdkv(piy  (5)
Figure 1 : Discretization of a solid object with a crack ™ % PRLPEVRD g % PR PRk V(PD)

into material points or particles. The grid is the back:n;
ground mesh for MPM calculations. The CRAMP algo-*
rithm tracks the crack as mass-less particles connected
by line segments; it also tracks the top and bottom crdiok k = 0,1,2 and where superscriptdenotes a specific
surfaces to provide information about crack opening digdantity,N; , = Ni(X,) andCN; , = ON;(Xp) are the shape
placement. function and its’ gradient for nodeat the position of
particle p (Xp), Vp is the particle velocity, andy p,) is
Kronecker delta or 1 ik = v(p,i) and O otherwise.
the particles as integration points, the virtual work equ@nce nodal velocities have been updated, the nodal state
tion reduces to separate equations for nodal acceleratignisiterpolated back to the particles to update their ve-
of each velocity field& yp,)): locity, position, stress, straietc. In CRAMP, the inter-
polation is done using the proper velocity field for each

= ym (I§§‘,Ni,p — G- DNi,p) Sv(pi) (6)
g

7t . . )
Ay = fi,(\)zt(p,i) @) particle near a crack [Nairn (2003)]. Finally, the center-
LD Mi'-v(pi) of-mass velocity for each particle in the definition of the

crack plane is used to update the crack position. A new
where f1° are the total nodal forces, arld- are the feature added to CRAMP in this work was to addition-
lumped nodal masses. The second subsexpti) = ally use the separate velocity fields to track the positions
0,1, or 2 corresponds to each of the three possible wd-the crack surfaces. Initially the crack is assumed to
locity fields in the CRAMP algorithm. Although eaclbe closed. During each MPM time step, the separate
node has three potential velocity fields, only nodes ne&locity fields near cracks are used to update the posi-
cracks will have more than the singlép,i) = O field. tions of the top and bottom surfaces of the crack. Figure
For the example, in Fig. 1 only the nodal points along theshows a crack “Plane” which is defined by a collec-
crack plane will have multiple velocity fields. Furthertion of massless particles connected by line segments.
more, even nodes near cracks will have at most two Ve “Top” and “Bottom” crack surfaces are tracked as
locity fields that correspond to information extrapolatetisplacements from that crack plane during the analysis.
from opposite sides of the crack near that node. (Nofée crack opening displacement information is useful in
although the crack plane in Fig. 1 is shown along gnhrtitioning the stress state into mode | and mode Il stress
lines, the crack particles will numerically reside on oniatensity factor.

side or the other from the grid line. Although issues cath additional use for tracking crack opening displace-
arise due to numerical round off, they can be avoidggbnts might be to implement numerical methods for
(2003)].) detecting two-body or crack contact have been based
The remaining MPM equations [Sulsky, Chen, ar@h surface velocities or on nodal volumes or on both



MPM Calculations of J Integral 5

[Nairn (2003), Bardenhagen, Guilkey, Roessig, Brackhe J-integral, as a key fracture parameter, was intro-
bill, Witzel, and Foster (2001), Bardenhagen, Brackbilluced by Cherepanov (1967) and Rice (1968). Although
and Sulsky (2000)]. Because contact detection is ddhe first derivation o-integral was for quasi-static prob-
for grid nodes with multiple velocity fields while crackems with no kinetic energy, the concept can be ex-
opening displacements are tracked on the massless ctankled to dynamic problems by including kinetic energy.
particles, it is more efficient to use grid methods rath&€he definition of dynamic J-integral componenig {or
than the new crack opening displacement informatian.= 1,2) at a crack tip (see Fig. 2) is [Nishioka (1995),
The calculations in this paper have thus continued to U3eerepanov (1979)],
the grid- and volume-based method described in Nairn
(2003). By monitoring the crack opening displacemegt lim [<W+ K) nm—oijnjan:| dr @)
on the crack particles, we could confirm that the grid- e=0Jr, 0Xm
based crack-contact detection algorithm worked well for / [(W+ K) N ou; } dr

r

all examples in this paper. We have experimented with " %
displacement-based methods for crack-contact detection 0%u; oy,  du; d%u;
o[ el
Al

that extrapolates displacements within the two velocity 02 Oxy Ot Otdxm
fields to grid nodes and detects contact based on relative

normal displacements. This approach works well, but ghereW andK are the stress-work density and kinetic
quires an extra extrapolation for nodal displacement @Rergy density, respectivelg;; are stressesy; are dis-
formation. placements (accordingl§u; /0xm, are the components of

In typical problems with cracks, only a few nodes ne8lisplacement gradient8yi /dt is velocity, andd?u; /ot>
cracks will actually have multiple velocity fields and thu§ acceleration)nm are components of the unit normal
the CRAMP algorithm is very efficient. The computa‘ector to theJ-integral contour I or I'e), p is density,
tional overhead for cracks in 2D problems is typicall@nd repeated indicasand j are summed. The energy
about 10% [Nairn (2003)]. Additionally, MPM withterms are
cracks may have advantages over other particle-based or
meshless methods for inclusion of explicit cracks. The
CRAMP algorithm is arexactMPM representation of
cracks or displacement discontinuities analogous to i .

fact that the addition of cracks to an FEA mesh providg ong contours around the crack tip. TAE') integral
an exactFEA representation of discontinuities. In con> an integral over the area enclosed by the contour.
trast, other meshless methods can only include displakc@t static problems, the area integral drops out and the
ment discontinuities by approximate methods such rgsult is path independent for any crack tip contdur (
node-visibility rules [Belytschko, Lu, and Gu (1994)] off I'¢) [Rice (1968)]. This path independence is lost for

stress-diffraction parameters [Organ, Fleming, and B#namic problems because the transmission of energy to
lytschko (1996)]. different paths depends on the time stress waves reach the

path. There are two solutions to the problem as expressed

3 J-integral and Stress Intensity Factor Calcula- *?y the tW(_) results fodm a_bove [Nishiok_a (1995_)]._Inthe
tions in MPM first solution (Eq. 7),Jn is calculated in the limit of a

small contourl¢. In this limit the components of the
The CRAMP algorithm modification to MPM has exd-integral are well defined because @) integral be-
tended MPM to include explicit cracks and thereby deemes negligible. The second solution (Eq. 8) can be
termine stress fields, displacemert;,, near crack tips. used for an arbitrary contour, provided an extra term,
To implement fracture mechanics models for crack proghich integrates the area enclosedbyr A(I), is in-
agation, the next step is to calculate fracture parametdigled. The two combined terms are independerit of
for crack tips such as energy release rate and stresqNtishioka (1995)], but the calculation dfis no longer
tensity factors. This section describes MPM calculatioassingle line integral. Most of the results in this paper
of J-integral around a crack tip and partitioning of thesed the first equation by numerical integration over a
results into mode | and mode Il stress intensity factorspath close to the crack tip. The effect of path size, using

] dA  (8)

W = gjjdgj; and K:%puiui (9)

Qeresij are strains. Thé and [l are line integrals
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Figure 2 : Nomenclature and coordinates for terms used--+------ == + ------ === J. ------- it s

in the J-integral calculation. The 1 and 2 axes are globgy ;e 3. Two possiblel-integral contours around a
x andy axes. The 1and 2 axes are aligned with the cur-

K di . h kcrack tip in MPM calculations. The calculations in this
rent crack direction. The contolie starts on one crac paper all used the rectangular path for computational ef-

surface and proceeds counter-clockwise to the OppoﬁE%ncy. This path is centered on the node nearest to the
crack surface. crack tip and extends 2 cells in each direction from that
node.

an example when the second term is needed, was also

investigated. tour in thex andy directions. All paths where chosen to

Once the components of tieintegral are evaluated, thene squarer(= m). The path in Fig. 3 is a 2 2 contour.

total energy release rate for crack growth in elastic maig; numerical-integral calculations proceeded as fol-

rials (linear or non-linear) is given by [Nishioka (1983)}, s First, to get terms required for the contour integral,
10 all needed terms from the current particle states were ex-
(10) trapolated to the nodes on the background mesh. The

. . nodal values were extrapolated by standard MPM meth-
where8. is the crack propagation angle measured from

x-axis in the global coordinates (see Fig. 2)andJ, are 0ds using
components of integral, as evaluated in Eq. 7. 5 oMo FoN: By

Figure 3 shows two potentidtintegral contours around fis ME
a cracktip. The curvE; is a circular path centered on the ’
crack tip. The curvé ; is a rectangular path that followsvheref represents any propertfi;x are the nodal values,
grid lines in the background MPM mesh; it is centereahd f,, are the values on the particles. The extrapolation
on the node nearest to the crack tip. BecaliBgegral is to get displacement gradients used particle straig,(
path-independent in the limit of small path length or B3u; /0X = &xy); to include cross-derivatives, the code sep-
inclusion of the volume integral, th&integral contour arately trackedu;/dy and du,/0x on particles rather
can be chosen arbitrarily. All calculations in this papénan just the sum or shear strajy. Importantly, the
were done with the rectangular path. By using a contaxtrapolation must preserve the multiple velocity fields
that follows mesh lines in the background grid, the n(k = 0,1,2) to provide information for the two sides of
merical integration to find integral was more efficient.the crack. Next, the node closest to the crack tip was lo-
Rectangular paths are denoted hera asn paths where cated and a rectangular path centered on that node was
nandmare the distance from the central node to the caralculated. For reasonably behaved cracks, this path will

G = J; cosB; + J»SinB,

(k=0,1,2) (11)
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cross the crack once. That crossing point was locat@&tie energy release rat&, was calculated by Eq. 10;
two nodes were placed at the cross-over point, and the angled. for the calculation was found from the an-
path was split to create a contour starting on one craglk of the line segment at the crack tip. To partition total
surface and ending on the opposite crack surface. Emergy release rat&, into mode | and mode Il compo-
nodal values for stresses, energies, displacemetts, nents, thes results were converted into mode | and mode
for the two new nodes were found by interpolation bé-stress intensity factors K, andK;;. The calculation
tween the two neighboring background mesh nodes ainG is valid for any elastic material (linear or nonlin-
the rectangular path. The neighboring nodes will alwagar) and for heterogeneous materials. The conversion to
have two velocity fields. The interpolation of these twstress intensity factors, however, required an assumption
velocity fields gave two separate results resulting in oatlinear-elastic, homogeneous materials. The formulae
new node that corresponded to the stress state on oneangrgiven by [Nishioka (1995), Nishioka, Murakami, and
face of the crack while the other one corresponded to ffekemoto (1990)],

stress state on the opposite side of the crack. Finally, as-

suming there were; nodes (om; — 1 segments) along UGBy,
the final J-integral contour, the components of te K = \/A| &0+ % B) (14)
integral were numerically integrated using the midpoint i e
rule: 2uGB,
K|| = 6|| (15)
-1 \/A” (87Bn + &7 B1)

LEDY (anup,w”)% (m=12)  (12)
1= where is the shear modulu) and g, denote crack
opening and shearing displacements near the crack tip,
andf, B, A, andA,, are parameters related to crack
propagation velocitZ. They are given by,

wherel; is the Iength of segmemtand the integrand at
each nodef

() _ 1) P G- 2ok
Fn’ = (Wl,k+ K|,k> L (13) B = m and By = m (16)

Here subscriptdenotes nodal value while subscrite-
notes the appropriate velocity field. The integration starts
on one crack surface with the velocity field appropriate

2
for that crack surface (velocity field for particles above of Bi(1-Bi) . a7)
below the crack depending on crack orientation). When- ABiPu — (1+Bip)

ever nodes have multiple velocity fields, the initial velogq _ Bu(1-Bf) (18)
ity field was used for the first half of the nodes while the 48Ry — (1+B7)2

opposite velocity field was used for the later half of the
segments. In practice, nodes near the middle on the cawhereCs andCqy are the shear and dilational wave speeds
tour had single velocity fields and there was never ambi-
guity of the appropriate velocity field. 2 H 4 2 K+1\ U
For calculations using Eq. 8, the second term was evalu- s N9 T <K—1> P
ated by numerical integration over the area enclosed by
the rectangular path. The particles enclosed by the patr a stationary crack witl® = 0 (all examples in this
were used as equally-weighted integration points. Tpaper),3; = ;) =1 and
current particle properties for velocity, displacement gra-
dient, and acceleration were used to calculate the inte- K+1

. . . limA = I|m A|| _— (20)
grand. The representation of the solution on the particles C—0 4
does not have separate velocity fields, but, the particle
states automatically provide the proper result for the aleathe above equationg = (3—Vv)/(1+v) for plane
integration. stress andk = 3 — 4v for plane strain, wherg is Pois-

(19)
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son’s ratio. These limits lead to P (N/mm)
P, Pr=4X10*
o) A Mode
K = g'\/ﬁ (plane stress t
0 GE . 2h=24 P Pg=-4X10*
= EI 12 (plane strain (21) v le—— a=50 ——»
5 00— P (N/mm)
Ky = %\/GE (plane stress P Pr=Pg=4X10"
5 GE 8 Mode Il .
I .
= — lane stra 22 . .
o V1-v2 (P straip (22) Figure 4 : The geometry of beam specimens used to

compare MPM results to static results. By varyiig
whereE is tensile modulus andlis the magnitude of theand Pg, this specimen can be pure mode | (DCB), pure
crack opening displacement. mode Il (ENF), or mixed mode. The loads were applied
The new MPM results needed for stress intensity factostantaneously at time zero and then held constant.
are the crack opening displacemenis,and d;,. The
crack opening displacements were calculated from the
extension to CRAMP described in the previous sectidine mass density wgs= 1,Sg/cm3. In order to com-
for tracking positions of the crack surfaces. The craglare the results of stress intensity evaluated by MPM
is discretized into a series of massless points conneacigth static results, external damping was incorporated in
by segments. The last point defines the crack tip. T#t@ computations and adjusted to make the dynamic vi-
last segment defines the crack orientat@y, The crack brations damp out after a few oscillations. The damped
opening displacements were calculated using the crack results should converge to the static solution. The
surface positions of the next to last point. These openid@mping coefficient in Eq. 1 for these specimens was set
displacements were resolved into displacement compwe, = 1000sec?!. To test convergence, the dimensions
nents normal and transverse to the last crack segmendftthe background mesh cells for both the DCB and ENF
provided, andd;, respectively; the partitioning only de-specimens were varied from«<4 mm down to Ix 1 mm.
pends on the rati®, /&, . For all meshes, there were 4 particles per cell. The ini-
tial spacing between patrticles thus varied from 2mm to
0.5mm or 4% to 1% of the crack length (50mm). The
J-integral contour was 2 2 cells. The distance of the
4.1 Static Results contour to the crack tip thus varied from 8 mm to 2mm

. . . : or 16% to 4% of the crack length.
TheJ-integral calculations and stress intensity factor par-

titioning were first verified by comparison to static re-'9Ures 5and 6 compare the resuits of dynamic stress in-
sults. Under static conditions, theintegral calculation €NSity evaluated by MPM to the static results. For the

is path independent and it is easy to find analytical BCB Specimen, the static stress intensity factors were

sults for comparison. Figure 4 shows the analysis gedifidnd using corrected beam theory [Kanninen (1973)]:

etry for two static beam specimens. The specimens were (a+xh)

loaded at time zero with loads per unit thickneBsand Kis = Zﬁw and Kys=0 (23)

Ps, applied to the top and bottom beams. This geometry

results in a pure mode | loading, double cantilever beavherey is a correction factor to account for crack-root
specimen (DCB) wheRs = —Pr or a pure mode Il load- rotation effects angt = 2/3 for isotropic materials. For
ing, end-notch flexure specimen (ENF) whgn= Pr. the ENF specimen, the static stress intensity factors were
The material was assumed to be isotropic, linear elag@gnd from [Carlsson, Gillespire, and Pipes (1986), Guo
with a modulus ofE = 2300MPa and a Poisson’s rati@nd Tang (1993)]:
of v =0.33. The specimens were 100mm long, 24mm

high, and 1 mm thick, and analyzed in plane-stress condi- 3Pra\/1 2(1+v) (h>2 (24)

tions. All the specimens were clamped on the left edgeK'S =0 andKus = h3/2 5

4 Results and Discussion
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Figure 5 : Comparison of the stress intensity factdfs, Figure 6 : Comparison of the stress intensity factdfs,
andK|, for the DCB beam specimen calculated by MPEIndK, , for the ENF beam specimen calculated by MPM
analysis using three different cell sizes or by analyticahalysis using three different cell sizes or by analytical
results (horizontal line). The dynamic MPM results haésults (horizontal line). The dynamic MPM results had
damping such that they should converge to the static damping such that they should converge to the static so-
lution. lution.

For both the DCB and ENF specimens, the converged

MPM results oscillated around the analytical results antens and the crack lengths are given in Fig. 7. The di-
converged to those results when damping was compl@tensions of background mesh cells werg 0 0.5mm
The mode | results converged forx2 mm cells, while with 4 particles per cell. The particle spacing was thus
the mode Il results required smallex1l mm cells. The 0.25mm which is 1.25% of the specimen width, 5.2% of
correct partitioning of energy release rate if€p and the CCT crack length, and 5% of the SENT crack length.
K, is shown by the calculation df;, = O for the DCB TheJ-integral contour was 2 2 cells.

specimen (Fig. 5) and, = 0 for the ENF specimenFigures 8 and 9 compare the results of dynamic mode |
(Fig. 6). The partitioning was further verified by anaktress intensity factors of the CCT and SENT specimens
ysis of mixed-mode specimens such as using- P and calculated by MPM to prior results calculated by the fi-
Ps = 0. nite difference method [Chen and Wilkens (1977)]. In
the two figures, the stress intensity factors were normal-
ized by the static, infinite-sheet stress intensity factor of
Three specimens were used to compare the resultd<ef= Oov/T@whereap = 400MPaiis the value of the ap-
stress intensity factors evaluated by MPM throush Plied stress, and is 24mm and Smm for the CCT and
integral to the results computed by other approaches. THeNT specimens, respectively. Figures 8 and 9 show that
first two specimens were a central cracked tension (CGft§ new results calculated by MPM agree well with prior
specimen and a single edge notched tension (SENFHjnerical results.

specimen. Figures 7a and 7b show the geometry andThe third dynamic specimen analyzed was a double edge
axial Heaviside load boundary condition for these spenitched plate (DENP) specimen dynamically loaded
mens. They were analyzed under plane strain conditioimsimpact compression between the two notches (see
The crack-tip loading was pure mode |. The material wagy. 7¢). The DENP specimen has been used as an impact
linear elastic with a modulus & = 200 GPa and Pois-specimen to study the dynamic fracture toughness under
son’s ratio ofv = 0.3. The mass density of the materiadhear or mode Il loading [Kalthoff and Winkler (1987)].
was set tp = 5.Og/cm3. The dimensions of the speciAlthough analysis shows the loading is mostly mode 11,

4.2 Dynamic Results
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Figure 7 : Specimen geometries for dynamic stress i, (K,) for the SENT specimen calculated by MPM or

tensity factor calculations. a. Center crack tension (CGJ)) finite difference method (FDM in Chen and Wilkens
specimen. b. Single edge notched tension (SENT) Spﬁ%??)).

imen. c. Double edge notched plate (DENP) specimen.
All specimens where loaded (as indicated by arrows) in-

stantaneously at time zero and then the stress was held . o
constant. the mode | component is non-zero or the loading is actu-

ally mixed mode. The material was linear elastic with a
modulus ofE = 210 GPa and Poisson’s ratiowf= 0.29
and analyzed under plane-strain conditions. The impact
compression stress wag = 200MPa. The mass den-
sity of the material was set tp = 7.8339/cm3. The
dimensions of the specimens and the crack lengths are
given in Fig. 7c. The dimensions of the background mesh
3.0 cells were 2< 2mm with 4 particles per cell. The parti-
] cle spacing was thus 1 mm which is 1% of the specimen
width and 2% of the crack length. Thentegral contour
was 2x 2 cells. The MPM calculations used symme-
try and analyzed only the top half of the specimen. The
nodal velocities in thg direction in the midplane of the
specimen were constrained to zero to define the symme-
try plane.

Figure 10 compares the results of mode | and mode Il
05— e stress intensity factors evaluated by MPM to prior re-
0 2 4 6 8 0 12 14 sults calculated by the Meshless Local Petrov-Galerkin
Time (us) (MLPG) method [Batra and Ching (2002)]. The two
) ) ) ] methods have similar results. The slight differences may
Figure 8 : Comparison of the mode I stress intensity faB'e a real difference because the MPM results and MLPG
tor (K;) for the CCT specimen calculated by MPM Of 15 were for slightly different problems. The MLPG
by finite difference method (FDM in Chen and W'Ikenanalysis used highly refined particle density near the
(1977)). crack tip in an attempt to resolve the effect of the ac-
tual machined crack tip with a radius ofi® mm [Batra
and Ching (2002)]. The MPM analysis assumed a sharp

2.54
2.04

1.54

KidKeo

1.0

0.51

—— by MPM

0'0'_ — — -by FDM [1]
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We repeated the DENP calculations for a rectangular
paths from 2x 2 cells up to 10< 10 cells. The later was
the largest square path that could be accommodated in
the DENP specimen and remain within the material when
using cells that were 2 2mm. For small contours (un-

@ - der 5x 5 cells), the second term in Eq. 8 was negligible

%" - and thus Eq. 7 was accurate for calculatingttietegral.

} - For larger paths, however, the differences became signifi-

% - cant. Figure 11 compares mode Il stress intensity factors

¥ 30  ——pymPm calculated by the smallest and largest paths either with
5] ~ T CbyMPG[IY) N or without the second term in Eg. 8. The lack of dif-

ference for the two X 2 cells path results verifies the
second term was negligible for that size path. In con-
trast, the second term has a large effect on the 10

cells path results. When the second term was ignored,

Figure 10: Comparison of the mode | and mode Il Stre?ﬁe large path give poor results. The oscillations corre-

intensity factorsk, andK,, ) for the DENP specimen Cal'srlfond to stress waves passing through the contour. When

C'\ljllf;eg .byBMF M ozjbé/hMeshzlg(s)z Locatthztrov Galerk% e second term was included, the large path calculation
( In batra an ing ( )) method. agreed with the small path calculations for most times.
This result shows that MPM can evaluate the second term

_ and that analysis using both terms in Eq. 8 gives a path-
crack, although at the analyzed resolution, the MPM Bdependent result.

sults would not distinguish crack radii less than the haﬁ]ere are discrepancies between the small path and the

the inter-particle spacing ®mm). The MPM results .
could be extended to higher resolution, but the Sim”g\lr/\_/o-term, large path results for times less than abqust 9

ity of the results in Fig. 10 indicates the details on theh's time corresponds to the time required for the stress

crack tip shape do not have a large effect provided tlﬁfé“ated by _the Impact Ioadlng_to travel from the edge
crack is reasonably sharg ©.5mm) of the specimen to the crack tip. Thus, the results for
' ' times less than @ correspond to times for which stress

4.3 Path Effects on Dynamid Integral waves have reached tld_eintegral contour, bu_t hth_a not

_ _ ' yet reached the crack tip. The results in this region are
The results in the previous section were for sma_ll regrobably more reliable with the smaller path. The rec-
angular paths (see Fig. 3) that extended 2 cells ixthgmmendation is that all MPM calculations dfintegral
andy directions from the node nearest to the crack t§pould use a small path. The second term may be in-

(2 x 2 cell paths). The distance from the crack tip {Quded to insure path independence, but it will probably
these contours was 8% of the crack length for most spgg-negligible for typical problems.

imens, but was 20% of the crack length for the CCT and

I_DENP Specimens. These_ contours were judged to be %JII Effect of Background Mesh Size on Stress Inten-
ficiently small (by comparison to other methods), that the sity Factor

J-integral could be evaluated by Eq. 7. In other words,
J-integral was evaluated by the first term in Eq. 8 arithe stress intensity factors were computed here by con-
the second term was assumed to be negligible. The aekting J-integral results rather than by direct evaluation
vantage of this approach is numerical efficiency becadsmn local crack-tip stresses and displacements. Because
the extrapolations and calculations needed for the sectmelJ-integral calculations work well, even for relatively
term could be skipped. For calculations using larger carude meshes, it is reasonable to expect that the calcu-
tours or for different problems with different dynamic eflation of stress intensity in MPM can be accurate and
fects, the second term might be needed. This section s@re computationally effective than in direct methods,
scribes some calculations for a problem where the secavidch might require finer meshes. In dynamic analysis,
term is needed and shows it can be evaluated by MPMomputational efficiency is extremely important because

-40 =TT
0 2 4 6 8 10 12 14 16 18 20 22 24
Time (us)
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Figure 11: Calculation of] integral using a line integral Figure 12: Calculation of the mode | stress intensity fac-

(one term or Eq. 7) or using a line and and area integrds (K)) in an SENT specimen as a function of the back-

(two terms or Eqg. 8). The calculations were for a smatound mesh density. All calculations used a rectangu-

contour (2x 2 cells) or for a large contour (2010cells). lar path that extend two cells from the crack tip in each

The results are for the mode Il stress intensity fadt@r)( direction. The background cells sizes, however, were

in a DENP specimen varied usingc = 0.25mm,c = 0.5mm,c = 1.0mm, or
c=2.0mm.

an enormous number of time steps are often requirediiintical. The results for the coarsest mesh=(2mm)
typical problems. The use of a relatively coarse baciowed deviations or lost accuracy. The ability to obtain
ground mesh, while still obtaining goadtintegral re- accuratel-integral results without the need for highly re-
sults, would save a great deal of computational time. Thiged crack-tip meshes is especially important in dynamic
section describes calculations to assess the computatigf@mems because each factor of 2 in cell size leads to
efficiency of dynamicl-integral in MPM, i.e., t0 assess 5 factor of 3 — 8 (in 2D or 2 = 16 in 3D) increase
the tolerance of the calculation to large background cgl calculation time. There is a factor of two for each
sizes. dimension and another factor of two because smaller
We repeated the SENT calculations (see Fig. 9), whigteshes require proportionally smaller times steps in ex-
previously had cell size af = 0.5mm or 0.5 by GGmm plicit solvers. The ability to find accurafeintegral when
cells, with background meshes haviog: 0.25mm,c= c¢ = 1.0mm instead of needing= 0.25mm provides a
1.0mm, andc = 2.0mm. For a crack length of 5mmfactor 64 (in 2D) or 256 (in 3D) efficiency in crack prob-

a specimen width of 20mm, and four particles per ceims.

these cell sizes correspond to inter-particle spacisgs (
c/2) that are 2.5%, 5%, 10%, and 20% of the crack Ienggh
(a) and 0.625%, 1.25%, 2.5%, and 5% of the specimen

width (W). The J-integral contours were chosen alonghe material point method is a new method that has inter-
grid line segments two cells away from the crack tip isting potential for handling fracture problems involving
both thex andy directions. The normalized mode | stresggck propagation. MPM has previously been extended
intensity factors for each cell size are plotted in Fig. 14 allow analysis of problems with explicit cracks [Nairn
The results in Fig. 12 show that tlentegral results con- (2003)]. It can include explicit cracks with the ease of
verge for the relatively coarse meshaf 1 mm, which finite element analysis while retaining the advantages of
corresponds to relative mesh size $fa = 10% and meshless methods for the ease of handling crack propa-
s/W = 2.5%. The results for all finer meshes were nearjation in arbitrary directions. This paper has described

Conclusions
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new MPM algorithms for calculating-integral and for Bardenhagen, S. G.; Kober, E. M.(2004): The Gen-
partitioning the total energy release rate into mode | aedhlized Interpolation Material Point MethoComputer
mode |l stress intensity factors. Several examples wéfiedeling in Engineering & Sciencgsol. 5, pp. 477—
considered and all show that MPM results agree wii96.

analytical solutions or with prior numerical results. Al- _ _
though calculations of dynamisintegral, can usually beBatra, R. C.; Ching, H.-K. (2002):  Analysis of
calculated by Eq. 7 using a small path around the cragi@stodynamic Deformations Near a Crack/Notch Tip by
tip, true path-independent results require the line inf8€ Meshless Local Petrov- Galerkin (MLPG) Method.
gral to be supplemented with an area integral inside ff8MPuter Modeling in Engineering & Sciencesl. 3,
contour as in Eq. 8. MPM can findlintegral by either PP- 717—730.

approach and both have computational efficiency. TBg|ytschko, T.; Lu, Y. Y.; Gu, L. (1994): Element-Free

area integral can be found by using the particles encloggderkin Methods. Int. J. Num. Meth. Engrgvol. 37,
in the contour as integration points. Finally, some COBp. 229-256.

vergence tests suggest tdaintegral calculations are ac-

curate even with fairly coarse meshes. The introductiGarisson, L. A.; Gillespire, J. W.; Pipes, R. B.(1986):
outlined three key problems to numerical analysis of di#n The Analysis and Design of The End Notched Flex-
namic fracture. The results in Nairn (2003) and the rere (ENF) Specimen for Mode Il Testing.J. Comp.
sults in this paper show that MPM can solve the first twdater, vol. 20, pp. 594—604.

problems. Future work should be aimed at the third pro&]en
lem or full MPM analysis of fracture problems includin
crack propagation.

, Y. M.; Wilkens, M. L. (1977): Numerical
%\nalysis of Dynamic Crack Problemgp. 317-325. In
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