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SUMMARY

This paper describes implementation of anisotropic damage mechanics in the material point method
(MPM). The approach was based on previously-proposed, fourth-rank anisotropic damage tenors. For
implementation, it was convenient to recast the stress update using a new damage strain partitioning
tensor. This new tensor simplifies numerical implementation (a detailed algorithm is provided) and
clarifies the connection between cracking strain and an implied physical crack with crack opening
displacements. By using two softening laws and three damage parameters corresponding to one normal
and two shear cracking strains, damage evolution can be directly connected to mixed tensile and shear
fracture mechanics. Several examples illustrate interesting properties of robust anisotropic damage
mechanics such as modeling of necking, multiple cracking in coatings, and compression failure. Direct
comparisons between explicit crack modeling and damage mechanics in the same MPM code show that
damage mechanics can quantitatively reproduce many features of explicit crack modeling. A caveat is
that strengths and energies assigned to damage mechanics materials must be changed from measured
material properties to apparent properties before damage mechanics can agree with fracture mechanics.
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1. INTRODUCTION

Damage mechanics has a long history of modeling failure by augmenting material constitutive
laws [1]. It has developed along two tracks. In one approach, damage is described as a second-
rank tensor (like strain) and the constitutive law is modified to have stress related to both strain
and damage requiring a new fourth-rank tensor for the damage term [2]. In an alternative track,
stress (σ) is related to strain (ε) by

σ = (I−D)C0(ε −α∆T ) (1)

where C0 is the undamaged material’s fourth-rank stiffness tensor, D is a fourth-rank damage
tensor, andα∆T is residual thermal strain (or could be some other residual strain). The potential
of this approach to model material failure rests in development of damage tensors D that
describe damage in real materials. In typical implementations, D is reduced to one or more
damage parameters. The models then propose criteria for initiation and evolution of those
parameters. Most damage mechanics implementations use a single damage parameter, dI , and
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2 J. A. NAIRN, ET AL.

assume “isotropic” D= dI I [3, 4]. This “scalar damage” model scales all elements of C0 uniformly
with evolution of dI . Ju [5] argues that such scaling corresponds to a large representative volume
element (RVE) with a random array of cracks. But, it is difficult to find any examples of materials
that fail this way. Instead, initiation of damage usually results in coalescence of damage into
dominate failure zones (e.g., cracks). Such zones cause any material to become anisotropic and
therefore their modeling requires anisotropic methods.

Chaboche [6, 7, 8] proposed modeling damage-induced material anisotropy by using an
anisotropic D instead of the usual isotropic dI I. A material may start out as isotropic, but once
damage initiates, an anisotropic D converts it to an anisotropic material depending on damage
orientation. Chaboche [6, 7, 8] proposed a specific form for D that depends on three damage
variables. Similarly, Ladèveze and coworkers model anisotropic damage mechanics with two or
more damage variables for describing anisotropic changes in material properties [9, 10].

This paper describes implementation of anisotropic damage mechanics in the material point
method (MPM) based on damage tensor approach proposed by Chaboche [6]. In MPM, an object
is discretized into a collection of material points [11, 12]. Each particle tracks its state including
velocity, stress, strain, and any history-dependent properties such as damage. On each time step,
an incremental deformation gradient is applied to each particle to update stresses and strains by
the material’s constitutive law. These constitutive laws can be extended to initiate, evolve, and
track damage. Because this paper’s derivations involve only constitutive-law steps, the derived
MPM methods could also be applied to finite element analysis (FEA) code by altering constitutive
laws of materials assigned to each element. The particles in MPM, however, provide convenient
options for tracking damage orientation and history [12].

A reader might wonder (as did the authors) why another paper on damage mechanics is
needed? This paper developed out of the seemingly straight-forward task of implementing prior
damage methods in MPM. The process, however, revealed inconsistencies in prior MPM and FEA
methods, especially when claims were made connecting to fracture mechanics. The resolution
of such issues led to some highlights, and motivations, for this paper:

1. The damage mechanics here is fully anisotropic in contrast to most models that are based
on isotropic damage mechanics. For example, the first use of MPM for damage mechanics
[13] was based on isotropic damage mechanics from Oliver [3, 4]. A recent paper used
damage field gradients to detect failure surfaces, but also used isotropic damage methods
(with mention of future preference to use anisotropic methods) [14].

2. A new “damage strain partitioning tensor” (∆) is derived as a function of assumed D. This
new tensor simplifies numerical implementation of damage mechanics and demonstrates
the connection between anisotropic damage evolution and a physical crack. By finding ∆
implied by isotropic damage mechanics, we show that isotropic damage should never be
claimed as connected to a crack.

3. A common theme of damage mechanics is to develop methods that can model cracking
processes without tracking explicit cracks. A connection between damage mechanics and
fracture mechanics is made by relating energy dissipation caused by damage to fracture
toughness associated with crack propagation [3, 4], but we are unaware of single-code
results that validate this connection. This paper exploits MPM’s ability to handle explicit
crack propagation in arbitrary directions [15, 16, 17, 18] to run side-by-side comparisons
between anisotropic damage mechanics and explicit fracture mechanics. The two methods
can agree, but damage mechanics properties must be calibrated to reflect spread of
damage over finite volumes around failure planes.

4. A new stability condition is derived that imposes a spatial resolution requirement as a
function of softening law properties.
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ANISOTROPIC DAMAGE MECHANICS 3

2. NUMERICAL METHODS

The particles in MPM (or elements in FEA) will start as undamaged but may transition to a
damaged state. When damaged, they are modeled as containing a crack spanning the particle’s
entire cross section. Macroscopic damage zones or cracks are thus represented by a collection
of neighboring damaged particles. Clearly the problem must be discretized with sufficient
resolution that a collection of damage particles can describe sufficient damage zone detail.
Damaged particles partition strain into elastic strain (εe) and cracking strain (εc). Elastic
strain is strain on the intact portion of the particle. Cracking strains are related to an implied
displacement discontinuity within the particle. This implementation considers materials that are
small-strain, isotropic materials prior to damage (with E, G, ν, and α for tensile modulus, shear
modulus, Poisson’s ratio, and thermal expansion coefficient). Once damage initiates, however,
the material becomes anisotropic depending on orientation of the damage.

2.1. Assumptions

A complete analysis follows from these assumptions — 1) a failure surface to predict initiation
of failure; 2) a form for D to describe anisotropic response after cracking; and 3) softening
laws to describe crack tractions as a function of cracking strains. Because these assumptions are
necessary and sufficient, attempts to add additional rules, such as a damage evolution law, would
create an inconsistent model. The damage evolution process is an output of the model that is
determined by softening laws and obeys thermodynamics conditions for energy dissipation.

All particles start as undamaged and evolve by conventional methods until damage initiates.
The first assumption is that failure initiation in an isotropic material can be predicted by a failure
surface in principle stress space [13]. When the stress state reaches the surface, failure initiates
and the implied crack normal, n̂, is defined by a vector normal to the failure surface (relative to
principle stress axes). The normal at initiation is assigned to the particle. The normal remains
fixed to the initiated crack plane, but may evolve as the plane shifts due to particle rotation or
deformation (in this small-stain implementation (see Appendix II), only particle rotation evolves
the normal).

For a concrete failure-surface in isotropic materials, we used a failure surface where a crack
initiates when either a maximum principle stress exceeds the material’s tensile strength (σn) or
the maximum shear stress exceeds its shear strength (τt). This failure surface (in 2D or 3D) is
shown in Fig. 1. When viewed down the σ1 = σ2 = σ3 diagonal, the 3D surface is hexagonal
rod with point-to-point diagonal equal to τt and apex at σ1 = σ2 = σ3 = σn. For tensile failure,
the crack normal is along the maximum principle stress direction; for shear failure, it is rotated
45◦ from the principle stress directions. The use of two strengths are to connect the analysis of
opening and shear failure or to tensile (mode I) and shear (modes II and III) fracture mechanics.
The dashed line in Fig. 1A is an example of an all alternative criterion, whose choice would
require only trivial modifications.

The core of anisotropic damage mechanics is an assumption for D. A potential D can be derived
by postulating an altered compliance tensor S̃ for the damaged material. Starting from Eq. (1),
the resulting D is

ε = S0(I−D)−1σ +α∆T = S̃σ +α∆T or D= I− S̃
−1

S0 (2)

where S0 = C−1
0 is compliance tensor of the undamaged material. Using a coordinate system

with crack plane normal in the x direction, we adopt a damaged-state compliance proposed by
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Figure 1. Simple principle stress failure criteria in 2D (A) and 3D (B). Failure initiates when maximum
principle stress is positive and reaches σn or when any maximum shear stresses reaches τt . The two
surfaces are for specific example of τt = 0.45σn. The dashed line in A provides an alternative failure

surface that could easily be implemented.

Chaboche [8], which leads to:
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


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













(3)

These matrices are using Voigt form to reduce 4th rank tensors to matrices and stress and strain
tensors to vectors: σ = (σx x ,σy y ,σzz ,τyz ,τxz ,τx y) and ε = (εx x ,εy y ,εzz ,γyz ,γxz ,γx y) (note
the engineering shear strains). The D tensor depends on three damage variables dn, dx y , and
dxz where dn is related to d∗n by

dn =
d∗n(1− ν)

1− ν− 2(1− d∗n)ν2
(4)

In the damaged state, the material becomes an orthotropic material with the evolving nine
elastic properties given by Ẽx x = (1− d∗n)E, Ẽy y = Ẽzz = E, G̃x y = (1− dx y)G, G̃xz = (1− dxz)G,
G̃yz = G, ν̃x y = ν̃xz = (1− d∗n)ν, and ν̃yz = ν. Note that d∗n defines modulus change while dn

defines a compliance element change: C̃11 = (1− dn)C11. The damage parameters range from
0 (undamaged or initial properties) to 1 (failed or zero stiffness normal or tangential to the
crack plane). The ν/(1− ν) in D12 and D13 arises because C12 = C13 = C23 = C11ν/(1− ν) for
an isotropic material. Finally, the thermal expansion coefficients of the damaged material are
the same as the initial material and therefore omitted from subsequent equations (although
computations should use ε −α∆T in place of ε to allow for residual strains).

The final assumptions are to propose softening laws for normal traction (Tn) and for two
tangential tractions (Tx y and Txz) to the crack plane:

Tn = σn fn(δn), Tx y = τt ft(δx y), and Txz = τt ft(δxz) (5)

where fn(δn) and ft(δt) are two monotonically decreasing functions with fn(0) = ft(0) = 1
and δn, δx y , and δxz are maximum normal and shear cracking strains to be defined later. For
an isotropic material, the two shear directions use the same strength (τt) and softening law
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ANISOTROPIC DAMAGE MECHANICS 5

( ft(δ)), but can be damaged by different amounts (and this changes G̃x y and G̃xz by different
amounts) as determined by δx y and δxz . The areas under these softening laws are connected to
tensile and shear energies released by propagation of damage. Note that these softening laws
are necessary and sufficient for tracking evolution of dn, dx y , and dxz . In other words, damage
mechanics models cannot have both softening and damage evolution laws — only one is allowed
and the second is determined by the first.

In summary, only two material properties are needed — normal and tangential softening
laws. Two underlying assumptions are failure surface shape (besides scaling provided by σn
and τt in the softening laws) and the form of D. The failure surface shape could be revised
based on observations of failure in a specific material, which could make that shape a third
material property. Its choice has no bearing on the subsequent damage modeling; its only role
is to initiate damage and determine the implied crack surface normal vector. The form of D is
crucial to implementation. We assume a three-parameter D from Chaboche [8] is rational for
damage in isotropic materials; some other D choices are discussed.

2.2. Stress and Strain Updates

Prior to damage initiation, the particles update as a standard isotropic material. This section
describes the new updates that are needed after damage initiation. Given a post-initiation strain
increment, dε, in displacement-driven MPM code, an update in stress after damage initiation
can be written as

dσ = C0dε − d(DC0ε) = C0

�

I− S0
d(DC0ε)

dε

�

dε = C0(I−∆)dε (6)

where ∆= S0d(DC0ε)/dε is a fourth-rank tensor that is derived from undamaged material
properties and D. To understand ∆ and to track damage evolution, we partition input strain
into increments in elastic (dεe) and cracking (dεc) strain in the crack axis system where dε =
dεe + dεc . Because elastic strain is derived from undamaged properties, the strain partitioning
reduces to:

dεe = S0dσ = (I−∆)dε and dεc = dε − dεe =∆dε (7)

Thus ∆ is a “damage strain partitioning tensor” that provides the increment in cracking strain
caused by an increment in global strain. We are unaware of this tensor being defined in
previous damage mechanics models. It’s derivation facilitates implementation and interpretation
of anisotropic damage mechanics.

For an isotropic material and D in Eq. (3), we find ∆ by first expanding:

DC0ε =
�

C11dnεn,
C11ν

1− ν
dnεn,

C11ν

1− ν
dnεn, 0, Gdxzγxz , Gdx yγx y

�

(8)

where
εn = εx x +

ν

1− ν
�

εy y + εzz

�

(9)

is an effective strain normal to the crack. Differentiating this vector with respect to strain tensor
and pre-multiplying by S0, the only non-zero elements of ∆ are:

∆11 =
∂ (dnεn)
∂ εx x

, ∆12 =
∂ (dnεn)
∂ εy y

, ∆13 =
∂ (dnεn)
∂ εzz

(10)

∆55 =
∂ (dxzγxz)
∂ γxz

, ∆56 =
∂ (dxzγxz)
∂ γx y

, ∆65 =
∂ (dx yγx y)

∂ γxz
, and ∆66 =

∂ (dx yγx y)

∂ γx y
(11)

Note that ∆ describes an anisotropic change in cracking strain and these elements apply to the
crack axis system with crack normal, n̂ = (1, 0,0), in the x direction. The only assumptions in
deriving ∆ are that ∂ dn/∂ γi j = ∂ dx y/∂ εii = ∂ dxz/∂ εii = 0, which implies that crack sliding
due dγx y or dγxz changes only dx y or dxz , respectively and crack opening due to dεx x , dεy y , or
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6 J. A. NAIRN, ET AL.

dεzz changes only dn. Physically, this response corresponds to the usual decoupling of tensile and
shear modes in fracture mechanics. Finally, this∆ shows that the only cracking strain increments
(as full differentials) in the crack axis system are:

dεc,x x = d(dnεn), dγc,x y = d(dx yγx y), and dγc,xz = d(dxzγxz) (12)

2.2.1. Strain Increment with an Elastic Update To detect an elastic update with no damage
evolution (or to detect if damage evolution described below is needed), the next task is to look
at crack surface tractions. In the crack axis system, the crack traction update is:

dT = dσn̂ = C0(I−∆)dεn̂ = (dσx x , dτx y , dτxz) (13)

=
�

C11 (dεn − d (dnεn)) , G
�

dγx y − d
�

dx yγx y

��

, G
�

dγxz − d
�

dxzγxz

��

�

(14)

We first assume the current update occurs with no damage evolution (i.e., constant dn, dx y ,
and dxz) such that dT t r ial = (C11(1− dn)dεn, G(1− dx y)dγx y , G(1− dxz)dγxz). If tractions,
T + dT t r ial are all below the current strength of the softened material, the update is elastic (i.e.,
unloading or reloading) and damage variables remain constant. In an elastic update, ∆= DT ,
strains increment by Eq. (7), and stress increment is dσ = C0dεe = C0(I−DT )dε = (I−D)C0dε
(by symmetry of C0 and DC0).

An elastic update of a damaged particle, however, must prevent crack surfaces crossing by
keeping εn nonnegative. Thus if εc,x x + dεc,x x < 0, the update changes to dεc,x x = −εc,x x , which
stops cracking strain at zero. The stress normal to the crack plane then updates with

dσx x = C11

�

dεn − dεc,x x

�

= C11

�

dεn + εc,x x

�

(15)

which corresponds to compressive stress transfer across contacting crack surface as if the
material was now undamaged in that direction.

2.2.2. Strain Increment with Damage Evolution If the above trial traction exceeds either the
current normal or shear strength, the current strain increment is causing damage. For normal
damage evolution (and starting from prior point equal to the current strength), normal traction
must track the change in strength given by the normal softening law:

dTn = C11 (dεn − d (dnεn)) = σn f ′n(δn)dδn (16)

where δn is the maximum x direction cracking strain experienced by the particle (δn =
max(εc,x x)). During damage loading εc,x x is at its maximum value and therefore δn increments
along with εc,x x . From∆, the increments are dδn = dεc,x x = d (dnεn). Substituting into Eq. (16)
gives

dδn

dεn
=

1
1+ εn0 f ′n(δn)

with solution εn = δn + εn0 fn(δn) (17)

where εn0 = σn/C11 is the initiation normal strain. At initiation of failure, δn = 0, fn(0) = 1,
and εn = εn0. At failure, δn = δn,max (the critical cracking strain), fn(δn,max) = 0, and εn = δn =
δn,max . In strain driven methods (i.e., both MPM and FEA), δn can only change when dεn > 0
and it can only increase. In other words, stability requires dεn/dδn > 0 or − f ′(δn)< 1/εn0 for
all δn. The consequences of this requirement are explained below.

During damage evolution, the increment dδn is found from differential equation in Eq. (17)
(an analytical solution is possible for linear softening, but numerical methods are needed for
non-linear softening). Once δn→ δn + dδn, the normal traction is controlled by the normal
softening law and is given by:

Tn = (1− dn)C11εn = σn fn(δn) (18)

Solving for updated damage variable gives:

dn = 1−
εn0

εn
fn(δn) =

δn

δn + εn0 fn(δn)
(19)
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Figure 2. An elliptical failure surface for two shear stresses tangential to the crack plane. T is starting
point on current failure surface and Ti are three trial updates outside the failure envelop. After damage

evolution, the trial update result to points Si on one of three updated failure surfaces.

The first form holds only during damage evolution, but the second version holds always by using
the current value of δn that was incremented during the most recent damage evolution step.
Note that computer code does not need to track dn — it can always be calculated from δn, εn0,
and the softening law.

Because initiation of damage provides only a normal vector, the orientation of the x-y and
x-z shear planes are arbitrary. For consistency in 3D anisotropic damage processes, evolution
of the two shear damage parameters must be considered together by imposing a “current shear
strength” failure surface for shear strength tangential to the crack plane. Figure 2 shows an
elliptical failure surface where the semi-axes of the ellipse are the current strengths in the x-
y and x-z planes due to current damage δx y and δxz . The figure also shows an initial state
on current failure surface (T) and three trial updates corresponding to three types of damage
evolution — T1 when both dγx y > 0 and dγxz > 0, T2 when only dγx y > 0, and T3, when only
dγxz > 0. The damage evolution is calculated by finding S1, S2, or S3 on the updated failure
surface.

For starting point T = (τ(0)x y ,τ(0)xz ), the trial points are all T + dT t r ial . The point S1 is at:

S1 =
�

τ(0)x y + Gx y(dγx y − dδx y),τ
(0)
xz + Gxz(dγxz − dδxz)

�

(20)

The damage increments, dδx y and dδxz , are found by solving for S1 on the updated failure
surface:

�

τ(0)x y/G + dγx y − dδx y

γt0 ft(δx y + dδx y)

�2

+

�

τ(0)xz /G + dγxz − dδxz

γt0 ft(δxz + dδxz)

�2

= 1 (21)

where γt0 = τt/G is the initiation tangential strain. This starting point assumes initial shear
stresses are positive. For negative shear stresses, change signs of stresses, strains, and strain
increments, apply the following algorithm, and then change the signs back (see Appendix II).

To solve for the two unknowns (dδx y and dδxz), we require the return vector from T 1 to S1
to be normal to the new failure surface. The return vector is:

T 1 − S1 = G
�

dδx y − dx y dγx y , dδxz − dxzdγxz

�

= G
�

γx y ddx y ,γxzddxz

�

(22)

Calculating the normal to the updated failure surface and making it normal to T 1 − S1, a second
equation becomes
�

τ(0)x y/G + dγx y − dδx y

�

(dxzdγxz − dδxz)
�

γt0 ft(δx y + dδx y)
�2 −

�

τ(0)xz /G + dγxz − dδxz

�

(dx y dγx y − dδx y)

(γt0 ft(δxz + dδxz))
2 = 0

(23)
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8 J. A. NAIRN, ET AL.

These two equations are easily solved by Newton’s method in a few steps (and the above forms
are scaled well for numerical stability). After updating δi j → dδi j + dδi j , the cracking strain
increments and new damage variables are:

dγc,i j = dδi j and di j =
δi j

δi j + γt0 ft(δi j)
for i j = x y and xz (24)

The return vector that is normal to the updated failure surface minimizes the distance from
T1 to that surface, which also minimizes the energy norm. By Eq. (22), the minimum distance
corresponds to minimized changes in damage parameters, which, as explained below, minimizes
the dissipated energy. It is likely that real softening materials would prefer the minimal energy
process.

For trial point T2, only dγx y > 0 and thus only shear damage in the x-y plane is possible. The
return vector to S2 must be horizontal and dδx y is found by solving

�

τ(0)x y/G + dγx y − dδx y

γt0 ft(δx y + dδx y)

�2

+

�

τ(t r ial)
xz

γt0 ft(δxz)

�2

= 1 (25)

For linear softening, this equation has an analytical solution. For nonlinear softening, it can be
efficiently solved using Newton’s method. γc,x y and dx y are found by Eq. (24) while dγc,xz =
dxzdγxz because it is an elastic update. The analysis for trial point T3 is identical but interchanges
shear components.

Finally, 2D modeling has only one shear stress – τx y . It updates by the methods identical to
normal direction damage (except no need to check for contact) or by:

dδx y

dγx y
=

1
1+ γt0 f ′t (δx y)

, dγc,x y = dδx y , δx y → δx y + dδx y , and dx y =
δx y

δx y + γt0 ft(δx y)
(26)

2.3. Energy Dissipation and Failure

A connection to fracture mechanics follows by evaluating energy dissipation rate, which is

dΩ= σ · dε − dΨ where Ψ =
1
2
(I−D)C0ε · ε (27)

is Helmholtz or stored elastic energy (for an isothermal process) and A ·B is tensor inner product
(or dot product of Voigt form vectors). The result is

dΩ=
1
2

�

dDC0

�

ε · ε =
1
2

C11ε
2
nddn +

1
2

Gγ2
x y ddx y +

1
2

Gγ2
xzddxz ≥ 0 (28)

Using Eqs. (19) and corresponding result for shear terms, energy dissipation during damage
evolution reduces to

dΩ=
σn

2

�

fn(δn)− εn f ′n(δn)
dδn

dεn

�

dεn +
τt

2

�

ft(δx y)− γx y f ′t (δx y)
dδx y

dγx y

�

dγx y

+
τt

2

�

ft(δxz)− γxz f ′t (δxz)
dδxz

dγxz

�

dγxz =
dG I

dεn
dεn +

dG I I ,1

dγx y
dγx y +

dG I I ,2

dγxz
dγxz (29)

where G I , G I I ,1, and G I I ,2 are opening and two shear (or mode I and mode II, see below about
mode III) dissipation energy rates per unit volume.

Total energy density dissipated by normal crack opening between initiation at εn0 and current
εn is

G I =
σn

2

∫ εn

εn0

�

fn(δ)− εn f ′n(δ)
dδ
dεn

�

dεn (30)
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ANISOTROPIC DAMAGE MECHANICS 9

Expressions with corresponding terms gives energy dissipation by crack shearing. Integrating
the second term by parts and converting to integral over δn leads to:

G I = σn

∫ δn

0

fn(δ)(1+ εn0 f ′n(δ))dδ+
σnεn0

2
−
σnεn fn(δn)

2
= σn

�

∫ δn

0

fn(δ)dδ−
δn fn(δn)

2

�

(31)
The second term is energy released by elastic unloading from current strength σn fn(δn) to zero
load over total cracking strain of δn. At failure, fn(δn) = 0 leading to the expected result for
total energy released up to failure of:

G I c = σn

∫ δn,max

0

fn(δ)dδ and G I I ,1c = G I I ,2c = G I I c = τt

∫ δt,max

0

ft(δ)dδ (32)

where δn,max and δt,max are δn and δx y or δxz at failure for mode I and shear modes,
respectively. To connect to fracture mechanics energy release rate per unit area, multiply by
ratio of particle volume to intersected crack surface area (Vp/Ac — see Appendix II) to get
toughness:

GI c =
Vpσn

Ac

∫ δn,max

0

fn(δ)dδ and GI I c =
Vpτt

Ac

∫ δt,max

0

ft(δ)dδ (33)

where GI c are GI I c are critical mode I and mode II toughnesses. A reasonable mixed-mode failure
criterion to model decohesion is to assume failure when:

�

GI

GI c

�mI

+
�GI I ,1

GI I c

�mI I

+
�GI I ,2

GI I c

�mI I

=

�

G I

G I c

�mI

+

�

G I I ,1

G I I c

�mI I

+

�

G I I ,2

G I I c

�mI I

= 1 (34)

where GI c , GI I c , mI and mI I are all material failure properties.
The connection of tensile and shear damage to mode I and mode II fracture is rigorous for

2D problems (where GI I ,2 = 0). For 3D problems, the shear mode terms combine mode II and
mode III fracture. The problem is that mode II and mode III are defined in relation to a 3D crack
front. If the crack axis system could be defined with y and z directions normal and tangential
to the crack front, respectively, then GI I ,1 would be mode II and GI I ,2 would be mode III. But in
MPM damage mechanics, a damaged particle has a complete crack and no information about
a crack front. Without that information, mode II and mode III cannot be separated and the
shear fracture mechanics terms here labeled as mode II correspond to lumped mode II/III shear
damage.

The Vp/Ac factor used to convert G I to GI also provides for conversion of cracking strains
into crack opening displacements. The mode I energy term (and same for shear modes) can be
rewritten as:

GI c =
Vpσn

Ac

∫ δn,max

0

fn(δ)dδ =

∫ un,cri t

0

Fn(un)dun (35)

where un = Vpδn/Ac is maximum crack opening displacement, failure occurs at un,cri t =
Vpδn,max/Ac , and Fn(un) = σn fn(Acun/Vp) is total normal traction in terms of crack opening
displacement. Similar relations hold for shear opening displacements. Note that δmax ’s are
determined by softening laws, but are not inputs to those laws (see Appendix I). For example,
δmax determined by linear softening gives the expected results of un,cri t = 2GI c/σn and ut,cri t =
2GI I c/τt .

These relations also define the resolution required for stable softening, which as explained
above requires max(− f ′(δn))< 1/εn0. Because Vp/Ac ®∆x (where ∆x is the minimum
particle, or FEA element, dimension), the stability condition can be rearranging using Eq. (33)
to:

∆x <min

�

ηn
C11Gc

σ2
n

,ηt
GGc

τ2
t

�

=min

�

ηn

�

KI c

σn

�2

,ηt

�

KI I c

τt

�2
�

(36)
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10 J. A. NAIRN, ET AL.

where

1
ηn
=max(− f ′n(δn))

∫ δn,max

0

fn(δ)dδ and
1
ηt
=max(− f ′t (δY ))

∫ δt,max

0

ft(δ)dδ (37)

are dimensionless stability factors that depend on softening laws, and KI c and KI I c are mode I
and II critical stress intensity factors. In elastic-plastic fracture mechanics, the square of stress
intensity divided by initiation stress describes a plastic zone size [19]; here it is damage zone
size. The stability condition for damage mechanics is thus that the particle (or element size) must
be on the order (or smaller) than the damage zone size near a crack tip. Simulations of brittle
materials (low toughness or high strength) require higher resolution than simulations with
ductile materials. This spatial condition is analogous to mesh refinement needed to model of
snap-back instabilities with cohesive laws [20]. The addition here is that the required refinement
is determined by the η factors, which are easily calculated from the assumed softening law.
The η factors are a maximum of 2 for linear softening and therefore lower (requiring higher
resolution) for every non-linear law. Some seemingly reasonable softening laws have η→ 0,
which makes them always unstable (e.g. power-law softening with n< 1, see Appendix I). A
common practice in numerical damage mechanics is to add artificial damping for stability, but
none of the examples below needed damping. We suggest some prior needs for damping were
caused by use of softening laws and meshes that do not satisfy the above condition on particle
(or element) size.

2.4. Post-Failure Evolution

Once failure is detected (usually by fracture criterion such as in Eq. (34)), the modeling enters
a post-failure state. This state can be derived by setting dn = dx y = dxz = 1. All post-failure
updates set crack plane stresses to zero: σx x = τxz = τx y = 0 and update remaining stresses
by elastic methods. The crack strain will continue to evolve representing further crack opening.
The cracking strain update simplifies to:

�

dεc,x x , dγc,xz , dγc,x y

�

=
�

max
�

dεn,−εc,x x

�

, dγxz , dγx y

�

(38)

The max() function in dεc,x x is to prevent crack contact. When contact occurs, the σx x updates
by Eq. (15) instead of being set to zero. This approach is modeling frictionless contact. In
principle, shear cracking strains could be used to model crack contact with friction, but that
refinement is not considered here.

2.5. Remarks

The previous sections fully describe modeling methods for anisotropic damage mechanics for
any input initiation criterion, assumed form of D, and two input softening laws. A complete
numerical algorithm is given in Appendix II. The process defines damage parameters that
describe degradation of two mechanical properties (E and G) associated with the initially,
isotropic material. Cracking strain updates from ∆ lead to cracking strains only in the plane
of the crack that correspond to normal and shear crack opening displacements. The areas under
the softening laws connect the modeling to fracture mechanics. This section considers some
alternatives.

2.5.1. Isotropic Damage Mechanics: Most damage mechanics models use a single, scalar damage
parameter, dI , and assume D= dI I. This approach can be evaluated as a special case of the above
anisotropic damage mechanics. The damage strain partitioning tensor from D= dI I evaluates to:

∆i j =
∂ (dIεi)
∂ ε j

= dIδi j + εi
∂ dI

∂ ε j
(39)

Here εi are elements of strain tensor (Voigt form). This tensor implies all components of
cracking strain change during damage by dεc,i = d(dIεi). A connection of damage evolution to
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ANISOTROPIC DAMAGE MECHANICS 11

fracture mechanics requires consideration of crack surface tractions. Using crack normal from
the assumed initiation criterion, crack traction updates in the crack axis system are the same as
Eq. (14) except uses only a single damage parameter:

dT = (dσx x , dτx y , dτxz)

=
�

C11 (dεn − d (dIεn)) , G
�

dγx y − d
�

dIγx y

��

, G
�

dγxz − d
�

dIγxz

��

�

(40)

Because only a single damage parameter is used, an isotropic model can track only a single
softening process. A logical choice would relate traction magnitude, Tc , to crack opening
displacement magnitude:

‖T‖= Tc =
q

σ2
x x +τ2

x y +τ2
xz and βc =

q

ε2
n + (γx y/2)2 + (γxz/2)2 (41)

where factors of 2 convert to tensorial shear strain. An increment in damage could be found by
numerically solving

dTc = σI f ′I (βc)dβc (42)

whenever traction magnitude exceeds the current strength. Energy dissipation would be

dΩ=
1
2

C0ε · εddI (43)

Perhaps the most serious problem of isotropic damage mechanics is that updating damage
based on crack tractions (i.e., use of Eq. (42)) cannot be justified. In isotropic damage, the
crack tractions depend only on the three cracking strains that happen to be in the plane of
the crack (c.f., Eq. (40), but isotropic damage affects all strains (from Eq. (39)). In contrast,
the crack tractions in anisotropic damage mechanics capture all cracking strains and thus
provide sufficient information to evolve the damage state. Isotropic damage mechanics must
resort to different or additional evolution methods such as evolution based on tensor invariants
(e.g., principal stresses, pressure, or deviatoric stresses). Although feasible, such an approach
is not damage mechanics that could be claimed as modeling a physical crack; it would be
associative plasticity theory with softening. In summary, although isotropic damage might
describe some diffuse (and isotropically distributed) damage state, it cannot model cracks of
different orientations and cannot be connected to fracture mechanics. The inability of isotropic
damage mechanics to represent a crack makes it difficult to do meaningful comparisons to
anisotropic damage mechanics. As a consequence, the “Examples” section below includes only
anisotropic damage mechanics simulations.

2.5.2. Alternative Damage Tensors: New damage mechanics models can be derived by making
new choices for D, but for the model to connect to a real crack, the cracking strains should have
only non-zero εc,x x , γc,x y , and γc,xz . This property is best visualized using ∆, which must have
all zeros in rows 2, 3, and 4 (in Voigt form). The damage tensor used here satisfies this property,
but the isotropic damage tensor does not. Alternative models should be restricted to D choices
that also satisfy this property.

2.5.3. Anisotropic Materials: Extension to anisotropic damage in anisotropic materials begins
with use of anisotropic C0 and a new form for D. We propose a conjecture that the most general
damage tensor for a material in which all elements of C0 may be nonzero is:

Di j =
Ci jd j

C j j
, ∆i j =

∂ (diεn,i)

∂ ε j
, εn,i =

∑

j

Ci j

Cii
ε j , with d2 = d3 = d4 = 0 (44)

(repeated indices not summed). This proposal is based on requirement that DC0 must be
symmetric and that rows 2, 3, and 4 of ∆ must be zero (see previous section). The D used here
is a special case of this conjecture with d1 = dn, d5 = dxz , and d6 = dx y , and (εn,1,εn,5,εn,6) =
(εn,γxz ,γx y). Modeling of anisotropic materials also needs failure initiation criteria that account
for anisotropic failure processes and softening laws for each di in each distinct failure plane. This
problem will be the subject of a future publication.
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12 J. A. NAIRN, ET AL.

2.5.4. Multiple Cracking: Consider a simulation loaded until some particles initiate and evolve
damage, then unloaded and reloaded in an orthogonal direction. Because the above scheme
allows only a single crack in each particle, the new loading may cause stresses in cracked
particles parallel to their crack that exceed strength of the material. A potential solution is to
allow a second crack and damaged constitutive law of:

σ = (I−D2)C̃(ε −α∆T ) = (I−D2)(I−D)C0(ε −α∆T ) (45)

In other words, we apply a second damage tensor, D2, to the already damaged material. Because
the damage material will be orthotropic, the extension to multiple cracks should be based on
more analysis of damage to anisotropic materials. The problem could also be viewed as a more
complicated damage tensor of:

Dtot = D2 +D−D2D (46)

applied to an isotropic material with damage evolution considering tractions on both crack
surface.

3. EXAMPLES

3.1. Simple Tension and Compression

The first example was simple tension on a 40×6 mm bar with elastic properties E = 1000 MPa,
ν= 0.33, and ρ = 1000 kg/m3 and background MPM cell size of 1×1 mm2 (particle size
0.5×0.5 mm2 or four particles per cell). The bar was pulled in tension at 1 m/sec, which
was 0.2% of the material’s tensile wave speed. Initiation was controlled by principle stress
criterion (see Fig. 1) withσn = 30 MPa and τt = 20 MPa. The two softening laws assumed linear
softening with GI c = GI I c = 10 kJ/m2 and failure assumed mI = mI I = 1. Implementation details
for linear and other softening laws are given in Appendix I. All results in this paper used linear
softening laws and selected cell size for each damage parameters to always maintain stability
(by Eq. (36)). Because all particles had the same strength, a single over-stressed particle could
dominate the failure mode. To avoid over-stressing due to boundary condition effects, a 4 mm
buffer of non-softening material (with otherwise identical properties) was used on each end of
the specimen.

Figure 3A shows the “Tensile” stress curve. The failure initiated when stress reached the
tensile failure stress of 30 MPa. Despite high toughness (GI c = 10 kJ/m2), once damage in one
particle reached dn = 1, a brittle fracture (i.e., fast propagation) occurred in a single line of
failed particles across the specimen with crack normal in the loading direction. After failure,
the simulation continued stably but the specimen vibrated around zero stress as expected for
dynamic response of a cut bar (oscillating stresses not shown). All damaging particles stably
softened through to final failure, as can be verified by plotting one particle’s stress vs. its crack
opening displacement (COD). Such plots (not shown) exactly followed the assumed linear
softening law decreasing to zero at the maximum COD of un,cri t = δn,max∆x = 2sGI c(0.5) =
0.667 mm (see Appendix I for calculation of δn,max).

From principle stresses in simple tension, the first example failed in tension because τt >
σn/2. By choosing a lower τt (e.g., τt = 10) we induced shear failure instead. The stress strain
curve for “Shear” failure is in Fig. 3A. The failure initiates when σapp = 2τt . After initiation of
damage, the specimen failed by stable necking and the crack normal was at 45◦ to the loading
direction. Figure 4A shows the necking process up to just before final failure. A common trick
in numerical modeling of necking is to introduce weaker zones or a region with a reduced cross
section to initiate necking. In these simulation, no such tricks were needed. A neck formed
naturally during shear-initiated failure and developed as a stable deformation process.

Another way to promote shear failure is to load in compression instead of tension. By the
failure criterion in Fig. 1, compression loading only allows shear failure. Figure 3A shows a stress
strain curve for compression loading of a 30×12 mm2 bar with τt = 15 MPa. Failure initiated
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Figure 3. Stress-strain curves for an isotropic material under uniaxial loading in tension or compression.
The “Tensile” curve is for 2τt ≥ σn = 30 MPa, which promotes tensile failure. The “Shear” curve is for

σn/2≥ τt = 10 MPa.

A B

Figure 4. A. The necking process at several stages during uniaxial loading of a material with σn/2≥
τt = 10 MPa. These relative values induce damage initiation by maximum shear stress at 45◦ to the
loading direction. B. 3D simulations for tensile loading of the same material. The specimens, from top

to bottom, had a rectangular, square, or circular cross sections.

whenσapp = −2τt with damage normal at 45◦ to the loading direction. Because necking cannot
occur in compression, the post failure regime maintained constant stress. By symmetry of the
specimen, shear damage propagated in a “X” pattern representing two 45◦ shear bands across
the specimen width. As long as damage remained symmetric, the load remained constant.
Eventually numerical effects, which depended on bar aspect ratio, caused one shear band to
dominate leading to slippage and a load drop. If specimen symmetry was broken by adding
defects or stochastic variations in strength, the failure patterns would be different (see example
in Section 3.4).

The results in 3D were very similar, but gave some new information in tensile failure when
necking was promoted by low shear strength. Figure 4B shows changes in 3D necking depending
on specimen cross section. For an 8× 2 mm2 rectangular specimen, necking caused thickness
reduction across the width, which resembles tensile testing of thin sheets. For 6× 6 mm2 square
and 6 mm diameter cylindrical specimens, the neck was more symmetric. The corners in square
specimens caused some additional structure not seen in cylindrical specimens.
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Figure 5. A. Geometry for single edge notched specimen loaded in tension. B. Simulation results for crack
length as a function of time. The dotted red curve is MPM simulation with an explicit crack propagation
by fracture mechanics. All remaining lines are damage mechanics simulations with two different values
for GI c and three different values for σn. The dashed black curve is a damage mechanics simulation at

twice the resolution.

3.2. Connection to Fracture Mechanics

One goal of damage mechanics methods is to have an alternative method for modeling crack
propagation besides full modeling of explicit cracks. Validation of damage mechanics methods
could be tried by comparing its prediction to fracture mechanics experiments on real materials.
Unfortunately, few experiments have enough experimental detail for robust comparisons; even
with such detail, one cannot be 100% certain that energy release rate is a complete description
of real material failure. An alternate approach for validation is to compare damage mechanics
predictions to virtual experiments derived by explicit crack modeling in an elastic material with
crack propagation determined by crack-tip energy release rate. For example, Fig. 5A shows a
single edge notch specimen (with E = 2500 MPa, ν= 0.33, and ρ = 1000 kg/m3) end loaded
at a constant displacement rate of 0.2% the material’s tensile wave speed (vy = 0.002

p

E/ρ =
3.16 m/sec). Figure 5B shows crack (or damage zone) length as a function of time for various
material models using an MPM grid cell size of 1 mm. The virtual experiments, or explicit crack
model, propagated the crack when J = GI c where J was calculated using J -integral around the
crack tip [17]. By explicit crack methods, the crack initiated at about 54 µs and propagated at
roughly constant crack speed of 600 m/sec2 (see dotted red curve in Fig. 5B)

Damage mechanics simulations had the same initial (and explicit) crack, but attempted to
model crack propagation as a damage process. First, GI c was set to same 2000 J/m2, mode
I strength was guessed as σn = 30 MPa, and softening law was linear (for this pure mode
I example, τt , GI I c , mI and mI I were not needed). Initiation of crack growth (as measured
by particles failing with dn→ 1), was significantly delayed to about 110 µs, although the
subsequent crack growth rate was similar. This initiation discrepancy was resolved by noting
that damaged particles did not develop as a single row of particles along the crack, but
rather spread to a damage zone of finite width on both sides of the crack plane. For damage
mechanics materials to match fracture mechanics models, one must scale toughness of the
damage mechanics materials to account for damage zone size. Here using half the toughness was
close, but was still too high because some damage spread more than one particle from the crack
plane. By varying toughness, we found that setting toughness to 0.3GI c (or to 600 J/m2) gave
a damage mechanics simulation nearly identical to the explicit fracture mechanics simulation
(see Fig 5B). Their equivalence is emphasized by comparison of stress states at fixed time of
77 µs as plotted in Fig 6A and 6B.

But hows does one select the strength property, σn, especially when the underlying material
used in the fracture mechanics "experiments" was a virtual material with no defined strength
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Figure 6. The axial stress distribution at 77 µs (and after some crack propagation) for A. Explicit crack
modeling and B. Damage mechanics modeling. C. Crack growth rate by explicit crack modeling and by

damage mechanics modeling using three different values for σn.

property? Figure 5B shows simulations with scaled toughness of GI c = 600 J/m2 and σn of 20
(green), 30 (black), and 40 (blue) MPa. The tensile strength had very little effect on initiation of
failure, but did affect crack propagation speed. Figure 6C shows crack velocity as a function of
time for the three strengths (found by smoothing and then differentiating crack length results).
Results with σn = 30 MPa gave excellent match to explicit crack results, while σn = 20 MPa and
40 MPa gave crack velocity that was too high or too low, respectively.

These results show that a damage mechanics material can quantitatively match fracture
mechanics modeling of an explicit crack, but toughness of the damage mechanics material
properties must be scaled down to account for volume of the damaged zone. The strength
property may need to be an effective strength chosen to match fracture mechanics, and possibly
differing from a material’s tensile strength. For example, one specific value (σn = 30 MPa)
gave best match here even though this virtual material had no tensile strength property. These
observations apply to both MPM and FEA damage mechanics models. In other words, all
damage mechanics models intended to match fracture predictions must use apparent strength
and toughness rather then simply choosing measured strength and toughness. Correspondence
between fracture mechanics and damage mechanics as well as the meaning and convergence of
damage mechanics parameters will be the subject of a future publication.

The energy dissipation calculations in this implementation are independent of mesh size
by scaling the toughness/softening law relation in Eq. (33), where Vp/Ac will be close to
the particle length. But mesh-independent energy calculations do not imply convergence of
damage mechanics models to fracture mechanics models. Figure 5B shows a damage mechanics
simulation at twice the resolution (or 0.5 mm cells in dashed black curve). Explicit crack analyses
gave identical results at both resolutions (i.e., the explicit crack result in Fig. 5B is a converged
result). Although damage mechanics results are slightly shifted at higher resolution, that shift
can be explained by better resolution of the damage zone and less spread of dissipated energy
to particles away from the crack plane. The higher resolution results can be made to match
fracture mechanics well by rescaling GI c to 750 J/m2. Because damage mechanics models result
in a damage zone of finite thickness, they will never converge to a zero-thickness crack plane
(except in limit of zero thickness particles). Prior claims that damage mechanics is equivalent to
fracture mechanics of a crack plane are missing this issue. But damage mechanics can get close
to explicit crack modeling by using apparent strength and toughness. Perhaps lack of damage
zone thickness convergence is an advantage? Explicit crack fracture mechanics is idealizing
failure as confined to a 2D plane. Real materials likely develop damage around the plane.
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Figure 7. Crack propagation for two interacting cracks. The solid red lines show predictions using explicit
crack modeling and fracture mechanics. The white zones show predictions using anisotropic damage
mechanics modeling. The inset shows the crack normals near the tip at the top of the vertical crack that

were predicted in damage mechanics modeling.

Anisotropic damage mechanics has the potential to model crack-plane discontinuity along with
finite thickness damage zones around the crack plane.

A potential application of damage mechanics is to handle crack propagation in problems
where explicit crack propagation becomes challenging, such as problems with interacting cracks.
The proposed approach is to explicitly model all initial cracks by standard crack methods
(an explicit crack in MPM [21] or by discretizing cracks within a FEA mesh). These explicit
cracks will create stress concentrations at crack tips and hopefully damage mechanics models
will result in damage propagation that matches explicit crack propagation. For example, the
dashed, vertical line in Fig. 5A shows a second crack perpendicular to the edge crack. Figure 7
compares propagation of damage by damage mechanics (white zones) to propagation by explicit
fracture mechanics of interacting cracks (red lines). The damage mechanics simulation used
the scaled material from above and added τt = σn, GI I c = GI c , and mI = mI I = 1 to handle
mixed mode conditions on the vertical crack. The explicit interacting crack model is described
in Ref. [21]. Failure initiated at the edge crack. This crack propagated by pure mode I fracture,
but was arrested when it intersected the vertical crack. After a delay, both crack tips of the
second crack propagated at right angles to the crack tips. These cracks experienced mixed-mode
stress state. The inset shows crack normals developed by damage mechanics. These failures
were calculated by the principle stress criterion showing that maximum principle stress was
parallel to the crack. For mixed-mode failure predictions, the explicit crack model [21] used the
maximum hoop stress criterion [22]. Damage mechanics modeling based on principle stresses
reproduced this common mixed-mode failure criterion (i.e., damage initiation showed that the
maximum principle stress direction at the vertical cracks was parallel to that crack resulting in
perpendicular crack growth).

3.3. Microcracking

Another reason for developing damage mechanics is for problems that require prediction of
fracture initiation. Most fracture mechanics approaches deal with an existing crack that grows. In
contrast, damage mechanics, at least in principle, has mechanisms both to initiate and propagate
damage. This sections looks at the phenomenon of layer microcracking. When one layer of a
multilayered structure is more brittle than other layers, tensile loading parallel to the layers
is often characterized by periodic cracking confined to the brittle layer. Such microcracking
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Figure 8. A. Microcracks in the coating layer as a function of applied strain (indicated on the left in %).
B The simulated crack density as a function of applied strain.

(or transverse cracking) can be seen in brittle coatings on polymers [23, 24, 25, 26], in 90◦

layers of aerospace composites [27, 28], and in all layers of cross-laminated timber [29]. A
common experiment to characterize such cracks is to load in tension and observe crack density
as a function of applied strain [25, 26]. The typical response is initiation of cracking at some
onset strain followed by a rapid increase in crack density, and then by slowing down of cracking
that approaches a saturation damage state wtth periodic microcracks. The damage mechanics
method described here can reproduce all these features.

Figure 8A shows snapshots of microcracking in a 2 mm thick brittle coating on a 10 mm thick
softer substate. The coating properties were Ec = 10, 000 MPa, νc = 0.33, and ρc = 1 g/cm3. Its’
mode I damage properties were σn = 10 MPa and GI c = 100 J/m3 (shear strength was set high
to avoid unrealistic shear failures near boundary conditions and to focus on tensile failure of the
brittle layer). The substrate properties were Es = 1,000 MPa, νs = 0.33, and ρs = 1 g/cm3. The
200 mm long sample was pulled at 4 m/sec (which was 0.4% of the substrate material’s tensile
wave speed). The background MPM grid had 1× 1 mm2 cells (0.5× 0.5 mm2 particles). The
crack onset strain was 0.44%. All cracks initiated on the surface, propagated to the interface,
and then arrested. As strain increased the surface layer developed a periodic cracking pattern
(see Fig. 8A). Figure 8B shows simulated crack density as a function of applied strain. Both the
periodic cracks and the crack density curve resemble actual experiments on cracking of surface
layers [25, 26, 23].

The ability of a damage mechanics model to emulate real-world microcracking means the
method has potential for developing new insights into multilayer cracking. Fracture mechanics
models are available for predicting 2D cracking of a single, linear elastic layer on a linear
elastic substrate [24]. The potential applications of damage mechanics could include cracking
of multiple brittle layers, effects of inelastic substrates, or 3D cracking in biaxially loaded films
[30, 31].

Note that these simulation used a recently-developed MPM method, called XPIC(m) (of order
m), that can remove noise without overdamping [32]. We found that using XPIC(5) gave better
microcracking simulations than using standard MPM. While standard MPM became unstable at
about 1.75% strain at a prior crack, XPIC(5) simulations remained stable to the end. We suggest
that XPIC(m) should be an important component of MPM damage mechanics simulations.

3.4. Stochastic Model

Our final example revisited simple compression from Section 3.1, but instead of assuming all
particles have the same strength, the strengths were randomly assigned. In damage mechanics
modeling, the use of identical strength particles can result in load situations (such as uniform
loading) where all particles approach failure simultaneously or can result is simulations
susceptible to boundary condition artifacts. A switch to random strengths creates weak zones
that can initiate and perhaps more stably propagate damage. Random strengths are also a better
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A B C

Figure 9. Examples of an elastic block with resolution of 0.25 mm per grid cell. A. Example of GRF
distribution of properties. B. Example of uncorrelated Gaussian distribution of properties. C. Example

of a failed block. Colored by cracking strain.

model of real materials that have variations in strength throughout their domain. A stochastic
damage mechanics model needs Monte Carlo methods: 1. generate numerical models with
random strengths; 2. run damage mechanics calculations observing failure and damage process;
and 3. repeat on multiple specimens to evaluate mean strength, variations in strength, and types
of failure modes.

One approach to stochastic modeling assumes a strength property P has a Gaussian probability
distribution P(x )∼ N(µ,σ) with mean µ and standard deviation σ and randomly assigns
P to each particle. This approach leads to situations where two locations near each other
are uncorrelated or that a very strong particle is adjacent to a very weak particle. Such a
model is likely an unrealistic description of real materials. To better model a stochastically
varying continuum, we used a Gaussian random field (GRF) [33] rather than randomly
assigned strengths. A GRF models a property P that maintains the same overall distribution
(P(x)∼ N(µ,σ)) but adds a spatial correlation and is widely used in stochastic modeling [33].
For any two points in space, x i and x j , the properties P(x i) and P(x j) are jointly Gaussian
distributed with a correlation based on the distance between them: Corr

�

P(x i), P(x j)
�

= C(d)
where d = ||x i − x j ||.

We ran two sets of Monte Carlo numerical experiments for compression of a 10× 20 mm2

block. The first set used a GRF with correlation function C(d) = e−αd1.5
and spatial scale

parameter α= 2/3 mm−1. The second set used uncorrelated, randomly assigned strengths
(which correspond to α→∞). The GRF fields were generated in R [34] using the RandomFields
package [35]. Four different resolutions were run with grid size of 0.5 mm, 0.25 mm, 0.125 mm
and 0.0625 mm. A sample realization for a GRF with grid size of 0.25 mm is plotted in
Figure 9A vs. an uncorrelated sample in Fig. 9B. The GRF sample has regions of high or low
strength while the uncorrelated sample is a speckle pattern of strengths. The block had mean
fixed properties ν= 0.3 and ρ = 1000 kg/cm3 and variable properties with mean values of
E = 1 GPa, σn = 10 MPa, τt = 4.5 MPa, GI c = 500 J/m2, and GI I c = 1000 J/m2. These variable
properties P = {E,σn,τn, GI c , GI I c} at each material point all were scaled by factor s with normal
distibution s ∼ N(1,0.1)). We ran 200 simulations for each set and each resolution for a total of
1600 simulations using XPIC(5) for improved stability.

A typical compression failure is shown in Figure 9C. As commonly observed in axial
compression in specimens with a sufficiently low aspect ratio to prevent buckling, the specimens
failed by a shear band at 45◦ to the loading direction. Among all replicated specimens, shear
bands occurred randomly at ±45◦. If a shear band initiated close to one end, the band would
reflect off the end in a V-shaped band. Analogous to the fracture simulations, the thickness of
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Figure 10. The mean and variance for uncorrelated and GRF specimens as a function of mesh size. The
dashed lines indicate ±1 standard deviation from the mean.

the shear bad got thinner for higher resolutions. It is modeling a shear crack and a crack plane is
represented more accurately at higher resolution with a thinner damage zone. Despite changes
in damage zones, the mean strengths for each set were independent of mesh size (see Fig. 10).
This result confirms the mesh scaling term Vp/Ac needed to connect material toughness (GI c
and GI I c) to maximum cracking strains (δn,max and δt,max) correctly scales particle properties
for mesh independence. Even though the two sets had the same input normal distribution in
properties, the mean strengths were considerably different. The GRF simulations consistently
failed at a lower loading stress. In other words, spatial correlation affects strength and therefore
should be part of stochastic modeling. The strength is a maximum for uncorrelated strengths
(α→∞) and decreases for smaller α. A smaller α results in larger defects that can initiate
failure. The variance in the results also depended on α. For GRF simulations, the variance is
higher and is independent of mesh size. For uncorrelated strengths, the variance is smaller and
seems to converge toward zero along with grid cell size. In other words, GRF methods are needed
to get mesh independence of both mean and variance. The need to have spatial correlations for
mesh independence is similar to MPM plasticity modeling of compression failure by Burghardt
et al. [36]. They needed non-local plasticity (i.e., a spatial connection in yield response) to get
mesh independence of shear failure.

An overlay of stress-strain curves for all uncorrelated and GRF specimens run at the highest
resolution (0.0625 mm cells) is given in Fig. 11 (200 curves each). The uncorrelated results
(red curves) have higher peak strength and lower variability. The GRF results (black curves) have
lower strength and greater variability. The post-failure response for all resolutions was similar at
first with a slow decrease from peak strength. Eventually, the initial shear bands propagated into
diffuse damage throughout the specimen, which caused a large drop in load. This diffuse damage
state happened sooner at low resolution than at high resolution. By comparing variability in
simulated stress-strain curves to experimental curves, it might be possible to characterize spatial
variations of real materials. One example could be to evaluate properties of timber compared
to laminated veneer lumber (LVL). LVL is made by cutting veneer layers from lumber and
then gluing them back together with wood grain direction of all layers in the same direction.
Experimental work shows that LVL can have better properties than the original timber and lower
variability. These differences are qualitatively attributed to distribution of large defects in timber
(e.g., knots) compared to randomly dispersed defects in LVL. Monte Carlo simulations using
GRFs with different spatial correlations in comparison to experimental stress-strain curves might
provide a more quantitive analysis of timber vs. LVL.
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Figure 11. An overlay of all stress strain curves for uncorrelated specimens (red curves) and for GRF
specimens (black curves).

4. CONCLUSIONS

We described a full approach to numerical implementation anisotropic damage mechanics
through constitutive law phase of any numerical method. Anisotropic damage mechanics is
a relatively straight-forward extension of linear elasticity, with the main requirements being
to connect damage to cracks and to use softening laws to evolve damage parameters. Two key
features of this new implementation were derivation of a new damage strain partitioning tensor,
∆, and definition of spatial resolution required for stability, ∆x < η(K/σ)2. The new tensor,
which can be derived from any assumed anisotropic damage tensor (or D), solves the numerical
task of partitioning input global strain increment into elastic strains and cracking strains and
provides a path to tracking damage evolution from assumed normal and shear traction softening
laws. An important observation is that only rows 1, 5, and 6 of ∆ have nonzero values, which
shows that cracking strains are limited to strains that are physically connected to normal and
shear opening displacements of an implied crack. The new spatial resolution requirement may
explain why same prior damage mechanics models needed artificial damping for acceptable
results while the new results here did not need stabilization.

By evaluating dissipated energy, softening laws and cracking strains can be directly related
to normal and shear, or mode I and lumped mode II/III, fracture. Some examples using
MPM demonstrated features of the implemented damage mechanics. The fracture examples,
in particular, show that anisotropic damage mechanics can reproduce many features of explicit
crack modeling using fracture mechanics provided damage material properties are calibrated
apparent properties. In contrast, we showed that isotropic damage mechanics based on a single
scalar damage parameter, dI , cannot connect to a crack and therefore cannot reproduce explicit
crack predictions.
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APPENDIX I

Traction during softening is given by σ f (δ) where f (δ) is a normalized softening law. A coding class to
handle any law only needs to provide f (δ), Gc/σ, f ′(δ), and max(− f ′(δ)) (for stability confirmation).
These terms depend on σ and Gc (and maybe other parameters). The critical strain for failure, δmax ,
is not an independent variable because it can be found from Eq. (33) using Gc and a scaling factor
s = Ac/(Vpσ), where Ac/Vp is calculated once per particle when failure initiates.

For power-law softening, f (δ) = 1− (δ/δmax )n where n≥ 1 and δmax = (1+ n)sGc/n. Code
implementation also needs:

G(δ)
σ
=
δ

2

�

1−
1− n
1+ n

�

δ

δmax

�n�

, f ′(δ) = −
n
δmax

�

δ

δmax

�n−1

,

and max
�

− f ′(δ, s)
�

=
n
δmax

for n≥ 1 or∞ for n< 1 (47)

Note that power law softening with n< 1 is always unstable due to max(− f ′(δ)) = − f ′(0)→∞. A
useful special case is linear softening with n= 1 where code implementation is

δmax = 2sGc , f (δ) = 1−
δ

δmax
,

G(δ)
σ
=
δ

2
, f ′(δ) = −

1
δmax

, and max
�

− f ′(δ)
�

=
1
δmax

(48)

For exponential softening f (δ) = e−kδ with δmax =∞ but k = 1/(sGc). Code implementation also
needs:

G(δ)
σ
=

1
k
− e−kδ

�

1
k
+
δ

2

�

, f ′(δ) = −ke−kδ, and max
�

− f ′(δ, s)
�

= k (49)

Note that among all softening laws enclosing the same area (or the same Gc), a linear softening law
minimizes max

�

− f ′(δ, s)
�

, which makes linear softening the most stable of all laws.

APPENDIX II

This section outlines an algorithm for implementation of 3D anisotropic damage mechanics in an
isotropic material; this description is written for MPM particles but could be used for constitutive law
phase of any numerical method. Each particle tracks total deformation gradient (F(p)), stress (σ(p)),
cracking strain (ε(p)c ), and damage orientation (to allow rotation to the crack axis system), and maximum
cracking strains (δ(p)n , δ(p)x y and δ(p)xz ). Tensors are tracked in global coordinates because MPM force
calculations need global coordinate stresses. The damage parameters (dn, dx y , and dxz) can be tracked
or calculated whenever needed (e.g., Eq. (19)).

Each step begins with an imposed displacement gradient, ∇u, which is equal to ∇v∆t in dynamic
codes where u is displacement, v is velocity, and∆t is the time step. First, find incremental deformation
gradient, dF, and update the particle’s total deformation gradient:

dF= exp(∇u) and F(p)n = dFF(p)n−1 (50)

The incremental deformation gradient can be approximated by dF= I+∇u or efficiently expanded
to more terms using the Cayley-Hamilton theorem. Incremental small strain in the initial axis system
is dε = U(p)n −U(p)n−1, where U(p)n and U(p)n−1 can be found by polar decomposition of F(p)n = RnU(p)n and

F(p)n−1 = Rn−1U(p)n−1. Although this equation is exact evaluation of small strain from deformation gradients,
it is ill-advised numerically because it finds incremental strain by subtracting two non-incremental
tensors (round-off error is likely). To eliminate this problem, we found a different decomposition to
work better. The updated total deformation gradient is decomposed as

F(p)n = dRdUR(p)n−1U(p)n−1 = dRR(p)n−1

�

R(p)n−1

T
dUR(p)n−1U(p)n−1

�

≈ R(p)n U(p)n (51)
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where
R(p)n ≈ dRR(p)n−1 and U(p)n ≈ R(p)n−1

T
dUR(p)n−1U(p)n−1 (52)

These results are not exact in large deformation theory, but both are exact in the limit of small strains.
The stably evaluated small strain increment becomes

dε =
�

RT
n−1dURn−1 − I

�

U(p)n−1 (53)

which provides improved results for incremental strains. This incremental strain and the subsequent
algorithm are hypoelastic implementations of small-strain elasticity. The tracking of deformation
gradient and use of polar decomposition allows the analysis to track large rotations better than simpler
hypoelastic methods. Rotations are important when the crack plane rotates in a dynamic analysis
(although none of the above examples had significant rotation).

The next step depends on current state of the particle which will be “undamaged” (before initiation
occurs), “damaged” (while damage is evolving), or “failed” (post failure state). For “undamaged”
particles, the only tasks are:

1. Find trial stress update in the initial axes usingσ(t r ial) = RT
n−1σ

(p)
n−1Rn−1 +Cdε0. If failure criterion

has not been reached, finish update by standard methods for a never-damaged material.
2. If the failure surface has been reached, mark the particle as “damaged,” calculate (and store)

rotation matrix, R(p)c , as rotation from crack axis system where crack normal is along the x
axis, to initial axes, calculate (and store) Vp/Ac . Note that Ac is intersection between the particle
and a plane through the particle center with the determined crack normal. The straight-forward
geometric calculations need to support any 2D or 3D particle or element geometries that might
be encountered. Proceed to update methods for a “damaged” particle.

For “damaged” and ”failed” particles, rotate dε and previous particle stress to the crack axis system

as dε = R(p)c

T
dεR(p)c and σ(0) = RT

totσ
(p)
n−1Rtot , where Rtot = R(p)n−1R(p)c and find dεn using Eq. (9). For

“damaged” particles, normal and shear updates are independent. For normal tractions, the tasks are:

1. Find a trial normal traction T (t r ial)
n = σ(0)x x + (1− dn)C11dεn.

2. If T (t r ial)
n ≤ σn fn(δn), the update is elastic; δn and dn are unchanged and cracking strain

increments are dεc,x x =max(dndεn,−εc,x x ) (where max() is to handle crack contact and εc,x x
is current cracking strain rotated into the crack axis system).

3. If T (t r ial)
n > σn fn(δn), then damage is evolving. Divide the increment into elastic (dε(1)n ) and

damage evolution (dε(2)n ) increments using

dε(2)n =
T (t r ial)

n −σn fn(δn)

(1− dn)C11
and dε(1)n = dεn − dε(2)n (54)

The cracking strain increment becomes dεc,x x = dndε(1)n + dδn, where dδn is numerical solution
to dε(2)n = dδn + εn0

�

fn(δn + dδn)− fn(δn)
�

from Eq. (19) (for linear softening, the exact solution
is dδn = dεn/(1+ εn0 f ′n(δn))). The increment in dissipated energy is found from Eq. (31).

Shear traction update for 2D damaged particles is analogous to normal traction (except no need to
check for contact) and therefore not repeated here. In 3D, shear updates are coupled by a shear stress
failure surface:

1. If τ(0)x y < 0 or τ(0)xz < 0, change their sign and sign of dγ(0)x y or dγ(0)xz .

2. Find trial shear tractions T (t r ial)
i j = τ(0)i j + (1− di j)Gdγi j (for i j = x y and xz)

3. If new shear stresses are within elastic region of the failure surface; δi j and di j are unchanged
and cracking strain increment is dγc,i j = di jdγi j .

4. If new shear stresses are outside the failure surface, divide the increment in to elastic (dγ(1)i j =

φdγi j) and damage evolution (dγ(2)i j = (1−φ)dγi j) increments. Here φ is fraction of the update
to reach the current failure surface. It can be found by solving a quadratic equation (but requires
care to be numerically stable in all cases). After partitioning, replace τ(0)i j with stress on the failure

surface (τ(0)i j + G(1− di j)dγ
(1)
i j ) and proceed to one of three following cases:
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(a) If dγx y > 0 and dγxz > 0: Replace dγi j with dγ(2)i j and solve Eqs. (21) and (23). They can
be solved stably in a few steps using Newton’s method. The cracking strain increments are
dγc,i j = di jdγ

(1)
i j + dδi j .

(b) If dγx y > 0 but dγxz < 0: Replace dγx y with dγ(2)x y and solve Eq. (25). It can be solved exactly
for linear softening or by a few Newton’s method steps for other laws. The cracking strain
increments are dγc,x y = dx y dγ(1)x y + dδx y , dγc,xz = dxzdγxz , and dδxz = 0.

(c) If dγxz > 0 but dγx y < 0: Same as previous case but interchange x y and xz shear
components.

For all options, the increments in dissipated energies are found from shear versions of Eq. (31).
5. If signs were changed in step 1, change sign of dγc,i j .

Whenever damage evolves, Eq. (34) (or some other criterion) is used to determine if the
particle has become a “failed” particle. For “failed” particles, cracking strain increments are dεc,x x =
max(dεn,−εc,x x ) (to handle crack contact), dγc,x y = dγx y , and dγc,xz = dγxz .

The above steps find cracking strain and crack traction updates in the crack axis system. The full
update finishes with:

1. Updated global particle cracking strain using ε(p,n)
c = dRε(p,n−1)

c dRT +Rtot dεcR
T
tot .

2. Combine crack traction increments with increments for other three components of stress

dσy y = C11

�

dεy y +
ν

1+ ν
(dεx x − dεc,x x + dεzz)

�

(55)

dσzz = C11

�

dεzz +
ν

1+ ν
(dεx x − dεc,x x + dεy y)

�

(56)

and dτyz = Gdγyz and then update global stress using σ(p,n) = dRσ(p,n−1)dRT +Rtot dσRT
tot .

These final particle updates are rotating the previous particle state by the rotation increment of this
step, dR, and then adding incremental cracking strains and stress after rotating them from crack axis
system to global coordinates.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme


