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Abstract 

The fracture toughness of medium density fiberboard (MDF) as a function of crack length (R 

curve) was measured. Fracture toughness was determined from force-displacement and crack 

length data using a new energy analysis procedure that avoids the scatter of prior discrete 

analysis methods. Because crack lengths were difficult to observed, they were measured using 

digital image correlation (DIC). The R curves for two different densities of MDF, two 

thicknesses, and for both in-plane and through-the-thickness cracks all increased linearly with 

crack length. The increase was interpreted as the development of a fiber-bridging process zone. 

Numerical modeling methods were used to determine the cohesive stress of the fiber-bridging 

zone.  

Keywords: Fracture toughness; fiber bridging; crack interference; energy methods; wood; 

composite; cohesive stress; material point method 

Introduction 

Most fracture mechanics standards, such as ASTM E399 (2006), implicitly assume self-

similar crack propagation, where “self-similar” means that two samples with different crack 

lengths differ only by their crack lengths. This assumption is violated in materials that develop 

process zones, such as fiber bridging in composites. In such materials, the initial crack will have 

no process zone, but a zone will develop during propagation. Thus, even if crack propagation is 
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straight, the initial and final samples will differ both by their crack lengths and by their process 

zone size. A consequence of such non-self-similar crack growth is that common fracture 

standards cannot be used. Non-self-similar crack growth, however, does not invalidate fracture 

mechanics. It only means that alternative methods are needed for measuring fracture toughness. 

This paper illustrates a variety of complications that arise when measuring the fracture 

toughness of composites by describing experiments on medium density fiberboard (MDF). MDF 

is a wood-based composite with fine wood fibers bound together by a small amount of polymeric 

adhesive (Bower, et al., 2006). Under mode I loading, MDF cracks generally propagate straight 

and perpendicular to the applied load. The cracks, however, are difficult to detect and clearly 

have a significant amount of material bridging the crack surfaces (Matsumoto and Nairn, 2007). 

As a result, the propagation is not self similar. An alternative to fracture mechanics standards, 

which still applies for non-self-similar crack growth, is to directly measure energy released 

during crack propagation. A common experimental protocol is to load until a small amount of 

crack growth and then unload and measure the area between the loading and unloading curves 

(Hashemi, et al., 1990). This method could not be used for MDF because the process zone 

interfered with the unloading step. We resolved all issues by using continuous loading 

experiments with simultaneous optical detection of the crack length. Analysis of the experiments 

resulted in measurement of a valid toughness for MDF. The implications for measuring fracture 

toughness of other composites are discussed. 

Figure 1b illustrates four orthogonal crack directions in an MDF panel — LT, TL, ZL, and 

ZT. The first letter indicates the normal to the crack surface and the second letter denotes the 

crack propagation direction with L, T, and Z standing for in-plane (L)ongitudinal, in plane 

(T)ransverse, and the thickness (Z) directions, respectively (Bodig and Jayne, 1982). MDF 
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panels are manufactured to be nominally isotropic for in-plane properties although the through-

the-thickness properties are different. We measured toughness in the above four crack 

orientations in the form of R curves or toughness as a function of crack length. As a consequence 

of fiber bridging the toughness increased approximately linearly with crack length. The slopes of 

the R curves were fit to numerical simulations to determine a cohesive fiber bridging stress. 

Materials and Methods 

Medium Density Fiberboard (MDF) Fracture Specimens 

The MDF panels were provided by Flakeboard® (Springfield, OR) as 4 ft X 8 ft panels at two 

densities, 38 and 46 lbs/ft3 (609 and 737 kg/m3) and in two thicknesses, 0.5 and 0.75 in (12.7 and 

19.05 mm). Prior to testing, all panels were conditioned at 20oC and 65% relative humidity until 

equilibrium.  

Figure 1a shows an extended version of the ASTM E399 (2006) compact tension specimen 

(CT). Extra length was used to allow more room for crack propagation. All specimens used W = 

3 in and Δ = 1.25 in. Although in-plane properties of MDF are nominally isotropic, 

manufacturing processes may cause differences between the long (Longitudinal) and short 

(Transverse) axis of the panel. Between in-plane and thickness directions, the properties differ 

and the fracture properties are expected to differ too. To measure anisotropy effects on 

toughness, specimens were cut for four different propagation directions: TL, LT, ZL, and ZT 

(see Fig. 1b). Here L is the long or 8 ft direction of the initial panel, T is the short or 4 ft 

direction, and Z is the thickness direction. Specimens for TL and LT cracks (denoted as in-plane 

cracks) were cut from the panel as illustrated in Fig 1b. For ZL and ZT cracks (denoted as Z 

cracks), square slices of the panel (with square sides equal to the panel thickness) were cut in the 

L and T directions for length of 1.25W + Δ = 5 in (see Fig 1b). These slices were glued between 



4 

in-plane pieces of the same panel to create an extended CT geometry such that ZL or ZT cracks 

propagated down the center of the slice. The remaining orthogonal cracks LZ and TZ were not 

tested because the Z direction is too short for crack propagation experiments. The pin-loaded 

specimens were loaded in a 10 kN Sintech testing frame. Displacements were measured using 

Eplison® clip gauge-style extensometer attached at the pin-loading line. 

 

Crack Length Measurement 

Analysis of crack propagation experiments requires accurate measurement of crack length 

during the experiment. In many materials crack length can easily be detected on the surface, but 

that approach does not work for MDF. To measure MDF crack lengths, we used Digital Image 

Correlation (DIC, Correlated Solutions Inc., West Columbia, SC) or digital image processing 

(Samarasinghe, 1999). The theory and setup procedure of DIC systems, also called electronic 

speckle photography, is described well by Sutton, 1983. 

Using DIC, strain fields ahead of the crack tip were monitored throughout the loading. For 

example, Fig. 2 shows the axial strain, or the strain in the direction of loading, along the crack-

line for a series increasing crack lengths (from left to right).  The strain profiles were high near 

the crack tip and decreased as a function of distance away from the crack tip.  Identifying an 

absolute crack tip was impossible, but between two images a Δa, or increment in crack growth, 

could be accurately measured from the shift in the strain profile.  Since the energy methods 

described below only require Δa, and not an absolute crack length, the DIC results were 

sufficient for fracture toughness experiments. 
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Fracture Toughness by Energy Analysis 

In an unloading curve following in increment of elastic fracture returns to the original origin 

(Fig. 3, left), the fracture energy is the area within the triangular area ABC (Fig. 3, right) between 

loading and unloading curves. The fracture toughness is the energy per unit fracture area. This 

fact applies regardless of the presence of fiber bridging. The toughness from a discrete 

observation of crack growth, Δa = aj - ai, can be calculated various ways. Two convenient 

methods are (Hashemi, et al., 1990): 

€ 

Gc =
Pi(u j − u0) − Pj (ui − u0)

2BΔa
     and     

€ 

Gc =
PiPj (C j −Ci)

2BΔa
 (1) 

where Pi is the load when the crack of length ai starts to propagate at displacement ui and Pj is 

the load when crack propagation stops at length aj and displacement uj. Ci and Cj are the 

specimen compliances before and after crack propagation; u0 is the displacement at the start of 

the test. These equations can calculate toughness as a function of crack propagation from a 

collection of discrete results for Pi, ai, ui and/or Ci during an experiment. Hashemi, et al. (1990), 

for example, used this approach for analysis of composite delamination toughness. 

For a linear-elastic material with negligible plasticity, unloading curves after crack 

propagation should return to the origin.  In these MDF experiments, however, they returned to a 

positive displacement (see uR in Fig 3, right).  There are three possible reasons for a positive 

displacement offset: residual stresses, plasticity, or crack-plane interference (Atkins and Mai, 

1988). A residual stress effect could be ruled out by specimen analysis (Nairn, 1997, 1999). A 

plasticity effect would invalidate elastic fracture analysis, but a crack-plane interference effect 

may not. Crack-plane interference means the bridging material left in the wake of the crack 

cannot be unloaded back to the original specimen configuration. Instead, the bridging material is 
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crushed causing the unloading compliance to be lower, resulting in a residual displacement. 

Thus, a residual displacement is possible even when the fracture process is entirely elastic.  

A test proposed by Atkins and Mai (1988) was used to distinguish between plasticity and 

crack-plane interference.  First, a specimen was loaded at a rate of 0.5 mm/min until the crack 

had propagated through roughly half of the previously un-cracked ligament length and the 

loading was paused.  Next, the fiber-bridging zone around the crack tip was removed.  The crack 

line was drilled out using a 1/8th inch bit. The remaining bridging material was cut out with a 

razor blade and saw. Finally, the specimen was unloaded. If a specimen with the zone removed 

returns to the origin, then the residual displacements can be attributed to crack-plane 

interference. In MDF specimens, removing the process zone reduced the residual displacement 

by about 90% (Matsumoto and Nairn, 2007). By necessity, comparisons between not removing 

and removing the zone had to be done on different specimens. It was therefore challenging to 

unambiguously determine the amount of crack-plane interference. Our results, however, strongly 

suggested that crack-plane interference is present in MDF and is the major cause of residual 

displacements. 

When crack-plane interference is present, the second approach in Eq. (1) cannot be used. The 

measured Ci would differ from the true unloading Ci due to the crack-plane interference. 

Furthermore crushing of material in the process zone during unloading might influence 

subsequent crack propagation. The first approach in Eq. (1) can still be used provided the 

specimen is never unloaded. Subsequent tests therefore monotonically increased the load, 

recorded load vs. displacement, and monitored the crack length using DIC. Each adjacent pair of 

crack length results was substituted into Eq. (1) to determine Gc as a function of crack length (R 

curve). We termed this approach the discrete analysis for toughness. 
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Revised R-Curve Analysis 

Discrete R-curve experiments have been used before, but the method is prone to scatter 

(Hashemi et al., 1990). The numerical difficulty is that it relies on subtraction of similar numbers 

and precise determination of Δa. A revised analysis method was recently developed that reduces 

the scatter by eliminating the need to divide by Δa (Nairn, 2008).  First, load and crack length vs. 

displacement data sets are obtained during monotonic loading.  Next, the cumulative energy 

released, U(d), per unit specimen thickness, B, is found by integrating force-displacement data, 

F(d), up to some displacement d and subtracting the area under an assumed elastic return to the 

origin (see Fig. 4A): 

€ 

U(d) =
1
B

F(x)dx
0

d
∫ −

1
2
F(d)d

 

 
 

 

 
  (2) 

Next, the crack length data are fit (and smoothed if necessary) to get crack length as a function of 

displacement, a(d). By treating displacement as a parametric variable, the results for U(d) and 

a(d) are recast as cumulative energy released as a function of crack length, U(a). This integral 

transformation always gives smooth curves from actual fracture experiments. The R curve is 

found by numerically differentiating U(a): 

€ 

R =
dU(a)
da

 (3) 

The numerical differentiation step usually benefits by smoothing. Here we used simple running 

average of the tangent to the curve. The running average window was typically 1/3 to 1/4 of the 

range of the crack length data. The process is illustrated graphically in Fig. 4. 
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Material Point Method Modeling 

The material point method (MPM) was used to model experimental results. MPM was 

developed as a numerical method for solving problems in dynamic solid mechanics (Sulsky et 

al., 1994, 1996). In MPM, a solid body is discretized into a collection of points much like a 

computer image is represented by pixels. As the dynamic analysis proceeds, the solution is 

tracked on the material points by updating all required properties such as position, velocity, 

acceleration, stress state, etc..  

The meshless nature of MPM recommends it for analysis of explicit cracks including crack 

propagation with process zones. Although early MPM did not allow cracks, it was extended to 

CRAMP, which signifies CRAcks in the Material Point method (Nairn, 2003; Guo and Nairn, 

2004, 2006) and models explicit cracks. The crack plane is defined by a linked series of massless 

particles that translate through the grid along with the material points. Crack propagation is 

modeled by adding a new crack particle at the crack tip. The propagation process is not 

constrained by any mesh and therefore can follow an arbitrary path. Recently the CRAMP 

algorithm was extended further to all traction laws on the crack particles (Nairn, 2008). This new 

approach allows simulations of cracks with cohesive zones or cracks with a combination of crack 

tip processes and a process zone described by a traction law. Unlike most finite element analysis 

with cohesive zones, the traction law zones in MPM do not have to be inserted prior to the 

analysis. They develop naturally as the crack propagation process proceeds. This key feature was 

used to simulate R curves as the fiber-bridging process zone developed. 

Results 

Figure 5 shows R curve results for LT fracture in 0.5 in, 38 lbs/ft3 panels analyzed two 

different ways. The symbols used a discrete analysis (Eq. (1)) for each pair of DIC images 
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analyzed for crack growth. The smooth curve used the revised R-curve analysis. The revised 

method is the slope of the cumulative energy per unit thickness transformation on raw data by 

Eq. (2); that cumulative energy is plotted in Fig. 6 (dashed 38 LT curve). Both results are the 

average of results from three specimens. The two analysis methods agree, but the revised method 

has less scatter. Both methods indicate a steady rise in toughness until the crack approaches the 

end of the specimen, which is followed by a rapid rise. The slow rise is clearer in the revised 

analysis method. Our interpretation is that the R curve for MDF increases roughly linearly with 

crack length. The rapid rise at the end was either due to edge effects or to numerical artifacts 

caused by Δa approaching zero near the end of the test. A small Δa makes accurate measurement 

of R difficult. 

Figures 6 and 7 have results for all LT and TL fracture results. Figure 6 has the cumulative 

energy transformation of the raw data. Figure 7 has derivatives of the raw energy data to give the 

material’s R curve as a function of crack growth. For all specimens, the toughness starts at a high 

value and then increases linearly with crack length. The toughness of the higher density panels 

(46 lb/ft3) is more than double the toughness of the lower density panels (38 lbs/ft3). The solid 

and dashed lines are results for thicker (0.75 in) and thinner (0.5 in) panels, respectively. For the 

higher density panels, the initial toughness was independent of density, but the slope of the R 

curve was higher for the thinner panels. For the lower density panels, the toughness and slope 

were independent of thickness, although the thinner specimen had a slightly higher slope.  

There was little difference between TL and LT fracture in the 48 lbs/ft3 panels. Those results 

were therefore averaged to get in-plane R-curve results as summarized in Table 1. There are no 

results for TL fracture in the 38 lb/ft3 panels. Cracks in that orientation turned and therefore 

could not be analyzed. The results in table 1 are the average of three LT specimens. 



10 

Figures 8 and 9 give R curves for Z cracks. Like the in-plane cracks, the toughness had an 

initial value and then increased linearly with crack growth. Both the initial value and the slopes 

are 50-100 times lower for the Z cracks than for the in-plane cracks. There was little influence of 

thickness for the 38 lbs/ft3 panels. For the 46 lbs/ft3 panels, the thinner specimens had higher 

toughness and slope. No systematic effect of ZL vs. ZT was detected. The results are averaged 

and summarized in Table 1. 

Discussion 

Prior Toughness Results 

 Very few experiments for the fracture toughness of MDF have been done. Niemz et al. 

(1997, 1999) used ASTM methods (2006) to measure stress intensity factor for the initiation of 

crack growth. They found MDF (of 710 kg/m3 density) to have a KIC = 1.81 MPa√m.  Assuming 

the MDF in-plane modulus is about 3000 MPa and it’s Poisson’s ratio is 0.33 (Ganev et al., 

2005), this stress intensity is equivalent to Gc = 970 J/m2. This result is lower than our panels of 

similar density. Furthermore, because the ASTM method assumes self-similar crack growth and 

stress-free surfaces, while MDF cracks have fiber bridging, the ASTM approach does not give a 

valid toughness (Matsumoto et. al, 2007).  

Morris et al. (1999) used the Nordtest (Larsen and Gustafsson, 1990, 1993) method and 

found MDF (of 800 kg/m3) to have a GIC = 5918 J/m2.  The Nordtest integrates the force-

displacement curve to find total energy to propagate a crack along the entire specimen. It should 

be similar to an average of an R curve over the entire specimen length; their results are similar to 

our higher-density R curves. Two problems with total fracture energy are that it does not give 

information about rising R curves and it may be disproportionately affected by edge effects (e.g., 

the high R values near the end of the crack growth in Fig. 7). We claim direct measurement of 
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energy released during crack growth, as done here, is preferred over total integrated energy 

methods. 

 Ehart, et. al (1996) did crack propagation in particle board — a material analogous to 

MDF but composed of wood particles rather than find wood fibers. They measured the energy 

between load-displacement curves of different specimens that they perceived to have the same 

amount of fiber bridging.  An effective crack length for each specimen (with fiber bridging) was 

determined through finite element analysis. The use of an effective crack length limits such 

results to being an effective toughness. The DIC methods used here eliminated the need to rely 

on effective crack lengths. The DIC approach should work or particle board as well as for MDF. 

Fiber Bridging Analysis 

The usual starting point for analysis of fracture with bridging is to equate R to the sum of 

crack-tip processes and fiber bridging processes (Rice 1968, Bao and Suo, 1990): 

€ 

Rss =Gtip,c + σ (δ)dδ
0

δ c∫  (4) 

where Gtip,c is the toughness associated with crack-tip processes and the integral is the energy 

associated with fiber bridging. The fiber bridging energy is the area under the fiber bridging 

traction (σ(δ)) — crack opening displacement (COD or δ) law, where δc is the COD where the 

bridged fibers fail (see Fig. 10). But, Eq. (4) is only valid for steady-state crack propagation after 

the bridging zone is fully developed and the R curve has reached a constant toughness. Steady-

state crack propagation is also self-similar crack propagation because the process zone size 

remains constant as the crack propagates. Thus, like many fracture standards, the usual starting 

point for fiber-bridging analysis implicitly assumes self-similar crack growth. 
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All crack propagation in MDF, however, was within the rising portion of the R curve and is 

thus non-self-similar crack growth. Modeling the R curve in this regime requires additional 

knowledge (or assumptions) about the fiber-bridging process. One recent model is to assume the 

bridging law describes elastic processes, but can soften as the bridging fibers fail (Nairn, 2008). 

Under this assumption, non-steady-state R curve can be modeled with (Nairn, 2008) 

€ 

Rnss =Gtip,c + σ (δ)dδ
0

δ n∫ −
1
2
σ (δn )δn  (5) 

This model is illustrated in Fig. 10A. The shaded area is the sum of the last two terms. The 

integral is the area up to the current crack opening displacement, δn. The last term subtracts off 

the elastic energy stored in the bridging zone that has not been released to fracture and thus is not 

part of the observed R. Daudeville (1999) similarly treated fiber bridging in solid wood as an 

process zone with softening due to development of damage. He modeled force-displacement 

curves during crack propagation, but did not consider analysis of rising R curves and attributed 

the entire toughness to bridging (i.e., assumed Gtip,c = 0). 

Examination of several traction laws (Nairn, 2008) shows that a linear increase in R is 

characteristic of a linear softening law (see Fig. 10B) where the bridging traction rises rapidly to 

a peak stress or cohesive stress (σc) and then decreases linearly to zero at the critical COD (δc). 

The area under the bridging law is the bridging toughness, GB. Our hypothesis was that MDF 

fiber bridging has such a linear softening law. The question remains — what traction law 

properties can be determined from the experimental results? The fiber bridging toughness, GB, 

can be determined from the difference between initial R and the steady-state R. Since these MDF 

experiments never reached steady state, GB could not be determined. Analysis of R curves with 
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linear softening shows the slope is related to the peak cohesive stress, σc. The determination of 

fiber-bridging cohesive stress in MDF required numerical modeling. 

Crack propagation with fiber bridging in MDF was modeling using the material point method 

(MPM). The details are in Nairn (2008). In brief: 

1. An explicit crack was introduced into the MPM model. 

2. As the calculations proceeded, the crack-tip energy release rate, Gtip, was calculated by J-

integral methods that account for bridging effects (Nairn, 2008). When Gtip > Gtip,c, the 

physical crack tip propagated by MPM methods for explicit crack propagation (Nairn, 

2008). The newly created crack surface area was assigned to the selected, linear-softening 

traction law with the COD initialized to zero. 

3. At the time of crack propagation, the total fracture energy released was calculated using 

Eq. (5). 

4. On each time step, the COD along the crack surface was calculated and bridging fibers 

failed whenever COD > δc. 

5. The calculations continued until the crack length reached the end of the specimen. A plot 

of R (from step 3) was compared to experimental results. 

Figure 11 compares simulations to experimental results (for LT fracture in 0.75 in, 38 lb/ft3 

panels) for various values of cohesive stress, σc, and bridging toughness, GB. The open symbols 

are for σc = 0.25, 0.45, and 1 MPa with GB = 500 J/m2; all simulations used Gtip,c = 2210 J/m2. 

All simulated R curves are linear in crack length and the slope increased with σc. A value of σc = 

0.45 MPa agreed with the experimental results. For σc = 1 MPa, the simulations reached steady 

state at a crack length of about 50 mm. The steady state toughness is greater than the initial 

toughness by the input GB. The simulations for σc = 0.25 and 0.45 MPa did not reach steady state 
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prior to the end of the sample. The filled symbols are for σc = 0.45 MPa with GB = 200 J/m2. 

Because of the lower GB, this simulation reached steady state at a crack length of about 50 mm. 

The initial slope, however, was identical to the other σc = 0.45 MPa simulation, which confirms 

that the slope is a function only of σc. Therefore σc could be determined from the slope of 

experimental results without knowledge of GB. 

The results for σc determined by numerical simulation are given in Table 1. The cohesive 

stress increased with density and is usually higher for the thinner panels. The cohesive stress for 

in-plane crack propagation is about and order of magnitude higher than for Z-crack propagation. 

Although GB could not be determined, it can be bounded. From the increment in energy prior to 

edge effects GB is greater than 1000 J/m2 and 500 J/m2 for thin and thick, 38 lb/ft3 panels, and 

greater than 3000 J/m2 and 1000 J/m2 for thin and thick 46 lb/ft3 panels. For Z cracks GB is 

greater than 11 J/m2 and 15 J/m2 for thin and thick, 38 lb/ft3 panels, and greater than 40 J/m2 and 

15 J/m2 for thin and thick 46 lb/ft3 panels. The cohesive stress, bridging toughness, and critical 

bridging COD are related by 

€ 

GB =
1
2
σ cδc  (6) 

Although δc could be determined, it can also be bounded from the bounds on GB. The lower 

bound for δc was found to be independent of both thickness and density. For the in-plane cracks 

δc ≥ 2.57 ± 0.22 mm. For Z cracks δc ≥ 0.50 ± 0.13 mm. The in-plane δc is comparable to the 

expected fiber length in MDF made from softwood of 3 to 4 mm (Bower et al., 2003). The δc for 

Z cracks is much lower, probably because MDF fibers tend to lie flat in the plane due to mat 

compaction used during manufacturing (Bower et al., 2003). 
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Most fracture models in finite element analysis use either fracture mechanics criteria or 

cohesive zones model (CZM) (Needleman, 1987). A conventional fracture mechanics model 

cannot handle process zones. In conventional CZM methods, the cohesive elements have to be 

inserted prior to the analysis. Since cohesive elements need to cross the entire specimen, there is 

no crack tip that can be monitored for crack length to compare to experiments. The MPM 

modeling here is a generalization of fracture modeling to use both fracture mechanics and a 

process zone. Fracture mechanics methods were used to model crack-tip processes (Nairn, 2008). 

Traction-law methods were used to model the bridging zone, but they were not inserted prior to 

the analysis. They were inserted only as the crack propagated. 

Implications for General Composite Fracture 

If a fiber-bridging zone (or any kind of process zone) is not small compared to specimen 

dimensions, the fracture process will be influenced by that zone. At the beginning of crack 

propagation, the process zone develops and the toughness of the material will change. This effect 

leads to a rising R curve. The shape of the R curve depends on the mechanics of the process zone 

(Nairn, 2008). During a rising R curve, standard methods that assume self-similar crack 

propagation cannot be used. If the process zone has elastic processes, however, elastic fracture 

mechanics is still valid, but the toughness has to be measured directly. 

 Fracture mechanics standards like ASTM E399 (2006) start with a machined notch with no 

process zone. The toughness is determined from the load for initiation of the crack and no 

information about crack propagation is recorded. A common misconception is that the 

subsequent process zone does not influence this initial crack growth and therefore the standard 

gives a valid initiation result. The energy released for crack initiation, Gc, is given by 
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€ 

Gc =
P 2

2B
dC(a)
da

 (6) 

where P is the load at initiation, B is thickness, and C(a) is the specimen compliance as a 

function of crack length, a. Whenever crack propagation results in a process zone, dC(a)/da will 

be influenced by that zone, it will even be influenced for initiation or in the limit a → a0. Since 

the calibration functions in ASTM E399 (2006) use numerical methods that effectively calculate 

dC(a)/da under the assumption of no process zone (Gross et al., 1964), those functions will give 

an invalid result when a process zone occurs. Another danger of initiation experiments in 

standard methods is that the subsequent crack propagation is ignored. There is no way to tell 

from an initiation load whether or not a process zone has affected the results. In other words, 

fracture toughness of composites should never be measured by conventional methods unless 

those methods are supplemented with crack propagation experiments and those propagation 

experiments show there is no process zone or only a negligible process zone (Matsumoto and 

Nairn, 2007). 

When composite fracture requires direct measurement of toughness, several experimental 

difficulties may arise, and many arose in experiments on MDF. For example, a common effect of 

a fiber-bridging zone is crack-plane interference. When interference is present, unloading steps 

cannot be used. The test has to be conducted monotonically with continuous monitoring of crack 

length. Another problem in direct measurement of energy is avoiding scatter caused by taking 

differences between discrete data points. Indeed much work on composite delamination fracture 

is aimed at developing refined beam theories with the primary goal being to avoid analysis by 

Eq. (1) (Hashemi et al., 1990). The revised energy method used here shows promise for 

ameliorating problems with direct energy measurements. It may be possible to refine the method 
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by optimization of the transformation process (e.g., by constraining the analysis to produce a 

monotonically increasing and smooth R curve). 

Finally, one approach to materials with process zones is to ignore the rising portion of the R 

curve and characterize the toughness from the constant value during steady-state crack 

propagation. This approach has two problems. First, many composite materials may never reach 

steady state crack propagation within the chosen fracture specimen. This situation applies to 

MDF specimens used here. The characterization of such materials requires methods that can be 

used during non steady-state propagation or possibly much longer specimens such that steady 

state conditions can be observed. Second, the shape of the rising R curve gives material property 

information about the mechanics of the process zone. Techniques, such as the simulations used 

here, can extract material property information from the rising R curve. 
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Tables 

Table 1: The initiation toughness (Gc) and slope of the rising R curve for two densities and two 

thicknesses of MDF panels. The “in plane” cracks average the LT and TL results. The “Z 

cracks” average the ZL and ZT results. 

 

 Thin (0.5 in) Thick (0.75 in) 
Panel/Crack Type Gc  

(J/m2) 
Slope 
(J/m3) 

σc 
(MPa) 

Gc 
(J/m2) 

Slope 
(J/m3) 

σc 
(MPa) 

38 lbs/ft3, in plane 2062 21700 0.79 2233 10500 0.43 
38 lbs/ft3, Z cracks 54.0 222 0.038 48.2 296 0.056 
46 lbs/ft3, in plane 4153 59600 2.55 4452 18400 0.66 
46 lbs/ft3, Z cracks 75.3 814 0.14 48.4 303 0.10 

 

Figure Captions 

Figure 1:  a. Extended compact tension specimen where a =1.2” (30.48 mm), W=3” (76.2 mm), 

and Δ=1.25” (31.75mm).  A Δ of zero is the ASTM CT specimen, but here a non-zero Δ was 

used to allow more crack propagation.  b. Specimen orientation in a panel (not to scale). 

Figure 2: Profiles for axial strain as a function of position along the crack-line obtained from 

DIC. Curve 1 is prior to crack growth. Curves 2 to 7 are profiles after subsequent increments 

in crack growth.  The shift between curves was a measurement of the amount of crack growth 

between those two points in the test. 

Figure 3: Left: load displacement curve for elastic fracture where the test is periodically stopped 

and unloaded. Right: A single loading and unloading envelop. Elastic fracture follows path 

ABC. Fracture with residual displacements follows path ABCD. 

Figure 4: Graphical illustration of the revised R-curve method. The left shows integral 

transformation of force and crack length data as a function of displacement to cumulative 

energy as a function of crack length (B). C shows the R curve as found from the slope of the 

energy area. 

Figure 5: Analysis of the R curve for 0.5 in, 38 lb/ft3, LT fracture by two different methods. The 

symbols used the discrete method. The smooth line used the revised R-curve analysis method. 
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Figure 6: The cumulative energy released per unit thickness, U(a), for all in-plane fracture 

specimens. The dashed lines are for 0.5 in thick panels; the solid lines are for 0.75 in thick 

panels. 

Figure 7: R curves for all in-plane fracture experiments. The dashed lines are for 0.5 in thick 

panels; the solid lines are for 0.75 in thick panels. 

Figure 8: R curves for all Z cracks in the 38 lb/ft3 panels. The dashed lines are for 0.5 in thick 

panels; the solid lines are for 0.75 in thick panels. 

Figure 9: R curves for all Z cracks in the 46 lb/ft3 panels. The dashed lines are for 0.5 in thick 

panels; the solid lines are for 0.75 in thick panels. 

Figure 10: Fiber-bridging traction laws used to model the fiber bridging process zone. The 

shaded area in A illustrates the concept of energy released from the process zone prior to 

steady state crack propagation. B shows the linear softening law used to model fiber bridging 

in MDF. 

Figure 11: Comparison of simulation results (symbols) to experimental results (sold line) for LT 

crack growth in 0.75 in, 38 lb/ft3 panels. The open symbols are for different values of σc and 

GB ≥ 500. The solid symbols used a lower GB. 
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Figure 1:  a. Extended compact tension specimen where a =1.2” (30.48 mm), W=3” (76.2 mm), 

and Δ=1.25” (31.75mm).  A Δ of zero is the ASTM CT specimen, but here a non-zero Δ was 

used to allow more crack propagation.  b. Specimen orientation in a panel (not to scale). 
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Figure 2: Profiles for axial strain as a function of position along the crack-line obtained from 

DIC. Curve 1 is prior to crack growth. Curves 2 to 7 are profiles after subsequent increments 

in crack growth.  The shift between curves was a measurement of the amount of crack growth 

between those two points in the test. 
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Figure 3: Left: load displacement curve for elastic fracture where the test is periodically stopped 

and unloaded. Right: A single loading and unloading envelop. Elastic fracture follows path 

ABC. Fracture with residual displacements follows path ABCD. 
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Figure 4: Graphical illustration of the revised R-curve method. The left shows integral 

transformation of force and crack length data as a function of displacement to cumulative 

energy as a function of crack length (B). C shows the R curve as found from the slope of the 

energy area. 
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Figure 5: Analysis of the R curve for 0.5 in, 38 lb/ft3, LT fracture by two different methods. The 

symbols used the discrete method. The smooth line used the revised R-curve analysis method. 
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Figure 6: The cumulative energy released per unit thickness, U(a), for all in-plane fracture 

specimens. The dashed lines are for 0.5 in thick panels; the solid lines are for 0.75 in thick 

panels. 
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Figure 7: R curves for all in-plane fracture experiments. The dashed lines are for 0.5 in thick 

panels; the solid lines are for 0.75 in thick panels. 
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Figure 8: R curves for all Z cracks in the 38 lb/ft3 panels. The dashed lines are for 0.5 in thick 

panels; the solid lines are for 0.75 in thick panels. 
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Figure 9: R curves for all Z cracks in the 46 lb/ft3 panels. The dashed lines are for 0.5 in thick 

panels; the solid lines are for 0.75 in thick panels. 
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Figure 10: Fiber-bridging traction laws used to model the fiber bridging process zone. The 

shaded area in A illustrates the concept of energy released from the process zone prior to 

steady state crack propagation. B shows the linear softening law used to model fiber bridging 

in MDF. 
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Figure 11: Comparison of simulation results (symbols) to experimental results (sold line) for LT 

crack growth in 0.75 in, 38 lb/ft3 panels. The open symbols are for different values of σc and 

GB ≥ 500. The solid symbols used a lower GB. 


