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Abstract Heat conduction through an object with ma-

terial interfaces or cracks is influenced by heat flow

across those discontinuities. This paper presents a nu-

merical particle method for modeling such heat flow

coupled to computational mechanics all within the ma-

terial point method (MPM). In brief, MPM models con-

tact and cracks by extrapolating multiple velocity fields

to a grid. To model interfacial heat flow, MPM should

similarly extrapolate multiple temperature fields. Inter-

faces nodes that “see” more than one temperature field

modify their heat flow to reflect interfacial physics. For

example, interfaces in contact may transfer heat by per-

fect conduction while separated interfaces may block

heat flow or cause reduced heat flow by convection. Af-

ter some validation examples, two real-world examples

consider cooling an ingot within a crucible where cool-

ing causes the ingot to lose contact with the crucible

walls and thermal imaging of cracks within an opaque

solid.

Keywords Heat conduction, material point method,

explicit cracks, material contact

1 Introduction

A straightforward addition to particle-based, material

point method (MPM) modeling is to couple the me-

chanics analysis to thermal conduction. Coupling is done

by tracking particle temperature, extrapolating tem-

perature to a background grid, and solving the heat flow

equation on the grid along with the momentum equa-

tion. Having such a feature allows MPM to model heat-

ing mechanisms caused by physical phenomena such as
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volumetric expansion or compression, plastic, viscoelas-

tic, or damage energy dissipation, or contact with fric-

tion and to fully track thermodynamic state variables

(e.g., entropy, enthalpy, and free energy).

Standard MPM conduction methods extrapolate par-

ticle temperature to a single temperature field, thereby

solving for a global temperature field. When a problem

has material interfaces or cracks, however, this single-

temperature-field approach cannot model the influence

of those discontinuities on heat flow. This situation is

analogous to MPM contact methods. When an MPM

code uses a single velocity field, the calculations can

model only stick contact. Extending MPM to model

contact by friction [2] or an imperfect interface [10, 11]

requires use of multimaterial velocity fields. Nodes that

“see” only a single material proceed by conventional

MPM while “interface” nodes that see multiple materi-

als adjust nodal momenta to reflect some modeled con-

tact mechanics.

This paper adopts a similar approach for heat flow

calculations by extrapolating multiple temperature fields.

Single field nodes proceed by conventional conduction

methods while interface nodes adjust nodal heat flows

to model realistic heat flow across an interface. The

“Heat flow equations” section first describes global con-

duction analysis and then describes how to modify that

analysis for multiple temperature fields. The methods

are applied both to multimaterial MPM and to MPM

with explicit cracks [9]. The methods were verified by

simple calculations across a contact interface. Applica-

tions for the method are demonstrated with two real-

world examples for cooling an ingot in contact with a

crucible where thermal shrinkage may cause the ingot to

lose contact with the crucible walls and thermal imag-

ing of opaque objects with internal cracks. Although

MPM provides no specific advantages over other nu-



2 J. A. Nairn

merical methods (such as finite element analysis) for

solution of heat transport equations, MPM may have

advantages for modeling explicit cracks [9] and com-

plex contact mechanics [11, 14]. The methods in the

paper allow MPM simulations with cracks and inter-

faces to account for effects of those discontinuities on

heat transport.

2 Heat flow equations

2.1 Global analysis

A common addition to MPM codes is a global heat

conduction option that ignores material interfaces and

cracks. Despite its use in many MPM codes, a full gen-

eralized interpolation material point (GIMP) [3] deriva-

tion is rarely in the literature [15]; it is given here. The

heat conduction equation is

ρC
∂T

∂t
+∇ · q(x) = q̇s(x) (1)

where ρ is density, C is heat capacity (per unit mass), T

is temperature, q is heat flux (per unit area), and q̇s is

volumetric heat source rate. For heat conduction, heat

flux is q = −k∇T where k is the thermal conductivity

tensor. Solving this equation in the MPM weak form

gives∫
V

(
ρC

∂T

∂t
+∇ · q− q̇s(x)

)
w(x) dV = 0 (2)

where V is total volume and w(x) is an arbitrary weight-

ing function. Using the vector identity:

w(x)∇ · q(x) = ∇ · (w(x)q(x))−∇w(x) · q(x) (3)

and the divergence theorem, the weak form equation

becomes:∫
V

(
w(x)ρ(x)C(x)

∂T

∂t
−∇w(x) · q(x)

− q̇s(x)w(x)

)
dV +

∫
δV

w(x)q(x) · n̂ dS = 0 (4)

where δV is the border of V and n̂ is a surface normal

vector. By GIMP methods [3], particle quantities are

expanded in a particle basis to get:

ρ(x)C(x)
∂T

dt
=
∑
p

ρpCp
∂Tp
dt

χp(x) (5)

q̇s(x) =
∑
p

q̇s,pχp(x) (6)

q(x) =
∑
p

qpχp(x) (7)

where subscript p denotes a particle property (note:

Cp is particle heat capacity and not constant-pressure

heat capacity) and χp(x) is a particle basis function

for particle p (which is typically 1 within the particle’s

domain and zero elsewhere [3]). Next expand the weight

function and its gradient using standard, isoparametric

grid shape functions, Ni(x):

w(x) =
∑
i

wiNi(x) and ∇w(x) =
∑
i

wi∇Ni(x) (8)

where wi are nodal values of w(x) on the grid. After

substituting all expansions, the weak form equation be-

comes∑
i

∫
δV

wiNi(x)q(x) · n̂ dS =

+

∫
V

{∑
i

∑
p

[wi∇Ni(x) · qpχp(x)]

+
∑
i

∑
p

q̇s,pχp(x)wiNi(x)

−
∑
i

∑
p

χp(x)wiNi(x)ρpCp
∂Tp
dt

}
dV (9)

Exploiting the fact that w(x) is arbitrary, this equation

transforms to a system of equations for node i:∑
p

MpCp
∂Tp
dt

Spi =
∑
p

Vpqp ·Gpi +
∑
p

Vpq̇s,pSpi

−
∫
δV

Ni(x)q(x) · n̂ dS (10)

where Mp and Vp are particle mass and volume and Spi
and Gpi are GIMP shape functions [3]:

Spi =
1

Vp

∫
V

χp(x)Ni(x) dV (11)

Gpi =
1

Vp

∫
V

χp(x)∇Ni(x) dV (12)

Allowing particle volume and heat capacity to change

each time step (superscripted with (n)), the thermal en-

ergy on node i (with SI units J) can be defined as:

τ
(n)
Ti =

∑
p

MpC
(n)
p T (n)

p S
(n)
ip (13)

The MPM thermal conduction equation becomes:

dτ
(n)
Ti

dt
= q

(n)
i + q

(n)
i,q (14)

where

q
(n)
i =

∑
p

V (n)
p

(
qp ·G(n)

ip + q̇s,pS
(n)
ip

)
(15)

q
(n)
i,q = −

∫
δV

Ni(x)q(x) · n̂ dS (16)

are nodal thermal energy flows (with SI units J/sec or

Watts). q
(n)
i is internal thermal flow while q

(n)
i,q is ther-

mal flow at boundaries due to flux boundary conditions.

Unlike the corresponding MPM momentum calculation
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for force that depends on tracked particle stress, par-

ticle heat flux is not tracked on the particle; instead

it is calculated on each time step using shape function

gradients:

qp = −k(n)p ∇T (n)
p = −k(n)p

∑
i

T
(n)
i G

(n)
ip (17)

where kp is particle thermal conductivity and nodal

temperature, T
(n)
i , is found from:

T
(n)
i =

τ
(n)
Ti

c
(n)
i

where c
(n)
i =

∑
p

MpC
(n)
p S

(n)
ip (18)

is nodal heat capacity (SI units J/K) extrapolated from

particles. The temperature update on each node is

T
(n+1)
i = T

(n)
i +

q
(n)
i + q

(n)
i,q

c
(n)
i

∆t = T
(n)
i + v

(n)
Ti ∆t (19)

where nodal temperature “velocity” (SI units K/sec) is

v
(n)
Ti =

q
(n)
i + q

(n)
i,q

c
(n)
i

(20)

Once temperature velocities are found, each parti-

cle’s temperature updates by:

T (n+1)
p = T (n)

p + v
(n)
Tp∆t (21)

where v
(n)
Tp is temperature velocity extrapolated to the

particle. Two options are possible. The first extrapo-

lates the temperature velocity using

v
(n)
Tp =

∑
i

v
(n)
Ti S

(n)
pi (22)

while the second extrapolates heat flux and divides that

result by particle heat capacity:

v
(n)∗
Tp =

1

ρpCp

∑
i

q
(n)
i + q

(n)
i,q

v
(n)
i

S
(n)
pi (23)

where

v
(n)
i =

∑
p

VpS
(n)
ip (24)

is volume extrapolated to the node. These two methods

are identical when all particles have the same mass, den-

sity, and heat capacity, but would differ in composite

materials and when modeling phase transitions where

heat capacity varies in the melting region. In general,

the results seem similar, but unpublished results with

phase transitions suggest the first method (extrapola-

tion of temperature rate) is more stable. This paper

uses that method (and actually either method would

work because all examples used particles with the same

mass, density, and heat capacity). Note that particle

temperature must be updated by extrapolating temper-

ature velocity instead of temperature, to the particle.

A temperature extrapolation leads to artificial conduc-

tion, even if the material’s conductivity is zero [4].

The conduction solution is easily coupled to stan-

dard MPM mechanics analysis. Coupling occurs two

ways - through thermal expansion or through heat gen-

erated by various mechanisms. Thermal expansion is

coupled by evaluating temperature increment on each

particle for input to constitutive law calculations that

account for thermal expansion. Because of the way par-

ticle temperatures update, some simulations exhibit vari-

ations in T
(n)
p within a cell. Despite these variations, the

temperature field on the grid remains smooth and is a

better description of the current temperature field. As

a consequence, temperature increment on each particle

is best calculated from

∆Tp = T (n+1)
g→p −T (n)

g→p where T (n)
g→p =

∑
i

T
(n)
i S

(n)
pi (25)

rather then from T
(n)
p . To make this calculation possi-

ble, particles should track both T
(n)
p and T

(n)
g→p. T

(n)
p is

used in conduction equations while T
(n)
g→p is used to find

∆Tp or to implement any other feature that depends on

particle temperature.

Heat generated by constitutive laws may be adia-

batic heating (e.g., adiabatic deformation of an elastic

material changes temperature by dTad = (M · dε)/ρ
where M is the stress-temperature tensor and dε is

the strain increment [5]) or any energy that is dissi-

pated as heat (e.g., plastic or viscoelastic energy dis-

sipation). These heat terms can be converted to tem-

perature changes (depending on particle’s current heat

capacity), accumulated during constitutive law calcula-

tions as dT
(n)
p,ad, and then added to particle temperature

during MPM particle updates. In effect, this approach

is solving an adiabatic particle heat equation:

ρpCp
dT

(n)
p

dt
= q̇s (26)

with solution

T (n+1)
p = T (n)

p +
q̇s∆t

ρpCp
= T (n)

p + dT
(n)
p,ad (27)

Other heat generation might be frictional contact at

material interfaces and cracks [14] or crack tip heating

during crack propagation. These heats are often found

on the grid and implemented by adding to q
(n)
i in con-

duction calculations

q
(n)
i (total) = q

(n)
i +

∑
j

qj,i (28)
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where the sum is over events j that each generates heat

qj,i on node i (SI units Watts).

The above derivation is for Cartesian coordinates.

Extension to axisymmetric MPM is trivial and details

are provided in Ref. [15]. The only changes needed for

axisymmetry are to use axisymmetric Spi andGpi shape

functions and to use particle mass (Mp) and volume

(Vp) on per-radian basis.

2.2 Heat flow across material interfaces

Extending MPM to handle heat flow at material inter-

faces requires each material to extrapolate to indepen-

dent temperature fields on the nodes and then to im-

plement contact heat flow physics at all interface nodes

(defined as nodes that “see” temperature fields from

more than one material). We define material specific

quantities from sums that include only particles of ma-

terial α:

τ
(n)
Ti,α =

∑
p∈α

MpC
(n)
p T (n)

p S
(n)
ip (29)

c
(n)
i,α =

∑
p∈α

MpC
(n)
p S

(n)
ip (30)

q
(n)
i,α =

∑
p∈α

V (n)
p

(
q′(n)p ·G(n)

ip + q̇(n)s,pS
(n)
ip

)
(31)

where (importantly) q
′(n)
p is heat flow that would occur

on particle p in the absence of interactions with other

materials. It is calculated from the temperature field

for the material type of particle p:

q
′(n)
p∈α = −k(n)p

∑
i

T
(n)
i,α G

(n)
ip = −k(n)p

∑
i

τ
(n)
Ti,α

c
(n)
i,α

G
(n)
ip (32)

For any number of materials, global and material ex-

trapolations are related by:

τ
(n)
Ti =

∑
α

τ
(n)
Ti,α and c

(n)
i =

∑
α

c
(n)
i,α (33)

In contrast, global and material heat flows may differ

(q
(n)
i 6=

∑
α q

(n)
i,α ) because q

(n)
i and q

(n)
i,α ’s are based on

different particle heat flows (q
(n)
p vs. q

′(n)
p ) that are cal-

culated from different temperature field gradients.

The governing equation on node i for material α is

dτ
(n)
Ti,α

dt
= q

(n)
i,α +∆q

(n)
i,α + φ

(n)
i,αq

(n)
i,q (34)

where ∆q
(n)
i,α is any additional heat flow that must be

added to account for material interfaces at node i and

φ
(n)
i,α is the fraction of any heat flux boundary condi-

tion on node i that must be applied to material α. The

temperature update for particle p of material α using

temperature rates for material α is:

T
(n+1)
p∈α = T (n)

p +∆t
∑
i

q
(n)
i,α +∆q

(n)
i,α + φ

(n)
i,αq

(n)
i,q

c
(n)
i,α

Spi (35)

and the back extrapolation to find temperature incre-

ment is

T
(n)
g→p∈α =

∑
i

T
(n)
i,α S

(n)
pi (36)

The implementation of MPM heat conduction anal-

ysis that accounts for material interfaces is now reduced

to determining ∆q
(n)
i,α and φ

(n)
i,α at each interface node.

2.3 Contact calculations

When MPM calculations are in multimaterial mode

[2, 7, 11], the standard approach to contact is to adjust

momenta on all nodes in contact. In brief, whenever

a node has more than one material, mechanics calcu-

lations determine if they are in contact [11]. If they

are in contact, momenta are changed to reflect contact

physics (e.g., frictional contact [2, 7] or an imperfect

interface [11]). When this mechanics analysis is cou-

pled to heat flow analysis, these contact calculations

should also calculate ∆q
(n)
i,α and φ

(n)
i,α on the same con-

tact nodes. Furthermore, while contact forces can be

skipped when interface are separated, heat flow calcu-

lations are needed for interfaces both in contact and

separated. Determination of contact or separation can

be used to implement different heat flow characteristics

for each state. For example, interfaces in contact might

transfer heat by conduction, while separated interfaces

might use convection.

To start, consider perfect conduction at an interface

such that multimaterial conduction analysis should re-

vert to the global analysis that ignores interfaces. In this

limit, the particle updates must be identical. Equating

Eq. (21) to Eq. (35) and solving for perfect conduction

heat flow change, ∆q
∗(n)
i,α , gives

∆q
∗(n)
i,α =

c
(n)
i,α

c
(n)
i

q
(n)
i − q(n)i,α +

(
c
(n)
i,α

c
(n)
i

− φi,α

)
q
(n)
i,q (37)

If we assume φ
(n)
i,α = c

(n)
i,α/c

(n)
i (i.e., assume that ex-

ternally applied flux is logically spread over available

materials according to their heat capacity fraction on

the node), this term becomes:

∆q
∗(n)
i,α = φi,αq

(n)
i − q(n)i,α (38)

Next consider an interface with exactly two mate-

rials – α and β – having contact by convection with
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convection coefficient h (in W/(m2-K)). The convection

heat flow applied to each material is:

∆q
(n)
i,α = hai

(
T

(n)
i,β − T

(n)
i,α

)
and ∆q

(n)
i,β = −∆q(n)i,α (39)

where ai is interfacial contact area on the grid for node

i. In other words, heat flow induced by convection at

an interface is added to each material and total extra

heat flow is zero.

The contact area can be calculated by the same

methods used when implementing MPM contact meth-

ods that depend on contact area as described in (au-

thor?) [11]; the needed area is:

ai =

√
2(v

(n)
i,α + v

(n)
i,β ) min(v

(n)
i,α , v

(n)
i,β )

t⊥
(40)

where

v
(n)
i,α =

∑
p∈α

V (n)
p S

(n)
ip (41)

is material volume extrapolated to the grid and t⊥ is

an effective thickness of the contacting volume. For a

regular grid with equal element sides, ∆x = ∆y = ∆z,

t⊥ = ∆x or is equal to the constant cell size. For el-

ements with rectangular elements, t⊥ is needed to ac-

count for interfaces oriented in different grid directions.

More explanation and a method for finding t⊥ are given

in Ref. [11]. Importantly, ai is an effective contact area

that reduces to an area as a function of distance from

node i to the interface. This scaling is crucial for grid

independence of contact results as demonstrated in the

“Results and discussion” section.

A robust numerical implementation must allow for
three or more materials on a single node. To handle

this situation, replace material β with a virtual ma-

terial that lumps all materials besides material α or

τ
(n)
Ti,β = τ

(n)
Ti −τ

(n)
Ti,α, c

(n)
i,β = c

(n)
i −c

(n)
i,α , T

(n)
i,β = τ

(n)
Ti,β/c

(n)
i,β ,

and v
(n)
i,β = v

(n)
i − v(n)i,α . Substituting into Eq. (39) and

eliminating all β terms, a general convection flow added

to material α becomes

∆q
(n)
i,α = hai

T
(n)
i − T (n)

i,α

1− φi,α
(42)

This change is applied (individually) to each material

on the node. For two materials, this approach reduces

exactly to Eq. (39) and total added heat flow is zero.

For more than two materials, it gives a reasonable result

although the sum of ∆q
(n)
i,α may not be zero.

The full contact heat flow algorithm is:

1. After updating momenta on the nodes, evaluate the

velocity fields at each node with more then one ma-

terial, determine whether or not they are in contact

[11], use the contact state to select contact prop-

erties (e.g., assume heat flow by convection with

convection coefficient h or equilibrated heat flow by

conduction), and then repeat following steps 2 and

3 for each material (α) at the node (i).

2. Find ∆q
∗(n)
i,α for heat flow under the perfect conduc-

tion limit.

3. If the contact state is using equilibrated conduction,

set ∆q
(n)
i,α = ∆q

∗(n)
i,α . If instead it is using convec-

tion, find ai and ∆q
(n)
i,α by Eq. (42). This heat flow,

however, must not exceed conduction heat flow. If

|∆q(n)i,α | < |∆q
∗(n)
i,α |, then use ∆q

(n)
i,α ; otherwise set

∆q
(n)
i,α = ∆q

∗(n)
i,α .

4. If mechanical analysis determines interfaces in con-

tact by friction, the frictional sliding can be con-

verted to heat by adding a calculated qfriction to

qi,q (i.e., by adding φi,αqfriction to heat flow in each

material’s temperature field).

Note that calculation of ∆q
(n)
i,α requires knowledge of

both q
(n)
i , which depends on q

(n)
p , and q

(n)
i,α , which de-

pends on q
′(n)
p . As a consequence, MPM code to imple-

ment interfacial heat flow must extrapolate both global

and material temperature fields to calculate both q
(n)
p

and q
′(n)
p on each particle.

2.4 Heat flow across cracks

Analysis of heat flow across cracks is nearly identical to

heat flow at material interfaces except separate temper-

ature fields for each material are replaced by separate

temperature fields for each side of the crack. In MPM

with cracks (which is called CRAMP [9]), each parti-

cle node pair is assigned a crack velocity field, v(p, i)

= 1 or 0 depending whether a line from the particle to

the node crosses a crack (1) or does not cross a crack

(0). For a single crack, each node will have at most two

velocity fields (0 and 1). The CRAMP method can be

extended to handle two interacting cracks by allowing

up to four velocity fields on each node (or v(p, i) = 0 to

3) corresponding to lines that cross no cracks (0), one

crack (1), a second crack (2), or both cracks (3) [13].

When modeling heat flow across cracks, the crack

velocity field specific thermal terms become:

τ
(n)
Ti,j =

∑
p

MpC
(n)
p T (n)

p S
(n)
ip δj,v(p,i) (43)

c
(n)
i,j =

∑
p

MpC
(n)
p S

(n)
ip δj,v(p,i) (44)

q
(n)
i,j =

∑
p

V (n)
p

(
q′′(n)p ·G(n)

ip + q(n)s,pS
(n)
ip

)
δj,v(p,i) (45)

v
(n)
i,j =

∑
p

V (n)
p S

(n)
ip δj,v(p,i) (46)
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where j is crack temperature field j on node i and δ

is the Kronecker delta. The crack heat flow term, q
(n)
i,j ,

includes yet another particle heat flow, q
′′(n)
p , that is

calculated each time step using

q′′(n)p = −k(n)p

∑
i

τ
(n)
Ti,v(p,i)

c
(n)
i,v(p,i)

G
(n)
ip (47)

In other words, it extrapolates temperature gradient

from each node using the temperature appropriate for

that particle-node pair.

The crack contact calculations determine if crack

surfaces are in contact and heat flow calculations are

applied to each crack temperature field instead of each

material temperature field. Crack heat flow calculations

are identical to material calculations in section 2.3 ex-

cept they use crack terms instead of material terms.

The particle updates in Eqs. (35) and (36) replace α

with the appropriate velocity field v(p, i). To imple-

ment these calculations, the extrapolations must eval-

uate both q
(n)
p and q

′′(n)
p on each particle.

2.5 Combining cracks and material interfaces

To combine heat flow across both cracks and material

interfaces, temperature fields have to be arranged in a

hierarchical structure. The approach used here was to

allow each node to have multiple crack velocity fields

(up to two for a single crack or up to four to handle

two interacting cracks). Each crack velocity field may

have 1 to m material temperature fields, where m is the

number of materials in the simulation.

In this arrangement, an analysis may encounter three
types of nodes requiring additional heat flow calcula-

tions — nodes with multiple materials within a single

crack velocity field, nodes with multiple crack velocity

fields each having only a single material, and nodes with

multiple crack velocity fields containing multiple mate-

rials. The first two are handled exactly as described in

sections 2.2 and 2.4. The last one requires special treat-

ment:

1. Heat flow at material interfaces are handled first.

Because materials are within a crack velocity field,

these calculations replace global values (T
(n)
i , c

(n)
i ,

and q
(n)
i ) with the corresponding crack temperature

field values (T
(n)
i,j , c

(n)
i,j , and q

(n)
i,j ) and then proceed

as described in section 2.2.

2. Heat flow at cracks are handled second. The change

to the crack temperature field heat flow is calculated

exactly as described in section 2.4. When done, how-

ever, c
(n)
i,α∆q

(n)
i,j /c

(n)
i,j is added to each material tem-

perature field (i.e., the added heat flow is spread

over material temperature fields according to their

thermal mass fraction within the crack velocity field).

For all interface nodes, particle updates use the ma-

terial temperature field (see Eq. (35)). For this update

to work on nodes having multiple crack velocity fields

with only a single material, the total crack heat flow in

such fields, j, should be copied to that one material, α

(i.e., qi,α(n) = q
(n)
i,j +∆q

(n)
i,j ). Finally, for MPM code to

implement combined interfacial and crack heat flow, it

must extrapolate global, material, and crack tempera-

ture fields to calculate q
(n)
p , q

′(n)
p , and q

′′(n)
p on each

particle.

3 Results and discussion

The algorithm presented is fully 3D and could be added

to any code that models 3D contact mechanics and/or

3D cracks. The verification examples given here were

all 2D or axisymmetric. The first problem was a 2D

simulation, but models a 1D problem. Consider a strip

of length L = 100 mm from x0 = −50 mm to x1 =

+50 mm and width 20 mm with MPM background cell

size of 2.5 × 2.5 mm (and, like all simulations in this

paper, four particles per cell). The strip was comprised

of two separate isotropic materials, but with identi-

cal (arbitrarily-selected) thermal properties: k = 2000

W/(m·K), C = 1000 J/(kg·K), and ρ = 1 g/cm3. All

calculations were done in the MPM code OSParticu-

las [12], which fully couples mechanical and thermal

calculations. Because thermal conduction is typically

much slower than stress waves, these calculations used a

low-modulus, zero-expansion material (E = 0.01 MPa,

ν = 0.33, and thermal expansion coefficient = 0) to

allow a larger time step for explicit integrations.

At time zero, all particles were set to temperature

T0 = 0◦C and boundary conditions set T = T0 = 0◦C

at x0 and T = T1 = 100◦C at x1. The interface was at

x = 0 and was modeled as conduction when in contact,

but convection (with convection coefficient h) when sep-

arated. To induce contact or separation, the two mate-

rials were either pushed together or pulled apart by

0.5 mm before the heat flow reached the interface. A

Fourier series solution to this problem for conduction

in the absence of an interface is [6]:

T (x, t) = T0 +∆T

(
ξ + 2

∑
n

(−1)n

nπ
e−λ

2
nt sin(nπξ)

)
(48)

where ∆T = T1 − T0, ξ = (x − x0)/L, and λn =

(nπ/L)
√
k/(ρC).
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Fig. 1 Temperature profile in a bar with two materials in
contact at x = 0 mm. All material points started at T =
0◦C and the results are after 500 ms with T set to 0◦C at
x = −50 mm and 100◦C at x = +50 mm . The solid black
line is the MPM result. The dotted red line is the analytical
solution.
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Fig. 2 Temperature profile in a bar with two materials sep-
arated by 0.5 mm at x = 0 mm. All material points started
at T = 0◦C and results are after 500 ms with T set to 0◦C at
x = −50 mm and 100◦C at x = +50 mm . The solid lines are
MPM results for various values of interfacial convection coef-
ficient h (in W/(m2-K)). The dashed red line is the analytical
solution for perfect conduction.

Figure 1 shows results after 500 ms with the in-

terface pushed into contact. Because contact was mod-

eled as conduction, the results should reduce to perfect

conduction. The MPM solution (solid black line) is

nearly identical to the analytical solution (dotted red

line). Figure 2 shows the analogous results when the

interface was separated. This case developed a temper-

ature discontinuity at the interface. When h = 0 no

heat is transferred across the interface and all temper-

ature rise was to the right of the interface (x > 0). The

left side material correctly stayed exactly at zero. As h

increased, the discontinuity got smaller and the results

approached the analytical solution for perfect conduc-

tion.

Notice that the h = ∞ (which used very large h)

does not exactly match the analytical solution, which

is understood by looking at expected interface nodes.

Figure 3 shows material points around an interface near

grid line 0 when in contact (Fig. 3A) or separated (Fig.

3B). The circled nodes show all nodes that would be in-

terface nodes when using GIMP shape functions (and

non-GIMP methods used in early MPM papers [16]

should be avoided because they activate fewer nodes).

When in contact, the nodes at -1, 0 and +1 are all inter-

face nodes that adjust their heat flow and this arrange-

ment is able to exactly revert to perfect conduction for

large h. The nodes at ±2 are not interface nodes, but

they are sufficiently far from the interface that global

(q
(n)
p ) and material (q

′(n)
p ) heat flows would be identi-

cal. Thus, when in contact all nodes can exactly recover

perfect conduction for large h.

In contrast, when separated (Fig. 3B), only the nodes

at 0 are interface nodes. Although those nodes can re-

vert to conduction for very high h, the nodes at ±1

have only a single material field. Because those nodes

are close to an interface, they will have a slight discrep-

ancy between their global (q
(n)
p ) and material (q

′(n)
p )

heat flows (due to use of T
(n)
i,α instead of T

(n)
i , which

differ near an interface). Because their heat flow must

be based on the material temperature field (to be cor-

rect for lower h), these nodes cannot recover the perfect

conduction limit at high h.

Correcting the analysis to revert to perfect con-

duction limit at high h is relatively unimportant be-

cause 1) the discrepancy from perfect conduction is typ-

ically small and 2) when h is sufficiently high, the sim-

ulation can simply be run using standard conduction

that ignores interfaces. Nevertheless, a simple correc-

tion seems to work. Realizing that heat flow at single-
material nodes±1 cell from an interface may have slight-

ly reduced heat flow, one option is to compensate for

that by allowing the ∆q
(n)
i,α on interface nodes to slightly

exceed the conduction limit ∆q
∗(n)
i,α . Figure 4 magnifies

the discontinuity region for very high h as a function

of the excess heat flow allowed over conduction. As the

allowed excess increased to 1% the simulations got very

close to the analytical solution. Increasing beyond 1%

did not improve the agreement and by 4%, the excess

heat flow caused a temperature instability.

Although allowing 1% excess allowed high-h simu-

lations to approach perfect conduction, what are the

consequences on that excess heat flow when h is lower?

Figure 5 shows the temperature discontinuity at the in-

terface in the separated 1D bar example as a function

of h for either 1% excess heat flow (solid line) or 0%

excess heat flow (dashed line). For low h, the added

excess had no effect (because convection flow is always

less than the conduction limit), but at high h, the 1%

excess allowed the discontinuity to approach the cor-
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0 +1 +2 +3-1-2-3

A

B

C

Fig. 3 Material points (solid circles) on top of a background
grid for cases when the material interface between “black”
and “gray” materials is A. in contact. B. separated. C. sep-
arated but the interface is near the midpoint of background
cells. The red empty circles indicate interface nodes in the
MPM calculations that can adjust heat flow to account for
the interface.
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Fig. 4 Temperature profile in a bar using conditions identical
to Fig. 2 for very high h (effectively infinite) as a function
of the excess heat flow allowed at interface nodes. The plot
magnifies the region near the interface. The dashed red line is
the analytical solution for perfect conduction at the interface.

rect limit of zero. In brief, it appears reasonable to al-

ways allow 1% excess heat flow. Making this excess a

simulation parameter would allow it to be adjusted for

different problems if needed. The proper excess would

be determined by comparing high-h simulation results

to a simulation that ignores interfaces.
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Fig. 5 Temperature discontinuity at the material interface
for a bar using conditions identical to Fig. 2 as a function of
h and for 0% (dashed line) or 1% (solid line) excess heat flow
allowed at interface nodes.

All previous examples had the interface close to a

grid line in the background grid, but it is important

to verify heat flow calculations are independent of in-

terface location within that grid. Figure 3C shows an

interface through midpoints of background cells. The

circled nodes show that twice as many interface nodes

are present for such an interface compared to an in-

terface near a grid line (c.f., Fig. 3B). If contact heat

flow calculations do not account for total number of in-

terface nodes, these two interface locations would give

different results. This issue is identical to contact force

calculations in MPM [11] and solved by proper choice

of contact area ai in Eq. (41), which should be read as

an effective contact area. When the interface is near a

grid line (Fig. 3B), v
(n)
i,α = v

(n)
i,β ≈ v

(n)
i /2, where v

(n)
i

is total volume extrapolated to node i. The effective

contact area reduces to ai = v
(n)
i /t⊥, which is equal to

the physical contact area. When the interface is through

midpoints of background cells (Fig. 3C), v
(n)
i,α ≈ 7v

(n)
i /8

and v
(n)
i,β ≈ v

(n)
i /8, where material α is the one that

surrounds the node [11]. The resulting effective con-

tact area, ai = v
(n)
i /(2t⊥), now correctly assigns half

the contact heat flow to each interface node in Fig. 3C

where the interface is affecting twice as many nodes.

Figure 6 compares results for an interface near a grid

line to one through midpoints of background cells for

h = 3×104 W/(m2-K). The results are nearly identical.

The dashed line, however, shows results for an interface

through midpoints but using the physical contact area

(≈ v(n)i /t⊥) instead of the effective contact area ai. Be-

cause the uncorrected area is about twice ai, the added

heat flow is two times too high leading to a temperature

distribution corresponding to doubling of h. For realis-

tic simulations, especially when interfaces move during

calculations, grid independence requires use of ai. The

overlapping, h = ∞ curves show that the results are
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Fig. 6 Temperature profile in a bar using conditions identical
to Fig. 2 for h = 3 × 104 W/(m2-K) and h = ∞ for simula-
tions with the interface near a grid line or through midpoints
of background cells. The dashed blue line is for an inter-
face through midpoints of cells but using physical instead of
effective contact area. The dotted red line is the analytical
solution for perfect conduction at the interface.

independent of interface location and are identical to

the analytical solution. Although less correction was

needed when the interface was near the midpoints of

cells (because of the higher number of interface nodes),

each calculation agreed well with the perfect conduction

limit by allowing the recommended 1% excess heat flow.

To validate heat flow analysis across cracks, simula-

tions in Fig. 2 were repeated with the material interface

being replaced by a crack within a single material or

by a crack part way along a material interface in mul-

timaterial mode. The first tested heat flow at cracks

instead of material interfaces while the second tested

problems that combine cracks and multimaterial mode.

These new results were identical to the results in Fig. 2

(therefore no new plot is shown).

Figure 7 shows temperature discontinuity at an in-

terface for the simulation in Fig. 2 with h = 3 × 104

W/(m2·K), but now as a function of interfacial sepa-

ration. For interfaces in contact (separation < 0), the

modeling assumed conduction and ∆T was always zero.

For separated interfaces, ∆T increased as a function

of separation and approached the h = 0 limit (dotted

red line) for separation of more than two cells in the

background grid. A separation of more than two cells

corresponds to materials that are sufficiently far apart

that the simulation no longer has interface nodes. When

there are no interface nodes, no calculations are done

to adjust heat flow and thus heat transfer across the

gap drops to zero. In other words, a separation of more

than two cells results in numerical separation and ther-

mal isolation of the materials.

Because of numerical separation, the modeling de-

scribed here works best for interfaces and cracks with

small separations (less than the background cell size).
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Fig. 7 Temperature discontinuity at a material interface
for a bar using conditions identical to Fig. 2 with h =
3×104 W/(m2·K) as a function of separation between the two
materials. The dotted red line is temperature discontinuity
when h = 0.

While it is physically reasonable for effective convection

coefficient h to decrease as separation increases, the sep-

aration dependence apparent in Fig. 7 is controlled by

background grid cell size and not physics of heat trans-

port. This property could be changed by allowing the

interfacial heat flow (see Eq. (42)) to be any function

of T
(n)
i , T

(n)
i,α , and δ (where δ is interfacial opening dis-

placement available in both contact [11] and explicit

crack [9, 10] calculations). For example, decreased heat

flow as a function of separation could be modeled by

allowing h to decrease as separation increases. But no

function can compensate for loss of thermal contact af-

ter “numerical separation.” Such wide separations be-

come a problem of modeling heat flow through voids

rather than across interfaces. Void modeling will require
new methods. One approach might be to fill voids with

a gas having different thermal conductivity properties

and then modeling contact between gas and solid at

material interface by the methods presented here.

Two final examples considered real-world examples

that illustrate problems where interfaces or cracks might

affect heat flow. Vacuum arc remelting (VAR) is a tech-

nologically-important metals process [8]. In brief, a cy-

lindrical ingot is remelted by electrical currents into a

cylindrical crucible. If the process can be sufficiently

controlled, the re-solidified ingot can have fewer im-

purities and better properties. Because VAR is an im-

portant and expensive process, any modeling methods

that can help control it would be beneficial. Full VAR

modeling requires many features such as phase transi-

tions, recrystallization kinetics, Lorentz forces induced

from electric currents, and more. A possible MPM ap-

proach to this problem will be in a future publication.

This paper considers only a VAR-related example for

cooling a cylindrical ingot within a crucible under con-
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ditions where thermal contraction of the ingot causes

it to separate from the crucible walls. Because VAR is

conducted under vacuum, such separation is likely to

affect cooling efficiency.

Consider a cylindrical ingot (radius 40 mm; length

100 mm) fully surrounded by a crucible. Mechanical

and thermal properties of ingot (i) and crucible (c)

were set to Ei = Ec = 1 MPa, νi = νc = 0.33, αi =

40 × 10−6 C−1, αc = 0 C−1, ki = 10000 W/(m·K),

kc = 50000 W/(m·K), Ci = Cc = 1000 J/(kg·K), and

ρi = ρc = 1 g/cm3. Most importantly, the ingot’s ther-

mal expansion coefficient was higher than the crucible’s

such that the ingot will pull away from the crucible as it

cools. The axisymmetric simulation used 2.5× 2.5 mm

cells, started with all material points at 50◦C, and grad-

ually heated them to 100◦C. The heating was done to

induce interfacial pressure such that all surfaces start in

full contact. Gradual heating (relative to the material’s

wave speed) was done to minimize dynamic stress ef-

fects. After reaching 100◦C, two different cooling meth-

ods were used. First, the entire crucible was immersed

in a thermal bath at 0◦C and crucible outer surfaces

were modeled by heat flux boundary conditions on sur-

face particles of q(n) = hsurf (T − Tres) (see Eq. (16))

where hsurf = 105 W/(m2·K), T is particle tempera-

ture, and Tres = 0◦C is the reservoir temperature. The

average temperatures in the ingot as a function of time

after reaching 100◦C for various values of h across sep-

arated ingot/crucible interfaces are plotted in Fig. 8.

At first, all cooling was close to the perfect conduction

limit (h = ∞ curve), but lower h gave slightly slower

cooling because thermal gradients induced some loss of

contact at the ingot/crucible interface. After the aver-

age temperature dropped below the initial temperature

of 50◦C, the entire ingot separated from the crucible

and the cooling rate significantly slowed. For h = 0,

heat transfer stopped and therefore cooling stopped.

As h increased, cooling continued but cooling rates de-

pended strongly on h.

Figure 9 shows corresponding results where the bot-

tom half of the crucible was immersed in a 0◦C reser-

voir while the top half remained in a 100◦C reservoir.

The perfect condition limit (h = ∞ curve) gave the

expected result that average temperature approached

50◦C with a steady state temperature gradient from

cold side to hot side. The results with interfacial heat

transfer, however, gave non-intuitive results. The cool-

ing curves show regions of reduced cooling rates and

regions of higher cooling rates. These regions are deter-

mined by which parts of the interface were in contact.

When the hotter walls on the top half lost contact, the

cooling rate was higher, but when the colder walls on

the bottom half lost contact, the cooling rate slowed.
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Fig. 8 Average temperature in an ingot initially heated from
50 to 100◦C followed by immersing the crucible in a 0◦C
reservoir as a function of cooling time for various values of h

(in W/(m2-K)).
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Fig. 9 Average temperature in an ingot initially heated from
50 to 100◦C followed by the bottom half of the crucible being
immersed in a 0◦C reservoir while the top half remained in
a 100◦C reservoir as a function of cooling time for various
values of h (in W/(m2-K)).

Transitions between slow and fast cooling indicate dy-

namic motion of the ingot within the crucible. The role

of dynamic contact between ingot and crucible on heat

flow would be difficult to model by anything other than

numerical methods such as those proposed here.

The second real-world example modeled cracks. One

method for detecting internal cracks in solid, opaque

objects is by thermal imaging [1]. In brief, an object

is heated by various methods and the surface temper-

ature is imaged using an infrared camera. If cracks af-

fect heat flow, the number and location of cracks will

alter the temperature distribution. The heat-flow meth-

ods described here could help to interpret such exper-

iments. Figure 10 shows two examples of the effect of

cracks on temperature distributions during heat flow.

The 100× 50 mm isotropic material (E = 1 MPa, ν =

0.33, α = 0, k = 10000 W/(m·K), C = 1000 J/(kg·K),

and ρ = 1 g/cm3, thickness = 1 mm) started at 0◦C.

The bottom edge was heated using constant heat-flux

boundary condition of q(n) = 107 W/m2, the top edge
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A.

B.

Fig. 10 Temperature distribution in an object with A. one
crack or B. four cracks after 500 ms of heat flux applied to the
bottom surface. The image lightness indicates temperature
from 40◦C (dark) to 110◦C (light) and 7◦C per contour.

was cooled by convection using q(n) = hsurf (T − Tres)
where hsurf = 105 W/(m2·K) and Tres = 0◦C, and

the sides had zero heat flux. To maximize crack ef-

fects, convective heat flow across cracks surfaces used

h = 0. The temperature distribution was evaluated at

the end of a 500-ms heating period. The MPM model

used 2.5× 2.5 mm cells.

The first simulation had a single crack in the middle

of the object, which, as shown in Fig. 10A, influenced

the temperature field. Thermal imaging can only ob-

serve surface temperature. Figure 11 shows a drop on

the top surface temperature above the crack compared

to temperature distribution that would occur with no

cracks. The length of the crack could be estimated from

this drop, but the details would depend on distance of

the crack to the surface and on the convection coeffi-

cient for heat flow across the crack surface.

The second simulation used four arbitrarily sized

and placed cracks. The temperature field was signifi-

cantly altered (see Fig. 10B) and the surface tempera-

ture showed highly convoluted effects of cracks on sur-

face temperature distribution. For example, the tem-

perature above the last crack on the right was higher

than average. That crack was too far below the sur-

face to have continued effect on surface temperature. It

is unlikely the surface temperature alone can uniquely

locate internal cracks, but modeling coupled with ex-

periments could lead to derivation of a distribution of

equivalent cracks that are consistent with observed sur-

face temperature variations.
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Fig. 11 Surface temperature from the thermal fields in
Fig. 10 for one crack (dashed black line), four cracks (solid
blue line), or no crack (dotted red line).

4 Conclusions

This paper describes a new MPM feature for modeling

heat flow across material interfaces, cracks planes, or

both. The method works best for interfaces with small

separations (less than one cell size in the background

grid). The method has potential for analysis of real-

world problems that couple mechanical response with

heat flow across interfaces or cracks where temperature

changes may cause interfaces or crack planes to dynam-

ically lose or regain contact.
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