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Abstract

One approach to characterizing interfacial stiffness is to introduce imperfect interfaces that
allow displacement discontinuities whose magnitudes depend on interfacial traction and on
properties of the interface or interphase region. This work implemented such imperfect in-
terfaces into both finite element analysis and the material point method. The finite element
approach defined imperfect interface elements that are compatible with static, linear finite
element analysis. The material point method interfaces extended prior contact methods to
include interfaces with arbitrary traction-displacement laws. The numerical methods were
validated by comparison to new or existing stress transfer models for composites with imper-
fect interfaces. Some possible experiments for measuring the imperfect interface parameters
needed for modeling are discussed.

Keywords: Imperfect Interfaces, Material Point Method, Finite Element Analysis,
Wood-Based Composites

1. Introduction

An interface between phases in a composite has at least two distinct properties — strength
and stiffness. “Strength” is used here as a generic term for interfacial damage or failure. Inter-
facial strength properties are important when considering composite failure properties. “Stiff-
ness” is used here as a generic term for stress transfer between components of a composite.
Interfacial stiffness properties are important when considering composite mechanical proper-
ties. Prior to interfacial damage, the role of the interface is solely characterized by its stiffness
properties while its strength properties are irrelevant. This paper is on numerical modeling of
those interfacial stiffness properties and uses the concept of an “imperfect” interface to lump
complexities of a three dimensional interphase zone into a two dimensional interface model.

This work was motivated by wood-based composites such as oriented strand board, ply-
wood, laminated veneer lumber, glue-lam, fiber board, and particle board [1]. These wood
products are made with a minimal amount of glue and have complicated glue lines. Various
effects influence glue line properties such as species of wood, surface preparation, glue pene-
tration into wood cells, and moisture content of the wood. Numerous test standards for charac-
terizing wood glue lines are available, but nearly all focus on interfacial strength or toughness.
Because most wood structure design is stiffness driven, modeling methods and experiments
that characterize the role of interfacial stiffness properties on the stiffness of wood-based com-
posites are also needed.
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Figure 1: Schematic view for replacement of a 3D interphase (left) by a 2D interface with a displacement discon-
tinuity (right).

Glue line interfaces in wood (and many other interfaces) are complex three dimensional
structures with a transition in properties between two bonded materials. Modeling such struc-
tures is difficult and depends on many unknown, and possibly unknowable, properties. One
modeling method is to replace the 3D structure by a 2D interface and to reduce the unknown
properties to a few measurable “interface parameters.” The goal is to develop a 2D interface
model that sufficiently describes stress transfer across the real 3D interface. The principle
is illustrated in Fig. 1. The left side shows an interphase zone with a gradient in properties
between two materials and complex shear deformations. The right side shows a simplified
composite where macroscopic deformations are the same, but a 2D interface has replaced the
interphase zone. Deformation of the interphase is modeled by allowing a displacement discon-
tinuity at the 2D interface. The displacement discontinuity magnitude should be a function of
the traction vector in the direction of the discontinuity and stiffness properties of the imperfect
interface [2, 3, 4, 5] .

For a general 2D interface between 3D materials, the traction vector can be divided into
components normal to the interface, Tn, and parallel to the interface, Tt . Prior analytical
models [2, 3, 4] use the simplest assumption where traction is proportional to displacement
discontinuity

Tn = Dn[un] and Tt = Dt[ut] (1)

where [un] and [ut] are the normal and tangential displacement discontinuities, and Dn and
Dt are the interface parameters. These parameters reduce all properties of the 3D interphase
to two interface stiffness properties. As Dn and Dt approach zero, tractions approach zero
and the interface is debonded. As Dn and Dt approach infinity, displacement discontinuities
approach zero and the interface is perfect. All other values describe an imperfect interface to
model the response of a interphase. The example interface is linear. The approach can extend
to non-linear models by introducing non-linear relations between traction and displacement
discontinuity.

Modeling with imperfect interfaces requires two tasks. The first is to model arbitrary com-
posites with imperfect interfaces. Some analytical models are available for ideal geometries
and linear interfaces [2, 4]. Numerical models are needed for complex geometries and non-
linear interfaces. This paper describes implementation of imperfect interfaces into finite ele-
ment analysis (FEA) and into the material point method (MPM). The implementations were
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verified by comparison to new or existing analytical models of composites with imperfect inter-
faces. The FEA implementation was limited to linear interfaces and quasi-static calculations.
The MPM implementation extended previous work on contact between materials [6] and in-
cluded non-linear interfaces.

The second task for modeling with imperfect interfaces is to propose methods for mea-
suring interface parameters such as Dn and Dt . This paper includes some observations about
experimental approaches to measuring those stiffness properties.

2. Numerical Implementation of Imperfect Interfaces

2.1. Finite Element Analysis
The finite element analysis (FEA) implementation used a linear interface traction law since

the goal was to derive an efficient element for static FEA of composites. The potential energy
associated with an imperfect interface is [3]

φi =
1
2

∫

Si

~T · [~u] dS (2)

where Si is the interfacial area, ~T is the traction, and [~u] = ~u(1)−~u(2) is the interfacial displace-
ment discontinuity (superscripts indicate side of the interface). For a planar 2D problem with
an interface following the traction-displacement law in Eq. (1), the displacement discontinuity
and traction vectors can be written in component form as

[~u] = [un]n̂1 + [ut] t̂1 and ~T = Dn[un]n̂1 + Dt[ut] t̂1 (3)

where n̂1 and t̂1 are unit normal vectors directed as shown for FEA in Fig. 2 along side 1. The
potential energy is a line integral along the interfacial path, Li:

φi =
t
2

∫

Li

�

Dn[un]
2 + Dt[ut]

2
�

dl =
t
2

∫

Li

[u]T{D}[u] dl (4)

where t is thickness,

[u] =
�

[un], [ut]
�

and {D}=
�

Dn 0
0 Dt

�

(5)

Extension to axisymmetric problems is given below; extension to 3D problems requires the
tangential direction to be in the tangential direction of the displacement discontinuity vector
and integration over the entire interfacial surface.

The normal and tangential interface displacement differences can be expressed in terms
surface displacements and derivatives along the interfacial path:

[un] = [~u] · n̂1 = [~u] ·
�

d y
dl

,−
d x
dl

�

and [ut] = [~u] · t̂1 = [~u] ·
�

d x
dl

,
d y
dl

�

(6)

3



Side 2

Side 1

dl

dl

n1
^

t1
^

n2
^

t2
^

FEA

MPM
Above

Belown̂

t̂

u(2)

u(1)

Figure 2: Arbitrary interfaces for analysis by FEA or MPM. The FEA interface shows definition of the two sides and
the various normal vectors. The MPM interface shows definition of normal vectors and the meaning of “above”
and “below” the crack.

which follows because n̂1 = (d y/dl,−d x/dl) = −n̂2 and t̂1 = (d x/dl, d y/dl) = − t̂2. The
energy becomes

φi =
t
2

∫

Si

[~u]T
�

Dn

� d y
dl

�2
+ Dt

�

d x
dl

�2
(Dt − Dn)

d x
dl

d y
dl

(Dt − Dn)
d x
dl

d y
dl Dn

�

d x
dl

�2
+ Dt

� d y
dl

�2

�

[~u] dl (7)

Next, subdivide the interface into elements each with 2n nodes and each with the unde-
formed state having the two sides in contact (see Fig. 3A). In other words, node i has the
same initial position as node 2n+1− i. Because the two sides are initially coincident, n shape
functions (Ni(ξ) in element coordinate ξ), are sufficient. The expanded surface displacements
are

~u(1) =
n
∑

i=1

Ni(ξ)
�

ui, vi

�

and ~u(2) =
n
∑

i=1

Ni(ξ)
�

u2n+1−i, v2n+1−i

�

(8)

where ui and vi are nodal x- and y-direction displacements. The displacement difference
becomes

[~u] =
�

N1(ξ) 0 N2(ξ) 0 · · · N2n(ξ) 0
0 N1(ξ) 0 N2(ξ) · · · 0 N2n(ξ)

�























u1

v1
...

u2n

v2n























(9)

where, for convenience, shape functions are extended to nodes n+ 1 to 2n using

Ni(ξ) = −N2n+1−i(ξ) for i = n+ 1, · · · , 2n (10)
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Figure 3: Imperfect interface element for FEA. A. Arbitrary element with 2n nodes. B. A linear, 4-noded element.
C. A quadratic, 6-noded element.

such that surface 2 displacements are expressed as

~u(2) = −
2n
∑

i=n+1

Ni(ξ)
�

ui, vi

�

(11)

To evaluate the unit normal vectors (i.e., d x/dl and d y/dl), the x and y coordinates along
the interface are expanded in the same n shape functions

x(ξ) =
n
∑

i=1

Ni(ξ)x i and y(ξ) =
n
∑

i=1

Ni(ξ)yi (12)

where (x i, yi) are the coordinates of node i . The expansion is similar to isoparametric elements
except here 2n shape functions are needed to expand displacements on both surfaces while
only n shape functions are needed for the coordinates. The derivatives in terms of shape
functions are:

d x
dl
=

x ′(ξ)
dl
dξ

=

∑n
i=1 N ′i (ξ)x i

dl
dξ

and
d y
dl
=

y ′(ξ)
dl
dξ

=

∑n
i=1 N ′i (ξ)x i

dl
dξ

(13)

where the arc-length derivative is

dl
dξ
=
Æ

x ′(ξ)2 + y ′(ξ)2 (14)

Finally, substituting [~u], d x/dl, and d y/dl into Eq. (7), the interfacial potential energy in
the element becomes

φi =
1
2
{u}T{KI}{u} (15)
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where {u} is the vector of nodal displacemens (see Eq. (9)) and {KI} is the interfacial stiffness
matrix. Explicit expressions for the elements of this 2n× 2n matrix are

{KI}i j = t

∫ 1

−1

N i+1
2

N j+1
2

Dt x
′(ξ)2 + Dn y ′(ξ)2

p

x ′(ξ)2 + y ′(ξ)2
dξ for i, j odd (16)

{KI}i j = t

∫ 1

−1

N i
2
N j

2

Dn x ′(ξ)2 + Dt y ′(ξ)2
p

x ′(ξ)2 + y ′(ξ)2
dξ for i, j even (17)

{KI}i j = t

∫ 1

−1

N i+1
2

N j
2

(Dt − Dn)x ′(ξ)y ′(ξ)
p

x ′(ξ)2 + y ′(ξ)2
dξ for i odd, j even (18)

{KI}i j = t

∫ 1

−1

N i
2
N j+1

2

(Dt − Dn)x ′(ξ)y ′(ξ)
p

x ′(ξ)2 + y ′(ξ)2
dξ for i even, j odd (19)

This element can be incorporated into standard FEA code including potential energy calcula-
tions associated with the interface. The above stiffness matrix is for planar analyses. To extend
to a stiffness matrix (per radian) for axisymmetric analyses, replace the thickness t by r(ξ) in
the integrand for the radial location at dimensionless position ξ.

2.2. Specific Elements
Selecting n = 2 gives a 4-node linear interface element (see Fig. 3B). The shape functions

are

N1(ξ) =
1− ξ

2
, N2 =

1+ ξ
2

, N3(ξ) = −N2(ξ), N4(ξ) = −N1(ξ) (20)

where ξ extends from −1 to 1, resulting in

x ′(ξ) =
∆x
2

, y ′(ξ) =
∆y
2

, and
dl
dξ
=
∆l
2

(21)

where∆x = x2−x1,∆y = y2− y1, and∆l is the element length. For this element, the stiffness
matrix can be exactly integrated. For example, the first row of the stiffness matrix is

{KI}11 = −{KI}17 =
t

3∆l

�

Dt(∆x)2 + Dn(∆y)2
�

(22)

{KI}12 = −{KI}18 =
t∆x∆y

3∆l

�

Dt − Dn

�

(23)

{KI}13 = −{KI}15 =
t

6∆l

�

Dt(∆x)2 + Dn(∆y)2
�

(24)

{KI}14 = −{KI}16 =
t∆x∆y

6∆l

�

Dt − Dn

�

(25)

The matrix can also be integrated numerically using two-point Gaussian quadrature (this nu-
merical result is exact for linear elements). An advantage of numerical integration is that it
generalizes better with the quadratic element described next that can not be exactly integrated.
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Selecting n = 3 gives a 6-node quadratic interface element (see Fig. 3C). The shape func-
tions are

N1(ξ) = −
ξ(1− ξ)

2
, N2 = 1− ξ2, N3 =

ξ(1+ ξ)
2

, (26)

N4(ξ) = −N3(ξ), N5(ξ) = −N2(ξ), and N6(ξ) = −N1(ξ) (27)

resulting in

x ′(ξ) =
∆x
2
+∆mxξ, y ′(ξ) =

∆y
2
+∆myξ (28)

and
dl
dξ
=
Æ

x ′(ξ)2 + y ′(ξ)2 (29)

where ∆x = x3− x1, ∆y = y3− y1, ∆mx = x1+ x2−2x3, and ∆my = y1+ y3−2x2. Because
dl/dξ depends on ξ, the stiffness matrix elements can no longer be exactly integrated. The
calculations in this paper found the stiffness matrix using 4-point Gaussian quadrature.

2.3. Alternate Finite Element Methods
An alternative FEA method for interfaces is to connect two surfaces by a row of springs.

But, a linear imperfect interface and a row of linear springs are fundamentally different. First,
the resulting global stiffness matrices are different. By definition of a stiffness matrix, the
element forces along an imperfect interface are

{F}= {KI}{u} where {F}=
�

(Fx)1, (Fy)1, · · · (Fx)2n, (Fy)2n

�

(30)

and (Fx)i and (Fy)i are components of the interface element forces at node i. From the stiffness
matrix for imperfect interfaces, the nodal forces depend on nodal displacements for all nodes
in the interfacial element. In contrast, the forces in a row of springs depend only on the
displacement difference between the two nodes connecting each spring. Second, imperfect
interface elements were derived from rigorous variational mechanics of imperfect interfaces
[3] and contribute to global energy. Thus energy results can be used for rigorous evaluation
of imperfect interface effects on stiffness properties of a composite.

The imperfect interface elements could be expressed as a special case of cohesive zone ele-
ments. For example, early development of cohesive zone elements [7] begins with a potential
energy function analogous to Eq. (2). But, cohesive zone elements always emphasize failure
properties and thus their traction laws focus on maximum stress and shape of the traction-
opening displacement law after failure. Standard cohesive zone elements require non-linear
finite element analysis. In contrast, imperfect interface elements deal only with the initial slope
of the traction-opening displacement law. Their use is restricted to the role of the interface
in the stiffness properties of the composite, but they are efficient because they can be used in
linear finite element analyses.
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2.4. Material Point Method
The material point method (MPM) is a particle based method in which equations are solved

on a background grid [8]. Algorithms for dealing with contact have been developed by al-
lowing multiple velocity fields on the background grid. Previous work models slip, stick, or
frictional sliding at material interfaces [6, 9] or on crack surfaces [10, 11, 12]. The multiple
velocity fields are for different materials or for two sides of a crack, respectively. This section
describes extension of MPM contact methods to include interface traction laws.

The key tasks in MPM with contact methods for slip, stick, or frictional sliding are these:

1. Extrapolate particle data to the nodes calculating, among other quantities, ~v αi,1 and mα
i

or the velocity and mass on node i associated with velocity field α. For contact, each
material is associated with its’ own velocity field.

2. Nodes with multiple velocity fields are potentially nodes in contact. First, the initially-
extrapolated velocities on such nodes are stored as ~v αi,0. Second, the nodal values are
examined to determine if the two velocity fields are in contact. If there is contact, the
nodal velocities are altered to [6, 9]

~v αi,2 = ~v
α
i,1 +∆~v

α
i (31)

where the change in each velocity field is

∆~v αi = −∆v αi,nn̂α −min(µ∆v αi,n,∆v αi,t) t̂
α (32)

Here µ is the coefficient of friction and ∆v αi,n and ∆v αi,t are components of the difference
between velocity field α and the center-of-mass velocity in the normal and tangential
directions:

∆v αi,n =
�

~v αi,1 − ~v
cm
i

�

· n̂α and ∆v αi,t =
�

~v αi,1 − ~v
cm
i

�

· t̂ α (33)

where n̂α and t̂ α are unit vectors in the normal and tangential directions of sliding. A
change in velocity can be associated with a contact force ~f αi = mα

i ∆~v
α
i /∆t, where ∆t

is the time step. Thus the two options in min() correspond to frictional sliding or stick
conditions. During frictional sliding the normal and tangential components of ~f αi are
related by f αi,t = µ f αi,n. During stick conditions all motion moves within the center-of-
mass velocity field and the algorithm reverts to conventional, single-velocity-field MPM.

3. Once contact velocities are altered, the MPM algorithm proceeds as usual for each veloc-
ity field [9]. The standard tasks include computation of internal forces due to particle
stress, ~f αi,int , computation of external forces, ~f αi,ex t , computation of nodal accelerations,

~aαi = ( ~f
α

i,int + ~f
α

i,ex t)/m
α
i , and updating of nodal velocities

~v αi,3 = ~v
α
i,2 + ~a

α
i ∆t (34)

4. The updated velocity may induce new contact situations, thus the next step is to repeat
contact calculations from step (ii) and alter nodal velocities if there is contact to

~v αi,4 = ~v
α
i,3 +∆~v

α
i (35)
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5. Finally, the MPM algorithm updates velocities and positions of all particles. If this update
is done with the final velocities (~v αi,4) and the accelerations in step (iii), however, the
update would be wrong. Before the update, it is therefore necessary to recalculate the
nodal accelerations of contact nodes to correspond to the acceleration that changes the
initially-extrapolated velocity in step (i) (~v αi,0) to the final velocity:

~aαi =
~v αi,4 − ~v

α
i,0

∆t
(36)

Once these consistent accelerations are found at contact nodes, the particle update pro-
ceeds by standard MPM methods.

Because imperfect interfaces are internal to an object and transmit stresses by a traction
law, it makes physical sense to model them as contributing to internal forces analogous to
forces arising from other internal stresses. This approach requires modification of step (iii).
As an aside, one might also imagine an imperfect interface as part of contact calculations and
therefore modifying steps (ii) and (iv). This approach was tried and gave reasonable results,
but raised physical concerns regarding contact. It was abandoned without further study in
favor of the internal force approach. The contact tasks were thus modified as follows:

1. When extrapolating velocity fields, also extrapolate the displacements of particles to the
nodes leading to ~uαi .

2. When doing contact calculations, first determine if a node with multiple velocity fields is
a contact interface or if it is an imperfect interface. If it is a contact interface, proceed as
before. If it is an imperfect interface, then ∆~v αi = 0. All interfaces in these calculations
were imperfect interfaces. Contact interfaces and imperfect interfaces may be mixed
providing the correct nature of each multiple-velocity field node can be determined.

3. When calculating forces, return to all imperfect interface nodes and calculate normal
and tangential tractions as:

Tn = Dn[un] and Tt = Dt[ut] (37)

where

[un] = −
�

~uαi − ~u
β

i

�

· n̂ and [ut] = −
�

~uαi − ~u
β

i

�

· t̂ (38)

where α and β refer to velocity fields “above” and “below” the interface and the normal
vectors, n̂ and t̂, are directed from above to below as shown for MPM in Fig. 2. The
additional internal forces applied above and below the crack are then

∆ f αi,int =
�

Tnn̂+ Tt t̂
�

A and ∆ f βi,int = −∆ f αi,int (39)

where A is the surface area of the interface on the grid. For a regular, square, 2D grid,
A= t∆x where t is thickness and ∆x is length of the element sides. For non-square or
irregular grid, A is the interfacial area associated with that node. The velocity update in
this task proceeds as above, but now using the modified internal forces.
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4. Repeat contact calculations for contact interface nodes with multiple velocity fields, but
do no calculations for imperfect interface nodes.

5. Finally, modify nodal accelerations if needed, but these modifications are only needed
for contact interface nodes and not for imperfect interface nodes.

In contrast to the linear FEA elements, non-linearities are allowed in the dynamic MPM
analysis. For example, a non-linear traction law could be implemented by letting Dn and
Dt be a function of the current relative displacements. The simple non-linearity used here
was a bilinear law where Dn was different for an opened interface under tension than for a
closed interface under compression. Since MPM with contact methods [9, 6] already detects
separation or contact (in tasks (ii) and (iv) above), the imperfect interface tasks used that
information. When the interface is in contact, the compressive Dn was used; when the interface
is separated, the tensile Dn was used.

Non-linearities associated with the state of the interface are more difficult to implement.
For example, imagine modeling interfacial damage where the interface fails at some critical
opening displacement. If the surfaces are separated but not yet failed, the interface tractions
will be a function of the opening displacement. If the surfaces are separated but has failed,
however, the tractions should be zero even if the opening displacement returns to a low value.
In other words, the normal traction depends on relative displacement and on the failure state of
the interface. The problem implementing such history-dependent interfaces in MPM is that the
solution resides on the particles while the interface calculations are done on the nodes. Since
the interfaces may translate through the grid during a calculation, interface state properties
can not be on the nodes. A potential scheme would be to calculate evolution of damage on
interfacial nodes and extrapolate that information back to the particles. On subsequent time
steps, the particles could extrapolate the damage information to the possibly new interface
nodes, which could use that information to calculate traction. Implementing such a scheme is
a subject for future work.

A related interface state property is dealing with imperfect interfaces formed during an
analysis. The calculation of relative surface displacements (see Eq. (38)) is based on extrap-
olated particle displacements. This equation implies that surfaces have zero relative displace-
ment when the particles have zero displacement. In other words, this analysis assumes all
imperfect interfaces are initially in contact with zero traction. Imagine two objects moving
together during an analysis and forming a new imperfect interface. Dealing with that new
imperfect interface would require methods to detect interface formation and to determine the
subsequent displacement condition for surface contact with zero traction. All calculations in
this paper were for initially-coincident interfaces. Most problems involving imperfect inter-
faces fall into this category.

As Dn and/or Dt approach infinity, an imperfect interface converges to a perfect interface.
In static FEA, no problems arise when Dn or Dt are large. In dynamic MPM, however, increasing
interface parameters can lead to overly stiff equations and numerical instabilities. The solution
is to handle perfect interfaces as a special case. Imagine the normal and tangential directions
to be either imperfect (with specified Dn or Dt values) or perfect. Imperfect directions proceed
as above for an imperfect interface. Perfect directions use stick contact conditions [9, 6].
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Furthermore, since a perfect interface is not a contact surface, it uses stick conditions regardless
of whether the interface is separated or in contact.

3. Results and Discussion

This section compares static and dynamic numerical analyses to analytical solutions. Since
there are few analytical solutions with imperfect interfaces, two new analytical models were
derived.

3.1. Double Lap Shear Specimen
Figure 4 shows a double lap shear (DLS) specimen commonly used to characterize inter-

facial failure. The failure load defines interfacial strength, but the initial compliance depends
on interface quality. As derived in the appendix using shear lag analysis, for the special case in
which all three layers have the same thickness, t, and mechanical properties, the compliance
of the bonded region of the specimen is

C
C∞
= 1+

tanh lβ
2 + 9 tanh lβ

4

4lβ
+

3Ey y tβ

4lDt
csch

lβ
2

This equation has been
simplified and corrected
from pub- lished paper;
calculations in paper are
correct)

(40)

where C∞ = l/(3tW Ey y) is the compliance of an infinitely long bond line, Ey y is the axial
modulus of the strips, W is specimen width, l is the length of the bond line, and β is the
optimal shear-lag parameter [13], which for identical strips simplifies to

β =

√

√

√

√

6Gx y

t2Ey y

�

1+
2Gx y

tDt

� (41)

where Gx y is the x-y plane shear modulus of the strips. Finally, accounting for specimen arm
length L, the complete specimen stiffness is

k =
1

C + 3L
2tW Ey y

(42)

Calculations were run for DLS specimens made from wood strands used for oriented strand
boards (OSB). Such strands are cut from logs using a strander [1]. The long axis of a strand
is predominantly in the wood grain direction and thus Ey y = EL ≈ 10 GPa where L is the
longitudinal direction of wood and the value is a typical longitudinal modulus for wood [14].
The stranding process produces a mixture of radial (R) and tangential (T) directions in the
thickness direction or strands; thus Gx y was set to an average of typical GLR and GLT for wood
or about 0.5 GPa. The shear lag analysis requires only these properties. The FEA and MPM
analyses needed additional values for Ex x = 1 GPa (transverse modulus of wood) and νx y = 0.2
(from νLR and νLT of wood). Typical strand thicknesses are 0.6 mm. The specimen dimensions
were t = 0.6 mm, l = 25 mm, L = 5 mm, and W = 10 mm.
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Figure 4: A symmetric double lap shear specimen with strands of thickness t1 and t2, bond lines of length l, and
ends tabs of length L. The specimen width is W .

Because shear dominates the interface effects in DLS specimens, the first calculations var-
ied Dt from 2 MPa/mm to ∞ while the normal direction was perfect (Dn =∞). The FEA
calculations used 504 eight-node, quadrilateral elements. The interface had 24 six-node, in-
terface elements. The MPM calculations used a square grid of 0.1×0.1 mm elements with four
particles per element for a total 10800 material points. In the dynamic MPM calculations, the
load was ramped up over 0.5 msec and damping was used to converge to static results [15].
The results for specimen stiffness by FEA and MPM are plotted in Fig. 5 along with predictions
by shear lag analysis. All results agreed validating both the imperfect interfaces in FEA and
MPM and the new shear lag analysis for a DLS specimen.

Stiffness can be found from FEA results by two methods. A displacement method finds the
stiffness from

k =
P




∆top

�

− 〈∆bot tom〉
(43)

where



∆top

�

and 〈∆bot tom〉 are average y-direction displacement on the top and bottom of
the specimen. Alternatively, because the interface elements are based on rigorous variational
mechanics [3], the stiffness can be found by energy methods. Integrating the boundary of the
specimen, the total energy is

U =

∫

Γ

1
2
~T · ~u dS =

1
2

P
�




∆top

�

− 〈∆bot tom〉
�

(44)

leading to

k =
P2

2U
(45)
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Figure 5: The stiffness of a double lap shear specimen as a function of the tangential interface parameter, Dt ,
calculated by FEA, MPM, or shear lag theory.

These two approaches gave identical results showing that the elements correctly included en-
ergetics of imperfect interfaces. The energy method is usually easier because it simply sums
energy in all elements. The displacement method requires locating and analyzing all nodal
displacements on the ends of the specimen. The current MPM implementation included no
interfacial energy calculations and therefore stiffness was found by the displacement method.

The interfacial normal stresses in the numerical results had both tension and compression.
Although the shear lag analysis does not handle normal direction effects, those effects can be
studied numerically. Figure 6 shows three FEA results with different interface properties in
the normal direction. The FEA curve labeled “Dn =∞” repeats the results from Fig. 5 (drawn
as a solid line instead of symbols). The FEA curve labeled “Dn = 1” is for Dn = 1 MPa/mm; it
shows a slight drop in specimen stiffness. The normal interface stiffness had very little effect
unless it was very low and the shear stiffness was very high (Dt > 50 MPa/mm). Figure 7
shows the interfacial normal displacement discontinuity along the interface. The FEA results
when Dn = 1 MPa/mm (dashed line) had negative displacements indicating the two surfaces
interpenetrated. This behavior may be acceptable if the interface is modeling a finite dimension
interphase, but otherwise interpenetration should be prevented. Since the FEA approach is
linear, it can not have different stiffnesses in compression and tension, but one can assign
different stiffnesses to different parts of the interface. The FEA curve labeled “Dn = 1 (y <
12.5) or ∞ (y > 12.5)” is for a two-zone calculation where the normal direction had Dn =
1 MPa/mm for the lower half of the specimen, but Dn =∞ for the top half. The two-zone
model slightly increased the stiffness (see Fig. 6). It prevented interpenetration in the top half
of the specimen, but some still remained in the bottom half (see dotted curve in Fig. 7).

In principle, an iterative FEA procedure could prevent interpenetration by setting Dn =∞
where ever there is contact. An alternative approach is to use a non-linear method with a
perfect interface in compression but a finite Dn in tension. The MPM method can handle such
nonlinear calculations and the results are shown in Figs. 6 and 7. The MPM points labeled
“Dn =∞” repeats the results from Fig. 6 and adds some points. The MPM points labeled “Dn =
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Figure 6: The effect of the normal interface parameter, Dn, on the stiffness of a double lap shear specimen as
a function of the tangential interface parameter, Dt . The FEA results (lines) are for a perfect normal interface
(Dn =∞), a linear imperfect normal interface (Dn = 1), and a specimen with perfect normal interface on top,
but an imperfect one on the bottom (Dn = 1 (y < 12.5) or ∞ (y > 12.5)). The MPM results are for a linear
imperfect normal interface (Dn = 1) or a bilinear normal interface perfect in compression but imperfect in tension
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∞/1” are for calculations with a perfect interface in compression, but with Dn = 1 MPa/mm
in tension. The specimen stiffness decreased compared to Dn =∞ and was close to the two-
zone FEA results. Figure 7 shows that the MPM results correctly prevented interpenetration
and reveals an additional opening region in the top half of the specimens. The MPM results
correctly modeled the non-linear interface. The two-zone FEA results only approximated the
effects of the non-linearity; it was a good approximation because the stiffness was close to the
MPM results.

3.2. Double Cantilever Beam Specimen
Figure 8 shows a double cantilever beam (DCB) specimen commonly used to characterize

adhesive fracture. In the illustrated loading of a symmetric specimen, there are no shear
displacements along the bond line. The effect of imperfect interface on the initial stiffness is
thus due only to normal displacement discontinuities. As derived in the appendix using the
beam-on-elastic-foundation model [16, 17, 18], the load-point compliance of a DCB specimen
is

C
C0
= 1+ 3

∆

a
+ 3

�

∆

a

�2

+
3
2

�

∆

a

�3

(46)

where C0 = 8a3/(W Ex xh3) is the compliance of a DCB specimen by simple beam theory, a is
crack length, Ex x is the axial modulus of the strips, W is specimen width, h is the depth of each
arm, and ∆ is

∆4 =
W Ex xh3

3

�

1
2W Dn

+
1
kb

�

(47)

where Dn is the normal interface parameter and kb is a foundation stiffness accounting for
shear deformation and crack-root rotation [17, 19]. In other words, even if the interface is
perfect (Dn →∞), the compliance of a DCB specimen is larger than C0 due to shear effects;
those effects are modeled by a finite value for kb.

Calculations were run for DCB specimens with wood strands and the grain direction in
the x direction. The wood properties were the same as used for the DLS specimen. The arm
thickness and width were t = 0.6 mm and W = 10 mm. The total length was 50 mm with the
crack in the middle or a = 25 mm. The FEA calculations used 250 eight-node, quadrilateral
elements. The interface had 10 six-node, interface elements. The MPM calculations used
a square grid of 0.1 × 0.1 mm elements with four particles per element for a total 24000
material points. In the dynamic MPM calculations, the load was ramped up over 1 msec and
damping was used to converge to static results [15]. Specimen stiffness calculated by FEA or
MPM is plotted in Fig. 9 along with the beam-on-elastic-foundation model. The theoretical
calculations required a value for kb. This value was found by FEA analysis with a perfect
interface to be kb = 7808 MPa. All results agreed well although MPM results were slightly
lower than FEA results and the theory. Note that Dn had a small effect on stiffness. Dn had
to be less than 1 MPa to significantly alter the specimen stiffness. Furthermore, since Dn <<
kb/(2W ) = 390.4 MPa/mm (except for a perfect interface with 1/Dn = 0), the effect of kb on
the imperfect interface results was negligible. The FEA results gave identical stiffness by either
a displacement method (Eq. (43)) or an energy method (Eq. (45)).
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Figure 8: A double cantilever beam specimen with crack length a and arms of thickness h. The specimen width
is W . The bottom shows a beam-on-elastic-foundation model for the specimen.
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3.3. Imperfect Interface Wave Transmission and Reflection
Imperfect interfaces are used to model wave transmission across an interface or through

a material with cracks and interfaces [5, 20, 21]. For a plane wave incident normally on a
straight imperfect interface with linear traction law, the fraction of the wave energy transmitted
through the interface was derived to be [20, 21]:

T =
D2

n

D2
n +π2 f 2ρ2v2

(48)

where f is wave frequency, ρ is density, and v =
p

E/ρ is the tensile wave speed.
Dynamic MPM calculations were run for wave transmission through a 150× 100× 1 mm

block with an imperfect interface located at x = 50 mm. Because the theory assumes isotropic
materials, the calculations used an isotropic material with E = 410 GPa, ν = 0.28, ρ =
15 g/cm3, and v = 5235 m/sec. A displacement impulse defined by

x(t) =
x0

2
(1− cos 2π f t) for 0≤ t ≤

1
2 f

(49)

was applied to the specimen’s left edge at x = 0. This impulse induces a single tensile stress
pulse if x0 < 0 or a single compressive stress pulse if x0 > 0. The energy of the transmitted
pulse was calculated from the square of ratio of the amplitudes of the transmitted stress to the
incident stress. A comparison of MPM results for either a tensile or compressive pulse (with
f = 100 kHz) and for either a linear imperfect interface (as a function of Dn) or a non-linear
imperfect interface (with specified Dn for tensile stress but Dn =∞ for compressive stress) to
theoretical predictions is given in Fig. 10. Linear interface results (labeled “L”) agreed well with
the theory. For a non-linear interface (labeled “NL”), a tensile pulse was identical to the linear
interface results because the stresses were always tensile. For a compressive pulse, however,
the non-linear interface was always perfect and thus 100% of the energy was transmitted.

Transmission energy calculations assumed the shape of the transmitted pulse is identical
to the shape of the incident pulse. Figure 11 shows calculated incident, transmitted, and
reflected pulses for a tensile wave with about 50% energy transmitted. The transmitted pulse
had a similar shape, but some slight deviations. The shape of the reflected pulse was complex
and became both tensile and compressive. This pulse shape differs significantly from reflection
at a perfect interface, where the reflected wave is unaltered in shape (although it may or may
not invert depending on the relative properties of the two materials), at a rigid interface, where
the pulse inverts in shape, or at a free surface, where the pulse is reflected with unaltered shape
[22]. A concern with cohesive elements, particularly when cohesive elements with arbitrary
initial stiffness must be located throughout the mesh, is that they will introduce spurious wave
speeds [23]. Figure 11 shows that initial stiffness can affect wave speeds; cohesive elements
should select initial stiffness for 100% energy transmission to avoid artifacts. For imperfect
interfaces, the changes in pulse shapes are modeling real effects of wave reflection at the
interface. Some preliminary analytical calculations showed the reflected wave pulse found by
MPM was the expected wave pulse for an imperfect interface [24], i.e., the effects are real and
not spurious. The shape of wave reflections from an imperfect interfaces has received little
attention.
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3.4. Experimental Determination of Interface Parameters
The FEA and MPM methods can incorporate imperfect interfaces into models of composite

materials and parametrically assess the role of the interface on composite properties. Interface
calculations are only of practical use when combined with experimental methods for determin-
ing the interface parameters. All examples were selected to validate the numerical imperfect
interfaces, but they were also selected as potential candidates for experimental work on inter-
faces. This section discusses some possibilities and limitations.

The stiffness of a DLS specimen is significantly affected by Dt suggesting its stiffness could
be used to determine tangential interfacial properties. The main limitation is that shear effects
and therefore Dt effects are end effects. Taking the limit as the specimen becomes long reveals
the end-effect nature of stress transfer:

lim
l→∞

C
C∞
= 1 or lim

l→∞
k =

3tW Ey y

l
(50)

In other words, as l gets long the specimen approaches a simple tensile bar with no interface.
The lap geometry on the ends gets tensile load into the specimen, but end effects become
negligible as the specimen gets long. The solution is to select a specimen sufficiently short
that end effects play a role in specimen stiffness. A dimensionless number characterizing the
magnitude of end effects is β l which maximizes for a perfect interface. For identical strands,
the maximum characteristic number is

β l =
l
t

√

√

√

6Gx y

Ey y
(51)

For the wood specimens analyzed above, β l = 22.8. Smaller values of β l are better, which for
given mechanical properties can be achieved by selecting shorter or thicker strands. Larger
values of β l would reduce the accuracy of determining Dt

The DCB specimen was selected for potentially determining Dn. Unfortunately, calculations
showed that Dn does not significantly affect the load-point stiffness of a DCB specimen unless it
is very low. In contrast, Dn strongly affected wave transmission. Furthermore, the experiment
could be tailored for optimal determination for any range of Dn values by tuning the frequency
to the expected Dn such that Dn ≈ π f ρv. Although wave transmission through an imperfect
interface between perfectly homogeneous and isotropic bodies works well in theory, there may
be experimental difficulties in practice. In wood, interface effects may be hard to distinguish
from other effects on wave transmission through a heterogeneous, anisotropic, and cellular
material.

3.5. Stiff Interphases
Most work on imperfect interfaces has allowed interface parameters to vary from 0, for

a debonded interface, to infinity, for a perfect interface [5]. This approach makes sense for
a real 2D interface, but for 2D model of a 3D interphase, perhaps a wider range in interface
parameters is possible. For a linear-elastic interphase of thickness t i, a simple series analysis
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for either tensile or shear loading (to left side of Fig. 1) such that the total deformation of the
full model agrees with the total deformation of the interface model on the right of Fig. 1 leads
to

1
Dn
= t i

�

1
Ei
−

1
2

�

1
E1
+

1
E2

��

and
1
Dt
= t i

�

1
Gi
−

1
2

�

1
G1
+

1
G2

��

(52)

where Ei, E1, E2, Gi, G1, and G2 are the tensile and shear moduli of the interface and the two
substrates, respectively. Taking the interphase moduli as spanning from debonded (Ei, Gi → 0)
to rigid (Ei, Gi →∞), the interface parameters would span from 0 (1/Dn = 1/Dt =∞) for
a debonded interphase to a negative value (e.g., 1/Dn→−(t i/2)((1/E1)+ (1/E2))) for a rigid
interphase. For an actual 2D interface (t i = 0), this view reduces to the prior view of interface
parameters between zero and infinity. For a 3D interphase, extending interface parameters
into negative values may allow modeling of stiffer interphases. For example, glue penetration
into the wood cells of a glue line may reinforce the wood near the bond creating a stiffened
interphase region. The possible negative values are limited by the rigid interphase limit. The
negative energies associated with a stiffer interphase (see Eq. (4)) are reconciled by equating
them with a reduction in energy rather than a negative energy.
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Appendix A. Double Lap Shear Specimen Analysis

A generalized shear lag method [25, 13]was used to derive an analytical result for stiffness
of the double lap shear (DLS) specimen in Fig. 4 including the effects of an imperfect interface.
Due to symmetry, only half the specimen, which is a two layer problem, was analyzed. The
shear lag equation is [25, 13]

d2
¬

σ(1)y y

¶

d y2
− β2

¬

σ(1)y y

¶

= −β2σ(∞)y y (A.1)

The general solution for the average axial stress in layer 1 is
¬

σ(1)y y

¶

= σ(∞)y y + aeβ y + be−β y (A.2)

where

σ(∞)y y =
2E(1)y y

(2t1E(1)y y + t2E(2)y y )

P
(2t1 + t2)W

(A.3)
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is the far-field stress in layer 1 (i.e, the stress far from the ends in an infinitely long specimen)
and E(i)y y is the y-direction modulus of layer i. The optimal shear lag parameter, β , is [13]:

β =

√

√

√

√

√

1

t1E(1)y y
+ 2

t2E(2)y y

t1

3G(1)x y
+ t2

6G(2)x y
+ 1

Dt

(A.4)

where G(i)x y is the x-y plane shear modulus of layer i and Dt is the tangential interfacial param-
eter for the interface between layers 1 and 2. The constants a and b are determined using the
boundary conditions on layer 1 of

¬

σ(1)y y(l)
¶

= σ(1)0 =
P

2t1W
and

¬

σ(1)y y(0)
¶

= 0 (A.5)

leading to

a = −
σ
(1)
0 eβ l +σ(∞)y y (1− eβ l)

1− e2β l
and b =

σ
(1)
0 eβ l −σ(∞)y y eβ l(1− eβ l)

1− e2β l
(A.6)

By force balance, the average stress in layer 2 is

¬

σ(2)y y

¶

=
P − 2t1W

¬

σ(1)y y(l)
¶

t2W
(A.7)

Finally, the interfacial shear stress is [25]:

τx y = −t1

d
¬

σ(1)y y

¶

d y
= −t1β

�

aeβ y − be−β y
�

(A.8)

The compliance of the specimen between points at y = 0 and y = l is C = ∆u/P where
∆u is the deformation between those points. The deformations are found by integrating the
average axial strains and accounting for interfacial slip:

∆u=

∫ l/2

0

σ(2)y y

E(2)y y

d y +

∫ l

l/2

σ(1)y y

E(2)y y

d y +
τx y(l/2)

Dt
(A.9)

The first two terms are displacement across the bottom half of layer 2 and the top half of
layer 1, respectively. The last term is interfacial slip at the midpoint of the specimen. These
displacements are easily evaluated using the stress state derived above. The shear stress at the
midpoint simplifies to

τx y(l/2) =
t1βσ

(1)
0 eβ l/2

1− eβ l
(A.10)

The compliance calculation is straight forward, but leads to a lengthy equation. The cal-
culations in this paper were all for identical strips or the special case where t1 = t2 = t,
E(1)y y = E(2)y y = Ey y and G(1)x y = G(2)x y = Gx y . The compliance for this special case is given in the
text of the paper in Eq. (40).
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Appendix B. Double Cantilever Beam Specimen Analysis

Using the beam-on-elastic-foundation model [16, 17], the equation for the upper-arm de-
flection, v(x), in the bonded region is

d4v(x)
d x4

= −
k1

Ex x I
v(x) (B.1)

where Ex x is the x-direction modulus of the arms, I =Wh3/12 is the second moment of inertia,
and k1 is the stiffness of the elastic foundation. Here the elastic foundation is modeled as two
springs in series. One spring reflects the imperfect interface (with stiffness 2W Dn) and the
second spring is the effective stiffness to the lower arm (kb) [17, 18]:

1
k1
=

1
2W Dn

+
1
kb

(B.2)

From Ref. [18], the displacement in the bonded region is

v(x) =
P∆2

2Ex x I

h

(a+∆) cos
x
∆
− a sin

x
∆

i

e−x/∆ for x ≥ 0 (B.3)

where ∆ is defined in Eq. (47). At the crack tip (x = 0) the displacement and slope are

v(0) =
P∆2(a+∆)

2Ex x I
and v′(0) = −

P∆(2a+∆)
2Ex x I

(B.4)

To the left of the crack tip in the the free-arm section, the beam equation is

d2v(x)
d x2

=
P(a+ x)

EI
(B.5)

Integrating twice and finding the constants by requiring continuity in v(x) at x = 0 leads to

v(x) =
P

6EI

�

x3 + 3a(x −∆)2 − 3x∆2 + 3∆3
�

for x ≤ 0 (B.6)

Finding the total displacement at the ends of the arms (2v(−a)), the load-point compliance is
given by Eq. (46).
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