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ABSTRACT

Using variational mechanics we present mathematical bounds on the effective modulus of a cross-
ply laminate containing microcracks in the 90◦ plies. An average of the two bounds provides an
effectively exact solution to the modulus reduction problem. The problem of predicting microcrack-
ing is reduced to finding the energy release rate for formation of a complete microcrack. From the
bounds on effective modulus we derive both rigorous and practical bounds to the energy release
rate for microcracking. Again, an average of the two bounds provides an effectively exact solution
to the energy release rate problem.

INTRODUCTION

The first form of failure in laminates containing off-axis plies is generally microcracking of those
plies. There is a long literature on predicting the formation of microcracks and on predicting the
effect they have on the mechanical properties of a laminate. It is beyond the scope of this paper
to review that literature. The reader is referred instead to a recent review article in Ref. [1]. The
goal here is to calculate the effective modulus, E∗

A, and the energy release rate for formation of a
new microcrack, Gm, both as a function of the microcrack density. The problem is analyzed using
some new variational mechanics results. These results permit establishing mathematically rigorous
bounds on both E∗

A and Gm. We find that an average of the rigorous bounds provides an effectively
exact solution to both the modulus reduction and the energy release rate problems.

FRACTURE MECHANICS ANALYSIS

Imagine a microcrack initiating somewhere between the two existing microcracks (see Fig. 1) and
propagating in the width direction (y direction). The energy release rate for propagation of a
microcrack of current area A is

Gm(A) =
∂Uext

∂A
− ∂U

∂A
(1)

where Uext is external work and U is total strain energy. Some recent three-dimensional finite
element analyses have shown that Gm(A) is virtually independent of the length of the propagating
microcrack [2, 3]. By this fortunate simplification, we can calculate Gm(A) by analyzing the energy
released due to the formation of a complete microcrack, denoted as Gm:

1
2t1W

∫ A

0
Gm(A) dA = Gm(A) = Gm =

∆Uext − ∆U

2t1W
(2)

where ∆Uext and ∆U are the total external work and change in stain energy associated with
formation of a complete microcrack, and 2t1W is the fracture area of a single microcrack (see
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Fig. 1. A coordinate system on the edge (x-z plane) of a cross-ply laminate with two microcracks located
at x = ±a. The y direction is the width direction of the laminate; the laminate width is W . ξ and ζ are
dimensionless coordinates in the x and y directions.

Fig. 1). Many literature results have shown that the formation of new microcracks can be predicted
by assuming they form when Gm reaches Gmc or the critical microcracking toughness for the
laminate [1, 4]. This “energy” analysis of microcracking has sometimes been criticized as not being
rigorous fracture mechanics because it does not involve analyzing incremental growth of an existing
crack. The equivalence of Gm and Gm(A), however, argues that it is rigorous fracture mechanics.
In fact, the connection with fracture mechanics is probably the reason the energy analysis works
well [4]. We claim that the problem of predicting microcracking in [0n/90m]s laminates is equivalent
to accurately finding Gm.

We consider formation of a complete microcrack due to an axial stress of σ0 and thermal load T .
The total axial displacement between the two existing microcracks can be written as

u = 2a

(
σ0

E∗
A

+ α∗
AT

)
(3)

where E∗
A and α∗

A are the effective axial modulus and thermal expansion coefficient of the lami-
nate. The external work associated with the formation of a new microcrack between the existing
microcracks is ∆Uext = σ0BW∆u where B is the laminate thickness. For strain energy, we imagine
a sample under arbitrary traction loads but no thermal load (T = 0). The tractions will result in
some stresses and strains in the body denoted �σm and �εm = S �σm where S is the compliance tensor.
Now change the thermal load to T without changing the surface tractions. The stresses will change
to �σ = �σm + �σr where �σr are the residual thermal stresses. The total strain energy is

U =
∫

V

1
2
�σ · S�σdV =

∫
V

1
2

�σm · S �σmdV +
∫

V
�εm · �σrdV +

∫
V

1
2

�σr · S �σrdV (4)

Because the residual stresses, by themselves, obey equilibrium and induce no new surface tractions,
the principles of virtual work imply that the cross term between mechanical strain and residual
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stresses is zero. Thus total total strain energy can be written as a sum of mechanical strain energy
and thermal strain energy. In terms of effective modulus

U = 2aBW

(
1
2

σ2
0

E∗
A

+ Ures

)
(5)

where Ures is the residual strain energy per unit volume. Substituting Eqs. (3) and (5) into Eq. (2)
gives

Gm = ρB

[
σ2

0
2

∆

(
1

E∗
A

)
+ σ0T∆α∗

A − ∆Ures

]
(6)

where ρ is a dimensionless crack spacing.

We can eliminate α∗
A by using a remarkable theorem by Levin [5], which when applied to uniaxial

loading states that

α∗
Aσ0 =

1
V

∫
V

�α · �σ dV (7)

where �σ are the stresses that result from a purely mechanical loading (i.e. T = 0) of a stress σ0 in
the axial direction. Defining a phase average stress in phase i as

σ
(i)
jk =

1
Vi

∫
Vi

σ
(i)
jk dV (8)

where Vi is the volume of phase i, Levin’s theorem for axial loading of [0n/90m]s laminates reduces
to

σ0α
∗
A = αTσ0 −

∆αλσ
(2)
xx

1 + λ
(9)

where ∆α = αT − αA is the difference between the axial thermal expansion coefficients of the 90◦

plies (αT ) and the 0◦ plies (αA), and λ = t2/t1. Here and elsewhere, a subscript 1 or superscript (1)
denotes a property of the 90◦ plies; likewise a 2 denotes a property of the 0◦ plies. Now, in cross-ply
laminates, the effective modulus is equivalent to the net stress divided by the phase average strain

in the uncracked 0◦ plies: E∗
A = σ0/ε

(2)
xx = EAσ0/σ

(2)
xx where EA is the axial modulus of the 0◦ plies.

We quickly derive

α∗
A = α0 −

∆α

C1LET

(
E0

E∗
A

− 1

)
(10)

where

E0 =
ET + λEA

1 + λ
α0 =

αTET + λαAEA

(1 + λ)E0
C1L =

1
ET

+
1

λEA
=

(1 + λ)E0

λEAET
(11)

E0 and α0 are the rule-of-mixtures axial modulus and axial thermal expansion coefficient of the
uncracked laminate and ET is the axial modulus of the 90◦ plies. Substituting Eq. (10) into Eq. (6)
gives

Gm = ρB

[(
σ2

0
2

− σ0∆αTE0

C1LET

)
∆

(
1

E∗
A

)
− ∆Ures

]
(12)

The fracture mechanics problem of microcracking is thus reduced to finding accurate results, or
perhaps bounds, for E∗

A and Ures.

VARIATIONAL MECHANICS

Hashin [6] used an assumed stress state for a cross-ply laminate and minimized complementary
energy to get the lower bound modulus, EL

A:

1
E∗

A

≤ 1
EL

A

=
1
E0

+
E2

T

E2
0

C3L

1 + λ

χL(ρ)
ρ

(13)
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The constant C3L and the function χL(ρ) depend only on the geometry of the layup and on me-
chanical properties of the plies. To save space, the reader is referred to Ref. [1] for definitions of
all the constants and functions in Hashin’s analysis. Nairn extended Hashin’s analysis to included
residual stresses [7]. The total strain energy can be written as

U = 2aBW

[
σ2

0

2EL
A

+
∆α2T 2

2C1L(1 + λ)

(
1 − C3L

C1L

χL(ρ)
ρ

)]
(14)

As expected, the total strain energy is a sum of mechanical strain energy and residual strain energy.
Using EL

A to eliminate χL(ρ), the residual strain energy density becomes

Ures =
∆α2T 2

2C1L

[
1

1 + λ
− E2

0

C1LE2
T

(
1

EL
A

− 1
E0

)]
(15)

The remainder of this section will present a new variational mechanics result for an upper bound
modulus. Unfortunately the analysis is too long to fit within the current page limits. We resort
to an outline of the analysis and quote sufficient results for calculations. A more detailed analysis
will be given in a future publication [8]. The upper bound modulus is found by using an assumed
displacement field and minimizing the potential energy. We assumed the following x and z direction
displacements:

u(1)

t1
= ψ1φ + a1ξ

w(1)

t1
= (ψ2 + a2)ζ

u(2)

t1
= ψ1 + a1ξ

w(2)

t1
= ψ2 + a2 + a3(ζ − 1) (16)

Here ψi are unknown functions of the dimensionless axial coordinate ξ = x/t1, φ is a function of
the dimensionless axial coordinate ζ = z/t1, and the ai are constants that may depend on crack
spacing. The necessary boundary conditions are ψ1(ρ) = ρ(ε0 −a1) (ε0 is global strain), ψ2(ρ) = a4
(a new unknown constant), φ(1) = 1, and φ′(0) = 0. φ(ζ) describes the crack-opening displacement
of the microcrack; explicitly, the semi-crack-opening displacement is δ(ζ) = ρ(ε0 − a1)(1 − φ(ζ))
with boundary conditions δ(1) = δ′(0) = 0. The total potential energy, including terms for residual
stresses, that must be minimized is

Π =
∫

V

(
1
2
�ε · C�ε − �αT · C�ε

)
dV (17)

where C is the stiffness tensor. Inserting the assumed displacement field gives, after much algebra:

Π = t21W

∫ ρ

−ρ

[
C1ψ

2
1 + C2ψ

2
2 + C3ψ

′2
1 + C4ψ

′2
2 + C5ψ

′
1ψ2 + C6ψ1ψ

′
2

+
(
2C2 〈φ〉 (a1 + a2νT − (1 + νT )αT T ) + 2C7(a1 + a3ν

′
A − (αA + ν ′

AαT )T )
)
ψ′

1

+ 2C2(a1νT + a2 − (1 + νT )αT T )ψ2 + C2(a2
1 + 2a1a2νT + a2

2 − 2(a1 + a2)(1 + νT )αT T )

+ C7

(
a2

1 + 2a1a3ν
′
A + a2

3
ν ′

A

νA
− 2a1(αA + ν ′

AαT )T − 2a3

(
ν ′

AαA +
ν ′

A

νA
αT

)
T

)]
dξ (18)

where

C1 = GT

〈
φ′2〉 C2 = ET

1−ν2
T

C3 = ET

1−ν2
T

〈
φ2〉 + λEA

1−νAν ′
A

C4 = GT
3 + λGA C5 = 2νT ET

1−ν2
T
〈φ〉 C6 = 2GT (1 − 〈φ〉)

C7 = λEA
1−νAν ′

A

(19)

where GT and GA are the shear modulus of the 90◦ and 0◦ plies, νT and νA are the Poisson’s ratios
of the 90◦ and 0◦ plies, ν ′

A = νAE
(2)
zz

EA
, and E

(2)
zz is the transverse modulus of the 0◦ plies. The angle

brackets denote integration over ζ from 0 to 1. We assume at first that the function φ and the
constants ai are given. The potential energy can then be minimized to find ψi using the calculus
of variations. The coupled Euler equations are

ψ′′
1 − q1ψ1 − p1ψ

′
2 = 0 ψ′′

2 − q2ψ2 − p2ψ
′
1 =

C2(νTa1 + a2 − (1 + νT )αTT )
C4

(20)
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where
q1 =

C1

C3
p1 = −C5 − C6

2C3
q2 =

C2

C4
p2 =

C5 − C6

2C4
(21)

Assuming complex characteristic roots (which holds for the calculations in this paper), the solutions
for ψi are:

ψ1 = p1(αA1 − βA2) sinhαξ cosβξ − p1(βA1 + αA2) coshαξ sinβξ (22)
ψ2 = [A1(α2 − β2 − q1) − 2αβA2] coshαξ cosβξ

− [2αβA1 + A2(α2 − β2 − q1)] sinhαξ sinβξ − νTa1 − a2 + (1 + νT )αTT (23)

where
α =

1
2

√
2
√

q1q2 + q1 + q2 + p1p2 and β =
1
2

√
2
√

q1q2 − q1 − q2 − p1p2 (24)

The constants A1 and A2 can easily be found from the boundary conditions on ψ1 and ψ2 at ρ.

The next step is to substitute these functions back into the potential energy and thereby find the
total strain energy:

U =
∫

V

1
2
(�ε − �αT ) · C(�ε − �αT )dV = Π +

∫
V

1
2
�αT · C�αT dV (25)

This result can than be minimized with respect to ai to find those constants. The result is

a1 =
ε0χ0(ρ) − ETε0 〈φ〉 + ETαTT (1 − 〈φ〉)

χ0(ρ) + ET (1 − 2 〈φ〉) (26)

a2 = −νTa1 + (1 + νT )αTT (27)
a3 = −νAε0 + (νAαA + αT )T (28)

a4 = −ρ(ε0 − a1)
2C4χ4(ρ)

(
C3χ2(ρ) + C4χ3(ρ) +

C5 + C6

2

)
(29)

where

χ0(ρ) = ρ


C3χ1(ρ) −

(
C3χ2(ρ) + C4χ3(ρ) + C5+C6

2

)2

4C4χ4(ρ)


 − C7 (30)

χ1(ρ) =
−αβq1(cothαρ cotβρ + tanhαρ tanβρ)

α(α2 + β2 − q1)csch 2αρ − β(α2 + β2 + q1) csc 2βρ
(31)

χ2(ρ) =
p1(α2 + β2)(αcsch 2αρ − β csc 2βρ)

α(α2 + β2 − q1)csch 2αρ − β(α2 + β2 + q1) csc 2βρ
(32)

χ3(ρ) =

[
(α2 − β2 − q1)

2 + 4α2β2
]
(αcsch 2αρ + β csc 2βρ)

p1

[
α(α2 + β2 − q1)csch 2αρ − β(α2 + β2 + q1) csc 2βρ

] (33)

χ4(ρ) =
−αβ(α2 + β2)(cothαρ tanβρ + tanhαρ cotβρ)

α(α2 + β2 − q1)csch 2αρ − β(α2 + β2 + q1) csc 2βρ
(34)

(35)

Substituting these constants back into the strain energy gives

U = 2aBW

[
1
2
E0(ε0 − α0T )2 +

∆α2T 2

2(1 + λ)C1L
− E2

T

2(1 + λ)E0
(ε0 − αTT )2 χU (ρ)

ρ

]
(36)

where

χU (ρ) =
ρE0(1 − 〈φ〉)2

χ0(ρ) + ET (1 − 2 〈φ〉) (37)

Unfortunately, the total strain energy cannot be analytically minimized with respect to the crack-
opening displacement function φ(ζ). By examination of finite element results, we made the reason-
able assumption that φ(ζ) is parabolic. Thus φ(ζ) = A(ζ2 − 1) + 1 or δ(ζ) = A(1 − ζ2) where A is
an unknown constant.
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We can find the upper bound modulus from the total strain energy by setting T = 0. The result is

E∗
A ≤ EU

A = E0 −
1

1 + λ

E2
T

E0

χU (ρ)
ρ

(38)

To partition the total strain energy into mechanical strain energy and residual strain energy, we
partition the global strain into mechanical strain and thermal strain: ε0 = εm + α∗

AT . Substitution
into the strain energy result and making use of Eq. (10) gives

U = 2aBW

[
1
2
EU

Aε2
m +

T 2

2

(
∆α2

(1 + λ)C1L
+ E0(α∗

A − α0)2 − (α∗
A − αT )2

1 + λ

E2
T

E0

χU (ρ)
ρ

)]
(39)

The total strain energy partitions as expected. Using upper bound modulus to eliminate χU (ρ)
and again using Eq. (10) gives

Ures =
∆α2T 2

2C1L

[
1

(1 + λ)
− E2

0

C1LE2
T

(
1

EU
A

− 1
E0

)]
(40)

Notice that this result is the same as Ures in the lower bound analysis except that EU
A is used

instead of EL
A.

RESULTS AND DISCUSSION

Mathematical bounds on the modulus of a cracked cross-ply laminate are

ρE2
0(1 + λ)

ρE0(1 + λ) + E2
TC3LχL(ρ)

= EL
A ≤ E∗

A ≤ EU
A = E0 −

1
1 + λ

E2
T

E0

χU (ρ)
ρ

(41)

We further define an average of the bounds as

Eavg
A =

1
2

(
EL

A + EU
A

)
(42)

EL
A, EU

A , and Eavg
A are compared to some finite element calculations on a [0/902]s E-glass/epoxy

laminate in Fig. 2. The EU
A calculations used A = 3.2 because that gave the minimum modulus

for a crack density of 0.5 mm−1. We note, however, that large changes in A caused only negligible
changes in EU

A . The bounds on the modulus are relatively tight. Eavg
A provides an effectively exact

solution to the modulus reduction problem.

Previous comparisons in the literature between EL
A and experimental results [1, 6], suggest that

EL
A is closer to the correct modulus than is implied by Fig. 2. When the goal is to assess the

accuracy of the variational mechanics analysis, the preferred comparison is between theory and
finite element calculations. The observation that experimental results may differ from finite element
calculations suggests that either the experiments were inaccurate or that the assumptions of the
mechanics analysis lack realism. For example, the mechanics analysis assumes there is a perfect
interface between the 0◦ and 90◦ plies. If this assumption is wrong, the mechanics analysis might
overestimate the true modulus. Future work on modulus reduction in cross-ply laminates should
address ply interface issues.

Substituting Ures from either the lower or upper bound analysis, the energy release rate becomes

Gm =
ρB

2
E2

0

E2
T

σ
(1)
x0

2
∆

(
1

E∗
A

)
where σ

(1)
x0 =

ETσ0

E0
− ∆αT

C1L
(43)

σ
(1)
x0 is the total axial stress in the 90◦ plies in the uncracked laminate [1]. We consider the formation

of a new microcrack midway between two existing microcracks. A rigorous upper bound to Gm,
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Fig. 2. Modulus reduction in a [0/902]s E-glass/epoxy laminate as a function of crack density. The calculation
used EA = 41.7 GPa, ET = 13 GPa, GA = 3.4 GPa, GT = 4.58 GPa, νA = .30, νT = .42, αA = 8.6 × 10−6

◦C−1, αT = 22.1 × 10−6 ◦C−1, t1 = 0.42 mm, and t2 = 0.21 mm.

denoted as GU
m can be calculated by assuming the E∗

A is equal to EL
A after the microcrack forms,

but equal to EU
A before the microcrack forms. Thus

GU
m =

ρB

2
E2

0

E2
T

σ
(1)
x0

2
(

1
EL

A(ρ/2)
− 1

EU
A (ρ)

)
(44)

The converse assumption leads to a rigorous lower bound:

GL
m =

ρB

2
E2

0

E2
T

σ
(1)
x0

2
(

1
EU

A (ρ/2)
− 1

EL
A(ρ)

)
(45)

The acknowledgment of the mathematical possibility of wild changes in E∗
A due to microcrack for-

mation is probably overly pessimistic. Assume, for instance, that the correct modulus is at some
specific position between EL

A and EU
A before microcrack formation. We claim that the correct mod-

ulus will likely remain close to the same relative position between EL
A and EU

A after the formation of
a single new microcrack. If we accept this assumption, we can calculate new bounds on Gm which
we refer to as “practical” bounds, as opposed to mathematically rigorous bounds. The practical
bounds, denoted with superscript P , are given by the energy release rate calculated using only EL

A

or only EU
A . Thus

GPU
m =

ρB

2
E2

0

E2
T

σ
(1)
x0

2
(

1
EL

A(ρ/2)
− 1

EL
A(ρ)

)
GPL

m =
ρB

2
E2

0

E2
T

σ
(1)
x0

2
(

1
EU

A (ρ/2)
− 1

EU
A (ρ)

)
(46)

Finally, the success of Eavg
A suggests a similar calculation for energy release rate. Averaging either

the rigorous bounds or the practical bounds gives

Gavg
m =

ρB

2
E2

0

E2
T

σ
(1)
x0

2
(

1
2EL

A(ρ/2)
+

1
2EU

A (ρ/2)
− 1

2EL
A(ρ)

− 1
2EU

A (ρ)

)
(47)

GL
m, GPL

m , GPU
m , GU

m, and Gavg
m are compared to some finite element calculations on a [0/902]s E-

glass/epoxy laminate in Fig. 3. The rigorous lower bound is very low and of relatively little use.
In fact it becomes negative which is physically impossible. The rigorous upper bound is about a
factor of two larger than the finite element calculations. Although this bound is not that close to
the true value, it might be useful in design. A design to avoid microcracking based on GU

m would
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Fig. 3. Energy release rate for formation of a new microcrack in a [0/902]s E-glass/epoxy laminate as
a function of crack density. The assumed laminate properties are given in the caption of Fig. 2. The
calculations used E0σ

(1)
x0 /ET = 100 MPa.

have a built in safety factor. The practical bounds are much closer to the true energy release
rate. The practical bounds are very tight at high crack density. This observation might explain
why interpretation of experiments using GPU

m tended to fit better at high crack densities than at
low crack densities [1, 4]. Finally, Gavg

m provides an effectively exact solution to the energy release
rate over the entire range of crack densities. We recommend using Gavg

m in future microcracking
predictions in cross-ply laminates.
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