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SUMMARY

Anisotropic damage mechanics is derived by redefining its fourth-ranked damage tensor, D, not by its
effect on stiffness reduction, but as a tensor that partitions total strain into bulk material strain and an
cracking strain associated with crack-opening displacement. This re-characterization of D is irrelevant
for 1D modeling, but significantly clarifies 3D algorithms. The new 3D derivation starts with three
damage parameters associated with three independent strength models for three components of crack
traction. By postulating a traction failure surface dependent on current damage state and requiring that
all traction components simultaneously decay to zero at failure, the three damage parameters naturally
couple to a single parameter. Many prior methods assume evolving strength depends only on damage.
In real materials, strength often depends on other variables such as temperature, pressure, strain rate,
and so forth. This paper proposes a new general theory that extends prior methods to properly account
for such external variables. The general damage mechanics methods must account for extra variables
during damage initiation, damage evolution, and elastic loading and unloading. Several examples focus
on the new concepts for coupling damage parameters and for using general methods to model materials
with pressure-dependent strength properties. Copyright © 2022 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Damage mechanics has a long history of modeling failure by introducing damage parameters
characterizing the damage [1]. In one general form, damage mechanics relates stress (σ) to
strain (ϵ) using

σ = (I−DT )C(ϵ total − ϵres) = (I−DT )Cϵ (1)

where C is the undamaged material’s fourth-rank stiffness tensor, D is a fourth-rank damage
tensor [2, 3] (the reason for transpose is explained below), ϵ total is total strain, and ϵres is
residual strain caused by changes in temperature, solvent content, or other similar effects. The
final form fully accounts for residual strain effects by using a net strain ϵ = ϵ total − ϵres.

Equation (1) defines an effective stiffness Ceff = (I−DT )C, which implies D models stiffness
reductions (or softening) caused by damage. In general, Ceff will soften differently in different
directions (depending on the form of D). This style of damage mechanics is therefore referred to
as “anisotropic damage mechanics” (ADaM) where anisotropy refers to the changes in stiffness
and not the underlying undamaged material, which may be either isotropic or anisotropic [2, 3].

Damage mechanics analysis can also be viewed as partitioning total strain, ϵ, into a sum of
elastic strain on the material, ϵe, and damage strain, ϵd . The elastic strain leads to material
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GENERALIZED DAMAGE MECHANICS 5073

stress while the damage strain characterizes extra strain caused by the damage. When damage
mechanics is modeling a crack, the only source of damage strain is crack-opening displacement
— to emphasize modeling of cracks, ϵd will be referred to here as the cracking strain, ϵc . Because
effective stiffness must be symmetric, or (I−DT )C= C(I−D), the stress derived from elastic
strain can be related total strain using

σ = C(I−D)ϵ = Cϵe = C(ϵ − ϵc) (2)

In other words, the cracking strain is related to total strain by ϵc = Dϵ. This form suggests a
re-interpretation of D as a strain-partitioning tensor that defines the ratio of cracking to total
strain. This reinterpretation greatly clarifies development of 3D damage mechanics. Note that
Eq. (2) is identical to Eq. (1), but moves damage tensor to opposite side of C. As a consequence,
D defined here is a transpose of D in prior ADaM papers [2, 3, 4, 5].

When implementing a numerical (or discrete) model of the above continuum damage
mechanics, the body is divided into sufficiently small volume elements. When an element
initiates damage, it can be viewed as transversed by a crack with a normal vector, n̂, whose
orientation is determined by the stress state causing the crack formation. The implementation
approach used here is to treat that crack as smeared over the entire element such that cracking
strain is determined from crack opening displacement, u(cod), by

ϵc =
1
2h

�

�

n̂ ⊗ u(cod)
�

+
�

n̂ ⊗ u(cod)
�T�

(3)

where h is characteristic dimension of the element [6]. Initial implementation of ADaM in
finite elements (FEM) when cracks were fixed at their initial orientation was prone to spurious
stresses caused by shear locking [6, 7, 8]. This locking is likely exacerbated by use of constant
strain triangles. A FEM-specific mesh correction can improve the modeling [6, 8]. Other FEM
approaches have been to revert to isotropic damage mechanics or to base damage evolution on
principal stresses rather than crack-plane traction [7, 9]. While such approaches can avoid shear
locking caused by FEM meshes, in my opinion they diminish realism of the failure modeling.
Isotropic damage mechanics fails to describe material anisotropy caused by cracks. Principal
stresses may rotate away from the crack plane and therefore cannot be used to model differences
between tensile and shear stresses along the crack plane (i.e., mode I and mode II fracture).

An alternate approach is to switch to a method that does not use FEM. The anisotropic damage
mechanics in this paper switches to the material point method (MPM) where the small volume
elements are cubical particles (or material points). MPM is a hybrid Eulerian-Lagrangian method
that appears to avoid shear locking effects. When a particle initiates damage, it develops of
crack, a normal vector to the crack is calculated, the crack is assumed to span the entire cross
section that single particle, and the crack opening displacements are smeared over the particle’s
volume using Eq. (3). The subsequent damage evolution is based on crack-surface normal and
current crack-surface traction (rather than principal stress schemes). Dividing crack traction into
tensile and shear stresses allows the modeling to treat mode I and mode II failure properties
as independent material properties. Most prior damage mechanics consider only total fracture
energy. The normal component of crack traction is used to allow damage evolution only when
in tension and to model crack contact with frictional sliding when in compression. Prior work
on ADaM in MPM has been encouraging [10, 11, 12]; this paper elaborates on and generalizes
those approaches.

Section 2 derives ADaM from 1D to 3D based on re-interpretation of D as strain-partitioning
tensor. This reinterpretation must hold under all stress states including during elastic loading
or unloading, damage evolution, or post-failure deformation (including crack contact). These
derivations start with a “special theory of damage mechanics” that assumes material failure
properties depend only on the current damage state. Section 2.1 presents a 1D analysis that is
similar to many prior 1D damage mechanics models [13, 14], but a new derivation based on
strain-partitioning provides insights that clarify extension to 3D. 3D analysis in section 2.2 starts
with three damage parameters that are related to damage states normal and tangential to the
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Figure 1. The “unloaded” state is a 1D elastic element with initial length L0. After damage initiation,
the 1D model has a “crack” element with strain ϵc , an “elastic” element with strain ϵe, and total strain

ϵ = ϵc + ϵe.

crack plane. These parameters couple to a single parameter by requiring all traction components
to simultaneously decay to zero at failure. The key results are new equations to update damage
parameters whenever stress exceeds current strength and partitioning of dissipated energy into
tensile and shear failure energy.

Prior damage mechanics models are mostly “special theories,” but that approach has a
limitation — it does not account for materials whose failure properties depend on external
variables (e.g., temperature, pressure, strain rate, etc.). Some prior work has accounted for such
effects by changing initiation conditions, but that approach is insufficient. Section 3 derives
a new “general theory of damage mechanics,” that extends special theories to allow external
variables. The new results show how a general ADaM implementation must account for effects
of external variables on initiation, on damage evolution, and on elastic loading and unloading.

Finally, section 4 provides details on MPM implementation of these new methods in custom
software [15]. Several examples explore new damage mechanics concepts for coupling damage
parameters, compare results to isotropic damage mechanics, and demonstrate general methods
to model materials with pressure-dependent failure properties. This section ends with comments
about implications of interpreting D as a strain-partitioning tensor.

2. SPECIAL THEORY OF DAMAGE MECHANICS

2.1. One Dimensional Damage Mechanics

This section derives 1D damage mechanics [13, 14] using the strain-partitioning interpretation
of D. A 1D damage model with an elastic spring element and a strong discontinuity as a crack
element is shown in Fig. 1. Stress is found from the spring element while the cracking strain is
determined by a scalar damage state parameter, D, using ϵc = Dϵ. The 1D constitutive law is
σ = Eϵe = E(1− D)ϵ where E is the undamaged material’s modulus.

Damage modeling requires a method to evolve D. One physical approach is to model the
crack element in Fig. 1 using a strength model, F(δ), for the material’s strength as a function of
a second damage variable, δ, defined in 1D as the cracking strain for which stress equals F(δ).
δ can be related to D by solving for strain, ϵi , such that 1D stress equals the current strength,
and then expressing D using D = δ/ϵi:

σ = E(ϵi −δ) = F(δ) =⇒ ϵi = δ+
F(δ)

E
=⇒ D =

δ

ϵi
=

δ

δ+ F(δ)
E

(4)

By this equation, damage can be tracked using either D or δ. D evolves from 0 to 1 and is
related to energy dissipation. In contrast, δ is related to maximum crack opening displacement,
u(COD)

max = δL0, and it evolves from zero to δ(c) = u(c)/L0 where u(c) is the material’s critical crack-
opening displacement.

Numerical implementation of 1D damage mechanics can proceed by tracking maximum strain
defined as ϵmax =max(ϵ0,ϵ) where ϵ0 is strain to initiate damage. Whenever ϵmax increases, D
is updated based on a D(ϵmax) damage evolution law and δ = Dϵmax [13]. While simple in 1D,
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this approach does not extend well to 3D. An alternate, but equivalent, implementation is to
define a traction failure surface by:

Φ(σ,δ) = σ− F(δ) = E(1− D)ϵ − F(δ)

Analogous to yield surfaces in plasticity theory [16],Φ(σ,δ)< 0 for elastic loading or unloading,
Φ(σ,δ) = 0 during damage evolution, and Φ(σ,δ)> 0 is not allowed. Given current stress,
σ, and an increment in total strain, dϵ (in displacement-driven numerical modeling), if
Φ(σ(t r ial), D)≤ 0 where σ(t r ial) = σ+ E(1− D)dϵ, the increment is elastic. The trial stress is
accepted, no changes are made to D or δ, but current cracking strain changes by dϵc = Ddϵ.

But, if Φ(σ(t r ial), D)> 0, damage evolves. The damage evolution can be determined from a
consistency condition:

∇Φ(σ,δ) · (dϵ, dδ) = 0 =⇒ dδ =
E(1− D)dϵ

EϵR(δ) + F ′(δ)
(5)

where R(δ) is ratio of D evolution to δ evolution; it is found from Eq. (4):

R(δ) =
dD
dδ
=

ϕ(δ)

E
�

δ+ F(δ)
E

�2 where ϕ(δ) = F(δ)−δF ′(δ)

Other useful R(δ) forms derived from Eq. (4) are:

R(δ) =
E(1− D)2ϕ(δ)

F(δ)2
=
(1− D)Dϕ(δ)

δF(δ)
=

D2ϕ(δ)
Eδ2

=
σDϕ(δ)
ϵEδF(δ)

(6)

Substituting the second form of R(δ) into Eq. (5) leads to damage increment of

dδ =
dϵ

1+ F ′(δ)
E

and dD =R(δ)dδ (7)

Because cracking strain is equal to δ during damage evolution, the increment in 1D cracking
strain during damage evolution is trivially dϵc = dδ. As a result, δ corresponds to maximum
cracking strain reached during deformation (but this relation does not extend to 3D).
Equation (7) is identical to Ref. [10], but this derivation was simpler and it defines the useful
R(δ) function. Finally, Eq. (5) implicitly assumes F(δ) is only a function of δ. This assumption is
what characterizes all special theories of damage mechanics; a general theory needs to remove
this assumption.

The tensor D is a state parameter describing damage. Whenever D is constant, the damaged
material’s elastic strain energy is

U =
1
2
σ · ϵ =

1
2

C(I−D)ϵ · ϵ

Whenever D changes, energy dissipation, dΩ, is caused by a decrease in elastic potential energy,
Π= U −W , where W is external work:

dΩ= −dΠ= d(W − U) = σdϵ − dU =
1
2

CdDϵ · ϵ (8)

This energy increment must be zero during elastic deformation and non-negative during damage
evolution. In 1D modeling, Eq. (8) gives energy dissipation per unit volume as:

dΩ=
1
2

Eϵ2dD =
1
2

Eϵ2
R(δ)dδ =

1
2
ϕ(δ)dδ (9)
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The last step used the last form of R(δ) in Eq. (6) and recognized that D = δ/ϵ and σ = F(δ)
during 1D damage evolution. Energy dissipation up to current δ is [10]

G =
1
2

∫ δ

0

ϕ(δ) dδ =

∫ δ

0

F(δ)dδ−
δF(δ)

2

Failure in 1D damage mechanics is characterized by D reaching 1, δ reaching δ(c), or G reaching
a material toughness, which all happen simultaneously. At failure, F(δ(c)) = 0 leading to:

Gc =

∫ δ(c)

0

F(δ)dδ =
1
L0

∫ u(c)

0

F

�

u(COD)

L0

�

du(COD) =
Gc

L0

where Gc is the material’s fracture mechanics toughness. In other words, area under F(δ) is
toughness per unit volume while area using crack opening displacement is Gc . In 3D modeling,
L0 in replaced by V/Ac where V is a modeled volume element (e.g., one material point) and Ac

is crack area within that volume element leading to Gc = GcAc/V [10].
The strength model F(δ) has been left arbitrary. Although many implementations treat F(δ)

as a “softening” law that monotonically decreases with δ, energy analysis reveals that approach
as unnecessarily restrictive. The only energy requirement is that dΩ≥ 0. Thus any F(δ) with
ϕ(δ)≥ 0 is a possible strength model. Appendix I remarks on alternative, but identical, methods
that either define F(D) strength models to postulate damage evolution in terms D instead of δ.

2.2. Three Dimensional Damage Mechanics

The most common approach to 3D damage mechanics is called isotropic or scalar damage
mechanics. In brief, this method assumes the partitioning tensor is diagonal, D= dI, where d is
a scalar damage parameter. The implementation then applies 1D methods, but replaces ϵ with
an effective strain such that the failure surface becomes

Φ(σ,δ) = E(1− d)ϵeff − F(δ) (10)

For example, Oliver suggests using ϵeff =
p

ϵ ·Cϵ/E (scaled here by dividing by E to make ϵeff
dimensionless) with F(δ) defining an evolving 3D strength [14]. The 1D consistency analysis
then easily extends to 3D evolution of

dδ =
σ · dϵ

F(δ)
�

1+ F ′(δ)
E

� and d(d) =R(δ)dδ (11)

When deriving damage mechanics to model cracks, however, this “isotropic” extension to 3D
is unacceptable. Its main problem is choice of D= dI, which implies materials soften the same
in all directions in response to damage. Isotropic softening works in 1D because there is only in
one direction, but, in 3D a material should soften differently in different directions. Modeling
this 3D response requires knowledge of crack orientation by its normal vector n̂ and extension of
both D and Φ(σ,δ, . . . ) to explicitly depend on n̂ and potentially more damage variables. Crack
orientation is determined by postulating a damage initiation criterion that predicts both when
damage initiates and normal vector n̂ for that crack. Methods (and requirements) for choosing
initiation criteria are discussed later; for now, we assume n̂ is available to the damage analysis.

Once damage initiates and n̂ is known, damage modeling is best done in a crack axis system
(CAS) where crack normal is in the x direction or n̂ = x̂ . Imagine a cubical particle in the
CAS with sides of length ∆x that is deformed only by cracking strain. Inverting Eq. (3) when
n̂ = (1, 0,0) and h=∆x relates crack opening displacement to cracking strain:

u(COD) =∆x
�

ϵc,x x ,γc,x y ,γc,xz

�

and shows that ϵc,y y = ϵc,zz = γc,yz = 0. These requirements mean that rows 2, 3, and 4 of D must
be zero (when expressing D using Voight notation with strains ordered ϵx x , ϵy y , ϵzz , γyz , γxz ,
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and γx y in the CAS). For a generally anisotropic material (where all elements of C may be
nonzero), requiring C(I−D) to be symmetric gives 15 equations from the 15 off-diagonal
elements to determine the 18 elements of D. Assigning the three diagonal elements of D to
D11 = H(σx x)dn, D55 = dxz , and D66 = dx y , where dn, dx y , and dxz are three damage state
parameters and H(σx x) is the Heaviside function to distinguish cracks in tension or compression,
reduces to a linear equation for the 15 unknown elements of D. Reference [10] raised a
conjecture that a generally-anisotropic material should have

Di j =
Ci jd j

C j j
with d1 = H(σx x)dn, d5 = dxz , d6 = dx y , d2 = d4 = d4 = 0

While this conjecture does satisfy the linear system (and therefore C(I−D) is symmetric), the
determinant of the matrix for determining D is zero. In other words, proceeding for generally-
anisotropic materials requires additional constraints for a unique solution. But, if analysis is
limited to orthotropic materials and the response remains orthotropic after damage (but with
altered properties), a unique solution for D in 3D (which follows the Ref. [10] conjecture) is
obtained:

D=





















H(σx x)dn
H(σx x )C12

C11
dn

H(σx x )C13
C11

dn 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 dxz 0

0 0 0 0 0 dx y





















(12)

Note that crack opening in the normal direction is u(COD)
x =∆xϵc,x x . In compression, H(σx x <

0) = 0, which correctly leads to zero normal displacement. In tension, H(σx x > 0) = 1 allows
cracks to open. All subsequent equations assume orthotropic symmetry before damage and in
the CAS after damage (i.e., x̂ in the CAS is in a damaged material symmetry direction).

This D matches the damage tensor first proposed by Chaboche [2] (but here transposed and
with the H(σx x)modifications). A key difference is that Chaboche derived it as a specific D based
on a model for stiffness reduction due to an array of aligned microcracks. The strain-partitioning
view of D allows it to be derived without reference to stiffness reduction modeling. Furthermore,
the strain-partitioning view asserts that D is not a choice — it is the only option consistent with
damage mechanics modeling a crack. As a consequence, isotropic damage mechanics using
D= dI is inconsistent with a crack. Similarly, orthotropic damage mechanics with alternative
D tensors (e.g., [9]) are inconsistent with a crack (note when a model gives only Ceff in the
presence of damage, the D tensor implied by that model is easily derived as D= I−Ceff C

−1).
I do not claim such prior work is useless or undeserving of being called “damage mechanics.”
I do claim, however, that damage mechanics models of orthotropic materials with D differing
from Eq. (12) are classes of damage mechanics that are not modeling cracks. Such methods
develop non-physical cracking strains that correspond to displacements not associated with a
single crack opening displacement.

A second problem with both isotropic damage mechanics and prior orthotropic damage
mechanics is use of inappropriate failure surfaces such as Eq. (10) (or any other scalar function
of principal stresses or strains). Simple scalar functions of stress or strain are insufficient for 3D
and unable to partition into tensile and shear failure. The preferred approach is to postulate a
failure surface that depends on three components of the traction vector on the crack surface,
T = σ · n̂. During modeling in the CAS, this traction increments by dT = (dσx x , dτx y , dτxz).
Given a 3D stress increment allowing for changes in D:

dσ =∇σ · (dϵ, dD) = C(I−D)dϵ −CdDϵ
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and D in Eq. (12), the traction increment is:

dT =







dσx x

dτx y

dτxz






=







C11 (dϵn −H(σx x)d(dnϵn))

C66

�

dγx y − d
�

dx yγx y

��

C55

�

dγxz − d
�

dxzγxz

��







where

ϵn = ϵx x +
C12

C11
ϵy y +

C13

C11
ϵzz

is an effective strain normal to the crack.
We proceed by defining a traction failure surface that depends on n̂ through T = σ · n̂:

Φ(T , c) = ∥T∥ − S(c)

where c = (ϵn,γx y ,γxz ,δn,δx y ,δxz) is a vector of strains and three damage variables that are
needed to extend damage mechanics to 3D. δn, δx y and δxz , correspond to the cracking strain
required to initiate damage in the current damage state if unloaded and then reloaded by
uniaxial normal or shear stress loading, respectively. Their relations to dn, dx y , and dxz are
thus analogous to Eq. (4):

dn =
δn

δn +
Fn
C11

dx y =
δx y

δx y +
Fx y

C66

dx y =
δxz

δxz +
Fxz
C55

(13)

where F subscripts imply strength models that depend on δn, δx y , or δxz (this same convention
is used below for R(δ) and ϕ(δ) functions). S(c) is a strength model that gives maximum
traction allowed on the crack surface. It must be a state function of damage that can be achieved
by defining it in terms of three unidirectional strength models — Fn(δn), Fx y(δx y), and Fxz(δxz)
— one for normal and two for shear failure. Strength may also depend on mode mixity, which
means it may depend on relative strains, ϵn, γx y , and γxz , but not on their magnitudes.

By logic in 1D modeling, given current 3D stress, σ, and an increment in total strain, dϵ,
calculate a trial crack traction update T (t r ial) = T + dT where dT is found with constant dn, dx y ,
and dxz . If Φ(T (t r ial), c)≤ 0, the increment is elastic. The stress updates by dσ = C(I−D)dϵ,
no changes are made to di or δi , but current cracking strain changes by dϵc = Ddϵ. But,
if Φ(T (t r ial), c)> 0, damage evolves. The damage evolution can be determined from a 3D
consistency condition:

∇Φ(T , c) · (dϵ, dc) = 0 =⇒ ∇∥T∥ · (dϵ, dc) =∇S(c) · dc (14)

Further results depend on choice for S(c). First, however, note that this analysis provides a
single equation while the update has three unknown damage increments: dδn, dδx y and dδxz .
Some prior ADaM models have proposed coupling between damage variables [2]. This analysis
proposes that coupling should be determined by requiring all components of crack traction
to simultaneously decay to zero at failure. The details depend on choice S(c), which can be
represented in a 3D plot with crack tractions σx x , τx y , and τxz along the x , y , and z axes,
respectively. The following sections consider the three failure surfaces in Fig. 2.

2.2.1. Cuboid Strength Model: The simplest strength model is an open-ended cuboid surface
(see Fig. 2A) intersecting the y axis at ±Fx y , the z axis at ±Fxz , and the positive x axis at Fn.
The compression end (negative x axis) is unbounded or failure in compression happens only by
shear. One approach to a cuboid strength model is to allow the three damage variables to evolve
independently whenever any crack traction component reaches strength in that direction. This
surface thus leads to three uncoupled 1D damage increments all based on Eq. (7):

dδn =
dϵn

1+ F ′n
C11

dδx y =
sign(τx y)dγx y

1+
F ′x y

C66

and dδxz =
sign(τxz)dγxz

1+
F ′xz
C55

(15)
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A. Cuboid B. Elliptical Cylinder C. Ovoid
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Figure 2. Plots for three strength models, S(c), based on a A. cuboid surface, B. an elliptical cylinder
surface, and C. an ovoid surface. The x direction is the normal strength while the y and z directions are

the shear strengths.

The shear evolutions are modified with sign(τi j) = τi j/|τi j | to allow damage evolution by
positive or negative shear. The cracking strain increments are dϵc,x x = dδn and dγc,i j =
sign(τi j)dδi j .

This option provides an “uncoupled” approach. It is identical to ADaM implementation in
Ref. [10] and similar to uncoupled methods used in cohesive zone modeling of mixed-mode
failures [17]. A drawback of uncoupled methods is they result in unrealistic modeling of damage
effects. Imagine loading a material in tension to induce normal damage causing an increase in
dn and δn. If this material was then unloaded and reloaded in shear, it would act as a virgin
material with no damage.

More realistic modeling should allow for damage in one direction to affect subsequent
deformation in other directions [18]. A extension for a cuboid surface that achieves this goal is to
link the damage state parameters or to set dn = dx y = dxz = d. Although this approach appears
to be an ad hoc assumption, it has physical justification by resulting in all components of crack
traction simultaneously reaching zero at failure. Implementation of this coupling repeats the
three calculations in Eq. (15), but the linked d parameter updates by the one that changes the
most:

d(d) =max
�

Rndδn,Rx y dδx y ,Rxzdδxz

�

Given this update and one direction that provides the maximum change, the other two δ
parameters are updated by inverting Eq. (13) (e.g., δn + dδn = δ−1

n (d + d(d))). Increments in
cracking strains during coupled, 3D damage evolution are found from:

dϵc,x x = d
�

dϵn

�

= d dϵn + ϵnRndδn = d dϵn +
σx x dϕn

C11δnFn
dδn

This increment can be transformed to

dϵc,x x =
σx x

Fn
dδn + d

�

dϵn −
σx x

Fn

�

1+
F ′n
C11

�

dδn

�

(16)

Analogous equations apply for dγc,x y and dγc,xz . Notice that the direction that maximizes
d(d) will update as in 1D damage mechanics. For example, if the controlling direction is the
n direction, then σx x = Fn, 1+ F ′/C11 = dϵn/dδn and the update simplifies to dϵc,x x = dδn.
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Figure 3. Cross section of an elliptical cylinder failure surface for analyzing damage evolution in shear.
T is an initial traction to point A. Point B is a trial traction that causes damage. Point C is final traction
after returning to an evolved failure surface. Fi j(δi j) and Fi j(δi j + dδi j) indicate initial and evolved

strengths in the two shear directions.

The two other directions, however, need the full Eq. (16). Thus, unlike 1D, where δ equals the
maximum cracking strain, δn, δx y and δxz are, in general, not equal to maximum normal and
shear cracking strains.

2.2.2. Elliptical Cylinder Strength Model: This surface is an elliptical cylinder that is capped on
the top at Fn and open-ended on the bottom (see Fig. 2B). Starting with uncoupled tension and
shear, normal damage evolution uses the cuboid method in Eq. (15) while the shear strength
evolves to an elliptical cross-section of the cylinder that intersects the y axis at ±Fx y and the z
axis at ±Fxz (see Fig. 3).

For S(c), we write shear traction magnitude T s = (τx y ,τxz), in terms of damage parameters:

∥T s∥= ∥γ∥
q

C2
66(1− dx y)2 sin2 θ + C2

55(1− dxz)2 cos2 θ = ks∥γ∥

where γ= (γx y ,γxz) = ∥γ∥(sinθ , cosθ ), ∥γ∥=
q

γ2
x y + γ2

xz , tanθ = γx y/γxz , and

ks =
q

C2
66(1− dx y)2 sin2 θ + C2

55(1− dxz)2 cos2 θ

is current shear stiffness or slope of ∥T s∥ vs. ∥γ∥. This traction magnitude causes damage when
it reaches the elliptical surface, or when

1=

�

τx y

Fx y

�2

+
�

τxz

Fxz

�2

= ∥γd∥
2

�

C2
66(1− dx y)2 sin2 θ

F2
x y

+
C2

55(1− dxz)2 cos2 θ

F2
xz

�

where γd is shear strain vector when the traction vector is on the traction failure surface. Solving
for its magnitude gives:

∥γd∥=
Fx y Fxz

Ç

F2
xzC2

66(1− dx y)2 sin2 θ + F2
x y C2

55(1− dxz)2 cos2 θ

The traction failure surface can now be represented by a 4D surface:

S(θ ,δx y ,δxz) = ks∥γd∥= Fx y Fxz

√

√

√

C2
66(1− dx y)2 sin2 θ + C2

55(1− dxz)2 cos2 θ

F2
xzC2

66(1− dx y)2 sin2 θ + F2
x y C2

55(1− dxz)2 cos2 θ
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The damage evolution equation becomes:

∇Φ(T , c) · (dϵ, dc) =∇
�

∥T s∥ − S(θ ,δx y ,δxz)
�

· (dγx y , dγxz , dδx y , dδxz) = 0 (17)

After a tedious derivation, this equation simplifies to a useful result, but the same result can
be found by a much simpler path. Figure 3 shows initial traction A on the initial failure surface
while B is a trial traction found by assuming no damage evolution:

B =
�

τ(t r ial)
x y ,τ(t r ial)

xz

�

=
�

τx y + C66(1− dx y)dγx y ,τxz + C55(1− dxz)dγxz

�

When B is outside the surface, we must return to C on an evolved surface, which in terms of
unknown increments dδx y and dδxz is:

C =
�

τ( f inal)
x y ,τ( f inal)

xz

�

=
�

τ(t r ial)
x y − C66γx yRx y dδx y ,τ(t r ial)

xz − C55γxzRxzdδxz

�

= B − r

where r = (C66γx yRx y dδx y , C55γxzRxzdδxz) is the “return” vector in the y-z plane. The
damage evolution equation can be derived by finding increments such that updated state is
on the evolved elliptical surface or:

�

τ(t r ial)
x y − ry

Fx y(δx y + dδx y)

�2

+

�

τ(t r ial)
xz − rz

Fxz(δxz + dδxz)

�2

= 1 (18)

Expanding this equation in a multidimensional Taylor series and keeping only first-order terms
in dγx y , dγxz , dδx y , and dδxz , the evolution equation simplifies to:

τ2
x y C66(1− dx y)
�

1+
F ′x y

C66

�

F3
x y

dδx y +
τ2

xzC55(1− dxz)
�

1+
F ′xz
C55

�

F3
xz

dδxz

=
τx y C66(1− dx y)

F2
x y

dγx y +
τxzC55(1− dxz)

F2
xz

dγxz (19)

This results matches a tedious derivation using Eq. (17) and is a new result in ADaM.
To complete shear coupling, we need a second equation in damage increments. As done to

couple cubic surface updates, the two shear damage parameter can be assumed to be linked
such that dx y = dxz = ds. Adopting this linkage, the second equation is Rx y dδx y =Rxzdδxz .
Substitution into Eq. (19) gives damage increments of

d(ds) =
T̂ e ·
�

C66
Fx y

dγx y , C55
Fxz

dγxz

�

T̂ e ·
�

T̂c,x C66

Rx y Fx y

�

1+
F ′x y

C66

�

,
T̂c,y C55

Rxz Fxz

�

1+
F ′xz
C55

�
� with T̂ e =

�

τx y

Fx y
,
τxz

Fxz

�

(20)

is a unit vector defined by the elliptical failure surface. The δ damage variables evolve by dδi j =
d(ds)/Ri j . Besides just asserting that dx y = dxz , various physical justifications for coupling were
explored. As described in Appendix II, equating damage parameters is the preferred approach
and physically corresponds to returning to the evolved surface in the direction of the origin (i.e.,
parallel to the traction vector).

As in coupling for the cubic traction surface, the shear cracking strain updates must use the
general analysis in Eq. (16), which for shear becomes:

dγc,x y =
τx y

Fx y
dδx y + ds

�

dγx y −
τx y

Fx y

�

1+
F ′x y

C66

�

dδx y

�

(21)

with a corresponding result for dγc,xz . Because 3D damage may occur when δx y ̸= γc,xz , δx y
no longer corresponds to the maximum cracking strain. It still, however, does correspond to the
cracking strain required to cause damage if unloaded and then reloaded by only τx y .
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For an isotropic material, Fx y = Fxz = Fs, δx y = δxz = δs, Rx y =Rxz =Rs, C55 = C66 = G,
and T̂ s = Fs T̂ e is a unit vector in the shear traction direction. Noting that ∥T s∥= Fs during
damage evolution, the updates simplify to:

dδs =
T̂ s · dγ

1+ F ′s
G

and (dγc,x y , dγc,xz) = dγc = T̂ sdδs + ds

�

dγ− T̂ s(T̂ s · dγ)
�

(22)

Updating normal damage by Eq. (15) and shear damage by Eq. (20) is a partially coupled
analysis. The shear directions are coupled, but tension and shear directions are uncoupled. As a
result, damage induced in tension would not affect subsequent loading in shear (and vice versa).
As for the cubic surface, the coupling can be completed by linking dn = ds = d. Implementation
of this approach would update by whether tensile or shear loading causes the most damage:

d(d) =max (Rndδn, d(ds))

Normal and shear cracking strains then update by general results in Eqs. (16) and (21).

2.2.3. Ovoid Strength Model: An ovoid failure surface (see Fig. 2C) caps an open-ended elliptical
cylinder in the compression half plane with an ovoid surface in the tensile half plane capped
at Fn. The ovoid results can be derived from elliptical cylinder methods by adding terms
corresponding to plottingσx x along the x axis of the traction failure surface plot. This extension
adds:

�

σ(t r ial)
x x − rx

Fn(δn + dδn)

�2

where rx = C11ϵnRndδn

to Eq. (18). This extra term adds corresponding terms to left and right of Eq. (19). Finally,
asserting this surface couples the three damage parameters (d = dn = dx y = dxz), the damage
update, which is another new result in ADaM, becomes:

d(d) =Rndδn =
T̂ o ·
�

C11
Fn

dϵn, C66
Fx y

dγx y , C55
τxz

dγxz

�

T̂ o ·
�

T̂o,x C11

Rn Fn

�

1+ F ′n
C11

�

,
T̂o,y C66

Rx y Fx y

�

1+
F ′x y

C66

�

,
T̂o,z C55

Rxz Fxz

�

1+
F ′xz
C55

�
� (23)

where T̂ o =

�

σx x

Fn
,
τx y

Fx y
,
τxz

Fxz

�

is a unit vector defined by the ovoid failure surface. Shear damage increments by dδi j =
d(d)/Ri j . The cracking strains increment by general results in Eqs. (16) and (21). For an
isotropic material, this increment simplifies to

d(d) =

T̂0,x C11

Fn
dϵn +

G
Fs
(T̂0,y , T̂0,z) · dγ

T̂ 2
0,x C11

Rn Fn

�

1+ F ′n
C11

�

+
(T̂ 2

0,y+T̂ 2
0,z)G

Rs Fs

�

1+ F ′s
G

�

(24)

In compression, where H(σx x) = 0, the normal stress terms drop out and the update reverts
to elliptical cylinder methods in the previous section. But, because the d parameters remain
linked even in compression, the normal damage variable update is dδn = d(d)/Rn. This damage
increment, however, does not increment normal cracking strain — that strain remains zero in
compression because of the H(σx x) terms in D.

Finally, note that an ovoid surface with linked damage parameters inherently couples all
damage variables. Unlike for cubic or elliptical cylinder surface, the implementation does not
need to determine which direction causes the most damage.
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2.2.4. Energy Dissipation and Failure: By Eq. (8), the energy dissipation rate with general D
simplifies to:

dΩ=
1
2

H(σx x)C11ϵ
2
nddn +

1
2

C55γ
2
xzddxz +

1
2

C66γ
2
x y ddx y

In terms of δ variables, the dissipation rate is:

dΩ=
1
2

H(σx x)T̂
2
0,xϕn dδn +

1
2

T̂ 2
0,yϕx y dδx y +

1
2

T̂ 2
0,zϕxz dδxz

This dΩ differs from 1D energy dissipation in Eq. (9) by needing to account for damage
occurring when T̂0,i < 1 (i.e., current stress is below uniaxial strength in that direction). Note
that dissipated energy partitions into tensile energy (the first term) and shear energy (the second
two terms). The tensile energy is mode I fracture energy. The shear terms are a sum of mode
II and mode III energy. These two shear modes cannot be separated because that separation
requires evaluating deformation relative to the crack front. A smeared crack in a discrete volume
element does not have a crack front.

When d damage parameters are linked, dissipation becomes:

dΩ=
1
2

�

H(σx x)C11ϵ
2
n + C55γ

2
xz + C66γ

2
yz

�

d(d)

But, when using uncoupled damage parameters, dissipation is a sum of uncoupled dissipation
terms. For example, an uncoupled cubic surface simplifies to dΩ= dGn + dG x y + dG xz where
increments are given by dG = ϕdδ/2 whenever any direction evolves damage. To model mixed-
mode failure, a uncoupled cuboid surface must be supplemented with a failure criterion such
as failure when

�

Gn

Gn,c

�n

+

�

G x y

G x y,c

�m

+

�

G xz

G xz,c

�p

= 1

where denominators are toughnesses in those directions and n, m, and p would be material
properties. A drawback of uncoupled modeling is that mixed-mode failure may occur when
current tractions are non-zero. A sudden drop of all tractions to zero might cause numerical
problems and may be a poor description of failure.

Coupled modeling with linked damage parameters has the desirable property that all
tractions simultaneously decrease to zero at failure (i.e., when d → 1) and this failure occurs
automatically without needing a mixed-mode failure criterion. This absence of a mixed-
mode failure criterion might appear as a disadvantage to those interested in inputting mixed-
mode failure properties, but it is actually a profound advantage. Stated differently, uncoupled
methods must speculate and impose some mixed-mode failure criterion. In contrast, fully-
coupled methods need no criterion; they automatically handle mixed-mode failure as a natural
consequence of the chosen strength models. The effect of strength models on mixed-mode
failure could be investigated by mixed-mode loading simulations. Favorable comparisons of
such simulations to experimental mixed-mode failure observations could justify strength model
selections.

2.2.5. Post-Failure Contact and Friction: Once failure occurs, the post-failure damage state uses
dn = dx y = dxz = 1 and subsequent updates use the strain-partitioning interpretation of D to
update cracking strain by dϵc = Ddϵ. Such updates may result in large crack openings or in crack
closing leading to crack-surface contact. Continued tracking of cracking strain automatically
handles frictionless contact by the H(σx x) terms in D such that normal direction develops normal
traction when in contact, but is stress free when opened while shear tractions are always zero.
This frictionless contact is described in Ref. [10]; here contact is extended to model friction.

For a post-failure update when in contact, first assume the surfaces are sticking and calculate
a trial shear traction based no change in cracking strains:

T (t r ial)
s = (τx y + C66dγx y ,τxz + C55dγxz)
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If ∥T (t r ial)
s ∥ ≤ µN (where N = −σx x is the surface compression), the crack plane sticks, accept

the trial update in shear stress, and set increments in cracking strain to zero. But, if ∥T (t r ial)
s ∥>

µN , revise the shear stresses to:

T (final)
s = (τx y + ζC66dγx y ,τxz + ζC55dγxz)

where ζ is found be solving the quadratic equation ∥T (final)
s ∥2 = µ2N2. Once ζ is found, the shear

stresses are set to T (final)
s and the cracking strain increments become:

(dγc,x y , dγc,xz) = (1− ζ)(dγx y , dγxz)

Physically, ζ= 0 is frictionless while 0< ζ≤ 1 is modeling Coulomb friction. Frictional work
per unit volume is shear force × shear strain increment. Multiplying by particle volume V , the
total frictional work is

WF = µNV
q

dγ2
c,x y + dγ2

c,xz

Converting this work into heat can model frictional heating.

3. GENERAL THEORY OF DAMAGE MECHANICS

The special theory assumes traction failure surfaces depend only on damage state. Real material
strength often depends on other variables such as pressure, temperature, strain rate, or more.
A general theory to account for other variables must change strength models to F(δ,α) where
α is a vector of all external variables affecting the material’s strength. This change has two
consequences. First, the ratio of D evolution to δ evolution needs a full differential to account
for α dependence:

D =
δ

δ+ F(δ,α)
E

=⇒ dD =
�

∂ D
∂ δ

�

α
dδ+
�

∂ D
∂α

�

δ

· dα=Rdδ−A · dα

where

Ai(δ,α) = −
�

∂ D
∂ αi

�

δ,α j ̸=i

=
ψ(δ,αi)

E
�

δ+ F(δ,α)
E

�2 with ψ(δ,αi) = δ
�

∂ F(δ,α)
∂ αi

�

δ,α j ̸=i

Second, gradients of strength models add α terms:

∇F(δ,α) · (dδ, dα) = F ′(δ,α)dδ+
∑

i

ψ(δ,αi)dαi

δ

where F ′(δ,α) now indicates the δ partial derivative.
Imagine an elastic process with ϵ→ ϵ + dϵ and a→ α+ da such that stress remains below

the current traction failure surface. Because this process dissipates no energy, it requires dD = 0.
Solving for dD = 0 implies an “elastic” change in δ, denoted by dδ(e), as:

dδ(e) =
A · da
R

=

∑

iψ(δ,αi)dαi

ϕ(δ,α)

In the special theory, neither D nor any δ values change unless damage evolves. In other words,
both are damage state variables. But, in the general theory, δ variables may change when
damage is not evolving and therefore only D remains as a damage state variable.

The need to sum over ψ(δ,αi) can be avoided by recognizing dδ(e) is the increment in δ
required to keep D constant when a→ α+ da or:

δ

δ+ F(δ,α)
E

=
δ+ dδ(e)

δ+ dδ(e) + F(δ+dδ(e),α+dα)
E
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Equating the left hand side to the current D, leads to:

dδ(e) = δ+
DF(δ+ dδ(e),α+ dα)

E(1− D)
(25)

This equation can be numerically solved for dδ(e) given any strength model and a finite change
in α (a strength model linear in δ has an analytical solution).

Given these dδ(e) relations, a general damage mechanics theory can be deduced from methods
analogous to the special theory by replacing Rdδ terms withR(δ,α)(dδ− dδ(e)) and F ′(δ)dδ
with:

∇F(δ,α) · (dδ, dα) = F ′(δ,α)dδ+
ϕ(δ,α)
δ

dδ(e)

Some general theory methods along with quoted extensions of special theory results are given
in this section.

Beginning with 1D damage evolution, such as normal direction for a cuboid surface, the
special theory result in Eq. (5) changes to

dδn =
C11(1− dn)dϵn +

�

C11ϵnRn −
ϕn
δn

�

dδ(e)n

C11ϵnRn + F ′n

where Fn, Rn, and ϕn depend on both δ (as indicated by the subscript) and on α. Substituting
C11ϵnRn = dnϕn/δn during uniaxial damage and expanding the ϕn terms simplifies to:

dδn = dδ(e)n +
dϵn − dϵ(e)n

1+ F ′n
C11

where dϵ(e)n =
dδ(e)n

dn
(26)

This general theory result is equivalent to breaking the increment into two steps. First, deform
elastically on the traction failure surface while maintaining constant dn to reach updated traction
for δn→ δn + dδ(e)n and a→ α+ dα corresponding to elastic strain increment, dϵ(e)n , found by
strain partitioning of dn. Second, evolve damage at constant α+ dα as in the special theory, but
change the strain increment causing damage to dϵ∗n = dϵn − dϵ(e)n .

A general cracking strain increment follows Eq. (16), but replaces dδn with dδn − dδ(e)n :

dϵc,x x =
σx x

Fn
(dδn − dδ(e)n

�

+ dn

�

dϵn −
σx x

Fn

�

1+
F ′n
C11

�

�

dδn − dδ(e)n

�

�

(27)

For uniaxial damage by Eq. (26), this general cracking strain increment simplifies to dϵc,n = dδn

(i.e. the process associated with dδ(e)n does not change dn and therefore does not affect cracking
strain). The general shear damage equations for a cuboid surface extend to:

dδx y = dδ(e)x y +
sign(τx y)dγx y −

dδ(e)x y

dx y

1+
F ′x y

C66

and dδxz = dδ(e)xz +
sign(τxz)dγxz −

dδ(e)xz
dxz

1+
F ′xz
C55

with cracking strain increments dγc,i j = sign(τi j)dδi j .
Similarly, general theory updates for elliptical and ovoid surfaces follow the special theory

results in Eqs. (20) and (23) but replace dδi j with dδi j − dδ(e)i j , dδn with dδn − dδ(e)n , dγi j with

dγi j − dγ(e)i j , and dϵn with dϵn − dϵ(e)n . A change in 3D methods (vs. 1D methods) is to derive
3D strain increments for elastic motion on the failure surface:

�

dϵ(e)n , dγ(e)x y , dγ(e)xz

�

=

�

T̂o,x

dδ(e)n

d
, T̂o,y

dδ(e)x y

d
, T̂o,z

dδ(e)xz

d
,

�

(28)
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Figure 4. Damage initiation in an isotropic material based on Mohr’s circles for principal stresses
σ1 ≥ σ2 ≥ σ3 for each traction failure surface (ovoid: solid lines, cuboid and cylindrical: dotted lines).
σ(α) and τ(α) are α-dependent tensile and shear strengths. The right side plots initiation surface in

principal stress space for τc = 0.6σc . The dashed lines separate the three cases in Eq. (29).

Using Eq. (25), this elastic strain increment is easily verified to update an initial traction on
the failure surface at δ and α to a new state on that surface at δ+ dδ(e) and α→ α+ dα. The
updates for isotropic materials follow the special theory results in Eqs. (22) and (24) but replace
dδs with dδs − dδ(e)s and dγ with dγ− (dγ(e)x y , dγ(e)xz ). Cracking strain increments use Eq. (27)
for each strain component.

3.1. Damage Initiation

Some have suggested (including myself [10]) that various initiation criteria can be paired
with various damage evolution methods. That suggestion is wrong. Instead, the initiation law
must be identical to the postulated traction failure surface with the axes at Fn(0), Fx y(0), and
Fxz(0) (see Fig. 2). If they differ, the stress-strain curve would have a discontinuity between
initiation, determined by initiation law, and post-failure deformation, determined by traction
failure surface. A challenge when detecting initiation, however, is that crack normal is not yet
defined. In brief, damage initiation must determine when traction along any normal in 3D space
reaches a failure surface. When critical traction is first detected, the direction that was critical
determines the crack normal. These calculations require all F(0) to be greater than zero and can
be challenging for anisotropic materials. This section gives one method for isotropic materials.

Figure 4 plots a 3D stress state in a Mohr’s stress plot where σ1 ≥ σ2 ≥ σ3 are the principal
stresses. Next, superpose the traction failure surface as a function of normal and shear stress
on a plane with normal stress along the x axis and shear stress along the y axis (a 2D
plot suffices for isotropic materials). Initiation is detected by determining when a point on
the largest Mohr’s circle between σ1 and σ3 with radius equal to the maximum shear stress
τmax = r = (σ1 −σ3)/2 first contacts the traction failure surface.

First, consider cuboid and elliptical cylinder failure surfaces. In a Mohr’s stress plot, these
surfaces are open-ended rectangles indicated by the dotted lines in Fig. 4. Damage initiates if
σ1 = σc(α) or if τmax = τc(α). Initiation also needs the crack normal, which is determined by
where the point intersects the failure surface. Failure by σ1 first touches the rectangle when
θ = 0 or crack normal is in maximum principal stress direction. Failure by τmax intersects the
surface when the crack normal is at 45◦ to the maximum principal stress direction. These two
surfaces thus reduce to predicting initiation using principal stresses and their directions, which
is a common method used in prior modeling [10]. A new assertion is that damage evolution
based on cuboid or cylindrical failure surfaces must determine initiation by this principal stress
approach. Notice this approach accommodates effects of α on strength by basing the rectangle
on current strengths σc(α) and τc(α).
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An ovoid failure surface (in tensile loading), plots as an ellipse with axes τc(α) and σc(α)
where we first assume σc(α)> τc(α). The geometric problem is that given a circle of radius,
r = τmax , find the critical circle midpoint, pc , such that the circle first contacts the elliptical
failure surface. If the current circle’s center p = (σ1 +σ3)/2 is greater than or equal to pc , then
damage initiates. This geometric problem has several solution methods [19]. One method is to
solve for τi on the ellipse as a function σi and substitute into the equation for a circle of radius
r centered at pc to derive a quadratic equation for σi:

c2

σ2
c

σ2
i − 2pcσi + (p

2
c − r2 +τ2

c ) = 0

where c = ±
Æ

σ2
c −τ2

c are the foci of the ellipse. For this equation to reduce to a single σi such
that the circle touches the ellipse at a single point, its discriminant must be zero, which leads
to:

pc =
c
Æ

τ2
c − r2

τc
=⇒
� pc

c

�2
+
�

r
τc

�2

= 1

But this analysis does not apply for all r. The two contact points for the circle at ±2θ degenerate
to a single point when the intersection is at the ellipse apex or when pc + r = σc . This condition
occurs when r < τ2

c/σc , or r is less than radius of curvature of the ellipse apex. The solution is
also invalid for r > τc . This limit corresponds to finding shear failure at τmax = τc . In summary,
damage initiation occurs by:

initiation at











pc = σc − r for r ≤ τ2
c
σc

pc =
c
τc

Æ

τ2
c − r2 for

τ2
c
σc
< r < τc

rc = τc for r ≥ τc

(29)

Damage initiation also needs the crack normal direction. For the first and last cases, the crack
normal is θ = 0◦ or 45◦, respectively (where θ is rotation about the principal 2 axis). For the
intermediate case, the angle is:

θ =
1
2

cos−1
�τc

cr

q

τ2
c − r2
�

(30)

The right side of Fig. 4 plots this initiation surface in principal stress space (a 2D surface or
cross-section of a 3D surface). The first (tensile failure) and last (shear failure) cases in Eq. (29)
are straight lines that are connected by the intermediate case with an elliptical curve tangent to
the first and last cases. The crack angle, θ , is angle between normal to this surface and the σ1
direction.

For materials with τc(α)≥ σc(α), all circles with r < τc also have r ≤ τ2
c/σc , which

eliminates the middle case. Thus, failure will be by shear if r ≥ τc or by tension if p ≥ σc − r
with crack normals at 45◦ or 0◦, respectively. In other words, by the same criterion used for
cuboid and cylindrical surfaces and shown by the dotted lines on the right side of Fig. 4.

4. DISCUSSION WITH EXAMPLES

Providing compelling examples to demonstrate the validity of damage mechanics models is
challenging. When applied to simple problems, such as uniaxial loading, many methods give
satisfactory results. When applied to complex problems with unknown solutions, many damage
mechanics methods (even misguided ones) may generate plausible, albeit different, results.
Two good ways to evaluate damage mechanics are by soundness and completeness of the
underlying theory and by experience in getting useful results in a variety of problems. This
paper presents a complete theory that appears sound and my personal experience is that these
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methods provide useful and stable results in many problems. This paper is restricted to some
practical implementation details, one example illustrating differences between isotropic and
anisotropic damage mechanics as well as coupled vs. uncoupled damage parameters, and two
general-theory examples using pressure-dependent failure properties. A planned paper will
provide more-detailed comparisons between various damage mechanics methods and fracture
mechanics solutions. Finally, this section concludes with remarks about further implications of
the strain-partitioning interpretation of D.

4.1. Implementation

All methods in this paper were implemented in particle-based, material point method (MPM)
software [15]. Implementation details for uncoupled parameters are in Ref. [10]. This section
covers changes needed to implement coupling by the ovoid failure surface and to implement
general theory methods. Implementing coupling for cubic or elliptical cylinder surfaces would
use similar methods. These details assume isotropic materials, but could be extended to
anisotropic materials.

All particles (i.e., material points) start undamaged with d = 0 and δn = δs = 0. Initiation
methods in Ref. [10]must change to the methods in the Damage Initiation section. After damage
initiation, each time step is associated with an effective strain increment dϵ = (dϵn, dγx y , dγxz)
and it’s associated ∥T (t r ial)∥. When Φ(T (t r ial), c)≤ 0, the update is elastic, but the new general
methods must calculate elastic changes in δn and δs using Eq. (25). When Φ(T (t r ial), c)> 0,
general damage mechanics modeling divides each step into three sub-steps:

1. Move elastically at constant α until traction reaches the failure surface. Because any elastic
sub-step path can be used, a stable approach is to move parallel to initial traction or to
find dT = βT such that Φ((1+ β)T , c) = 0. Solving for β and elastic strain to reach the
surface (dϵ(1)) gives

β∥T∥=
FnFs

r

F2
s T̂

2
x + F2

n

�

T̂
2
y + T̂

2
z

�

− ∥T∥ dϵ(1) =
β∥T∥
1− d

�

T̂x

C11
,

T̂y

G
,

T̂z

G
,

�

2. Move elastically along the traction failure surface (i.e., at constant d) to point where
α→ α+ dα and δ→ δ+ dδ(e) corresponding to strain increment dϵ(e) in Eq. (28). Using
Eq. (25), elastic strain increment for the first two sub-steps (dϵ(1∗) = dϵ(1) + dϵ(e)) is

dϵ(1∗) =
∥T∥
1− d

�

T̂x
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− 1

�

,
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�
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− 1
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,
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�

(1+ β)F∗s
Fs

− 1

��

where F∗ = F(δ+ dδ(e),α+ dα).
3. Change the initial traction to T + (1− d)(C11, G, G)dϵ(1∗) and then evolve damage using

the special theory but change the strain increment for that calculation to dϵ(2) = dϵ −
dϵ(1∗). The total increment in damage variables includes both dδ from special-theory
damage calculation and dδ(e) from sub-step #2. The increments in cracking strain include
both d ∗ (dϵ(1)) from sub-step #1 and increments from this sub-step (by Eq. (27)).

Insuring stable calculations requires two details. First, the particle size must obey stability
conditions derived in Ref. [10] or ∆xp <min(ηn(KI c/σc)2,ηs(KI I c/τc)2) where ηn and ηs are
factors that depend on Fn(δn) and Fs(δs) strength models (these factors are maximized at 2 for
strength models linear in δ), and KI c and KI I c are associated critical stress intensity toughnesses.
When σc , τc , KI c or KI I c depend on α, maximum cell size should be based on the range in α
expected during a simulation.

Although coupled damage mechanics has three damage variables (d, δn, and δs) that update
at different rates, they are interrelated by Eq. (13). If each variable increments by explicit
expressions for their updates, their values can drift from satisfying relations in Eq. (13). Because
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R functions decay close to zero near decohesion, increments in δn and δs can become unstable
(i.e., too “stiff”). The recommended, stable approach is to update the one variable that updates
the least (relatively). For a given time step, fractional changes in damage variables are

�

d(d),
dδn

δn,max
,

dδs

δs,max

�

= d(d)

�

1,
1

Rnδn,max
,

1
Rsδs,max

�

A stable update process is as follows: If max(Rnδn,max ,Rsδs,max)< 1, use the d(d) update
equation. Otherwise, if Rnδn,max >Rsδs,max evaluate dδn or else evaluate dδs. Whichever
increment is evaluated, calculate the other two using Eq. (13). For typical strength models,
modeling starts by incrementing δn or δs but eventually shifts to incrementing d when
approaching decohesion. Inverting Eq. (13) to find δ from d may need numerical methods
(an analytical inversion is available for strength models linear in δ).

To test for shear-locking effects seen in FEM, the patch test proposed by Cervera [8] was
run in MPM modeling. In brief, this test loads a 100×200 mm specimen in tension past
failure (with material properties E = 2000 MPa, ν= 0.3, σc = 1 MPa, and GI c = 250 J/m2). An
implementation fails this test if it develops any spurious shear or transverse normal stresses. An
MPM implementation passes this test and thus appears to avoid shear locking effects. This result
is not surprising because MPM and FEM implement material models differently. MPM basically
implements continuum mechanics equations during the Lagrangian phase of each time step.
That calculation is disconnected from the grid. The crack path in this patch test consisted of
two rows of failed particles resulting in a cracked region filling one background grid cell (i.e.,
a model with two particles per cell in each direction). Such a crack path resolves a crack well
when using standard linear shape functions [20]. But if linear shape functions are replaced by
quadratic splines [21], two rows of particles are not enough to resolve a crack. This issue is a
discretization issue of modeling a sharp change in properties and not issue inherent to ADaM.
Fortunately, spline functions usually spread out the damage resulting in improved results vs.
linear functions. Absence of shear locking in MPM is an advantage over FEM, but does not
imply MPM implementation is free of challenges. The Additional Options section discussions
some of those challenges with potential solutions.

4.2. Isotropic vs. Anisotropic Damage Mechanics and Coupled vs. Uncoupled Damage Parameters

An example that illustrates differences between isotropic and anisotropic damage mechanics
and between coupled and uncoupled damage parameters is uniaxial tension while varying
f = τc/σc . By Eqs. (29) and (30) the initiation stress and crack angle using the ovoid surface
are

σi =

�

2τc f
p

1− f 2 f < 1p
2

σc f ≥ 1p
2

and θ =

¨

1
2 cos−1
�

f 2

1− f 2

�

f < 1p
2

0 f ≥ 1p
2

(31)

For cuboid or elliptical surfaces, which are equivalent in 2D, the initiation stress and angle for
f < 1/2 areσi = 2τc f and θ = π/4 but changes for f ≥ 1/2 toσi = σc and θ = 0. For isotropic
damage mechanics using ϵeff =

p

ϵ ·Cϵ/E with evolution by Eq. (11), initiation occurs when
σi = σc (3D or plane stress) but changes to σi = σc/

p
1− ν2 for plane strain. This “isotropic”

initiation is independent of f and does not define a crack normal direction. Notice that because
isotropic damage mechanics depends on all components of stress, it non-physically depends on
out-of-plane σzz stress in plane strain rather then just depending on crack traction. Isotropic
damage mechanics could be improved by changing the failure surface, but it would still depend
on inappropriate stress components and still unrealistically soften isotropically after initiation.

To compare approaches, a 42×6 mm bar was loaded in plane strain MPM. The material
properties were E = 1000 MPa, ν= 0.33, ρ = 1 g/cm3, GI c = 1000 J/m2, GI I c = 4000 J/m2,
and σc = 15 MPa. The bar was loaded at 2 m/s (or 0.2% of the material’s wave speed) using
0.33 mm cells in the background grid and f was varied from 0.1 to 1.0. The strength models
were linear.
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Figure 5. The load at initiation of failure (σi normalized toσc , square symbols) and angle of the initiated
failure plane (in radians, circle symbols) as a function of f = τc/σc for axial loading of a bar. The
solid and dashed lines are expected results based on principal-stress initiation criteria for coupled and

uncoupled methods, respectively.

Figure 5 compares simulations using ovoid surface (open symbols) or cuboid/elliptical
surfaces (filled symbols) to corresponding initiation predictions (solid and dashed lines) as a
function for f . The results match expectations. A benefit of an ovoid surface is that it provides
a smooth transition in failure load and angle as f decreases. Cuboid/elliptical surfaces have a
sharp jump in failure angle at f = 1/2. The results for isotropic damage mechanics matched
the plane-strain initiation stress (dotted line), which is independent of f and provided no
information about failure angle.

Because the material softens after initiation, the maximum simulated stresses in Fig. 5
matched the input initiation stress and did not depend on whether or not the damage parameters
are coupled. After initiation, however, deformation is strongly affected by damage mechanics
method. Figure 6 compares A. δ = dϵeff for isotropic damage mechanics to δs for B. uncoupled
cuboid/elliptical surface, C. coupled cuboid/elliptical surface, and D. coupled ovoid surface, all
for f = 0.2 at 3.4% strain (which was strain just before ovoid surface failed by decohesion). The
right side of Fig. 6 shows the deformed shape of one particle from the middle of the damaged
region. By isotropic damage mechanics, failure occurs at a high stress (σmax = 15.87 MPa)
followed by rapid tensile failure at about 2% strain. Subsequent post-failure deformation
effectively causes cracking displacement in the direction of the loading. All anisotropic damage
mechanics methods failed at about 6 MPa with a crack angle close to 45◦ (see f = 0.2 in
Fig. 5). Because uncoupled methods that initiate in shear will only soften in shear, the post-
failure deformation corresponds to necking with crack-opening displacement limited to shear
slippage (see Fig. 6B). This damaging process is closer to shear plasticity theory than to crack
propagation. By coupling the damage parameters, the cuboid/elliptical failure surface shows
partial coalescence of damage into a 45◦ crack with some normal crack opening; the shear
damage is now coupled to normal damage thereby allowing the crack to open (see Fig. 6C).
An ovoid surface with coupled damage parameters provides the most compelling simulation for
tensile loading of a crack initiated in shear (see Fig. 6D). A clear crack forms at 45◦ and that
crack opens under subsequent axial loading in the direction of the loading. Two results are clear
— 1. coupling of damage parameters provides the best description of failure by crack initiation
and opening; 2. an ovoid surface provides clearer crack definition than a cuboid or elliptical
failure surface.

4.3. Pressure Dependence

A 3D example for pressure-dependent damage mechanics is axial compression while the lateral
surfaces are loaded to constant compressive stress pT . The shear initiation stress was assumed
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Undeformed
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Figure 6. Damage states for failure that initiates in shear using A. isotropic damage mechanics, B.
uncoupled cuboid/elliptical surface, C. coupled cuboid/elliptical surface, and D. coupled ovoid surface,
all for f = 0.2. The left plots δs at 3.4% strain for range of 0 (dark) to 0.5 (light) (note that isotropic
damage mechanics plots δ = dϵeff instead). The right shows the deformed shape of a particle in the
middle of the necked region with a crack at the simulated crack angle. The two halves of the deformed
particles are shifted by the simulated crack opening displacement. All deformed particles are enlarged

to the same relative scale and an undeformed particle is shown for reference.

to have pressure dependence

τc(P) = τc(0)
�

1+
P
σh

�

(32)

where σh is hydrostatic tension that causes shear strength to reach zero when P = −σh. GI c ,
GI I c , and σc were assumed to be pressure independent, which implies δ(c)s decreases as P
increases. Because ADaM requires positive initiation stress for all pressures, σc must be less
than σh such that tensile initiation occurs before reaching zero shear strength. A 12× 8× 8 mm
bar was pressurized on lateral surfaces by ramping from 0 to various pT followed by loading in
compression in the long direction. The initial pressurization and subsequent axial loading were
done at 1 m/s (0.1% of the materials wave speed). The MPM grid used 0.8 mm cells with 8
particle per cell. All other properties were the same as in the previous section. In compression,
failure initiates at compressive stress σ when |σ− pT |= 2τc(P) where P = (σ+ 2pT )/3. Using
the shear strength in Eq. (32), failure initiation is expected when

σ =
2τc(0) + pT

�

1+ 4τc(0)
3σh

�

1− 2τc(0)
3σh

Figure 7A compares MPM simulations (symbols) for initiation of failure to this expectation (solid
lines) for σh = 15 MPa and σh =∞ (i.e., pressure independent); the results agree.

The stress-strain curves are shown in Fig. 7B. Because the axial ends were held fixed
during initial pressurization, the axial compressive stress initially increased or decreased for
pT > 0 or pT < 0, respectively, before linearly increasing during subsequent axial loading. After
damage initiation, the slopes decreased, but compression loading, with contact modeling,
continues to increase. The post-failure slopes for pressure-dependent (solid curves) and
pressure-independent (dashed curves) strength differed slightly. These simulations revealed the
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Figure 7. A. Compressive stress (unsigned) at initiation of failure for σh = 15 MPa or σh =∞ (solid
lines). The dashed line and symbols are expectation (dashed line) compared is back-calculation of
τc(P) by treating the σh = 15 MPa values as experimental results (symbols). B. Compressive stress-
strain curves during damage evolution for σh = 15 MPa (solid lines) or σh =∞ (dashed lines) for

lateral pressures pT = 7.5, 2.5, or −7.5 MPa.

importance of modeling initiation and evolution of damage by the same criterion. Any damage
mechanics model that adds pressure dependence to the initiation failure criterion, but fails
to consistently include that pressure dependence throughout damage evolution developed a
discontinuity at the onset of damage. The smooth transitions in Fig. 7B are result of using the
same failure surface for both initiation and evolution.

This loading example doubles as an experimental method for measuring pressure dependence
of shear strength. Each experimental result as a function of pT returns one shear strength value
for one pressure or τc

�

P = (σ+ 2pT )/3
�

= 0.5|σ− pT |. The diamond symbols in Fig. 7 treat
the σh = 15 MPa results as virtual experiments and extracts τc(P). This exercise returns the
input linear shear dependence (the dashed line). Doing this calculation for actual experimental
results would return shear-strength material properties, including nonlinear responses.

The dα= dP increment needed by sub-step #2 above is dP = −K(de− dϵc,x x) where K is
bulk modulus and de is trace of the incremental strain tensor. This relation causes a problem
when using coupled methods because dϵc,x x is both an input to sub-step #2 and an output of sub-
step #3. This problem was solved by an iterative algorithm. First, assume elastic deformation
such that dϵc,x x = d dϵn and evaluate damage evolution resulting in a new result for dϵc,x x .
Then, if output and input dϵc,x x are sufficiently close, the calculations are done. Otherwise
recalculate dP using updated dϵc,x x , return to sub-step #2, and repeat until converged.

4.4. Glass Sphere Impact

One last example simulated impact of soda lime glass spheres on an aluminum oxide anvil.
Experimental results for 4.7 mm diameter spheres at various velocities show a variety of
failure modes [22]. At low velocity (<25 m/s) the impact site develops Hertzian cracks with
a significant portion of the impact site “pulverized by the impact.” At intermediate velocities,
failure changes to radial cracks (i.e., the sphere fragments like an orange into slices) and a
crushed cone at the impact site remained as an intact fragment. Finally, at very high velocities
the spheres “disintegrated into a powder” [22]. This change from pulverized impact site to an
intact, crushed cone suggests pressure-dependent damage such that less impact-site damage
occurs when impacted at higher rates that induce higher pressures.

To see if pressure-dependent damage mechanics displays similar failure modes, 3D
simulations were done at 30 m/s. Soda lime glass was estimated to have E = 72 GPa, ν= 0.208,
ρ = 2.52 g/cm3, σc = 60 MPa, KI c = 0.75 MPa

p
m (or GI c = 45 J/m2), and KI I c =

p
10× KI c
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Pressure Independent Pressure Dependent

Impact Site
Figure 8. The geometry of the cracks (i.e., failed particles only) for pressure-independent (left) or
pressure-dependent (right) shear strength. The shading indicates failure mode from purple (or dark) for
pure shear to yellow (or light) for pure tension. All remaining spherical spaces are filled with non-failed

particles. The pressure-dependent cracks indicate failure of the sphere into four “orange slices.”

[23, 24]. To model pressure dependence, τc was assumed to increase by a sigmoidal shape:

τc(P) = τ0 +
τmax −τ0

1+ e− ln2(P−Pmid )/P1/3

where τ0 = 45 MPa, τmax = 240 MPa, Pmid = 25 MPa and P1/3 = 10 MPa. This strength
transitions from τ0 at low pressure to τmax at high pressure, passing through (τ0 +τmax)/2
at Pmid , and 1/3 of the strength change occurs within Pmid ± P1/3. The aluminum oxide anvil
was assumed to be linear elastic with E = 300 GPa, ν= 0.22,ρ = 3.89 g/cm3. These simulations
were qualitative because material properties were uncertain (e.g., no mode II toughness for soda
lime glass could be found). A sigmoidal shape that limits the maximum strength was arbitrary
and used to avoid these brittle material simulations becoming unstable due to insufficient
spatial resolution (i.e. ∆xp < ηs(KI I c/τc)2 decreases rapidly if τc(P) increases too much). The
simulations used full mass-matrix methods (FMPM(2)) with quadratic spline shape functions
(B2CPDI) [21]. To avoid artifacts, the anvil had to be thick enough to avoid reflected waves
during the simulation (for 7 µs). This was achieved by using larger particles in the anvil remote
from the impact site using a Tartan grid [25]. The sphere and impact site were discretized with
a regular grid having 224 particles across the sphere’s diameter (20 million particles).

Figure 8 compares damage state 4 µs into the impact event for pressure-independent and
pressure-dependent material properties. The figure shows only failed particles colored (or
shaded) to indicate their failure mode from purple (or dark) for pure shear failure to yellow (or
light) for pure tensile failure. Empty spherical space is filled with still-intact particles. Indeed,
adding pressure dependence to τc(P) has a profound effect on failure mode. With no pressure
dependence, shear failure dominates and is rather diffuse. By adding pressure dependence,
the failure resembles experimental results that develop radial cracks breaking the sphere into
orange-slice fragments. The impact site still sustains significant damage but has evidence of a
“crushed cone” by virtue of reduced shear damage.

4.5. Additional Options

This paper derives general ADaM by defining D as a tensor that partitions total strain into elastic
and cracking strains and includes new methods for coupling damage parameters and modeling
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materials where failure depends on other variables. This section remarks on additional options
or ideas for future work.

Determining Initiation and the Crack Normal: The cost of seeking a more realistic description of
cracks using ADaM vs. isotropic damage mechanics is that ADaM must determine both when a
crack initiates and its normal vector. All calculations in this paper used particle stresses — an
approach that raises two issues. First in any discrete method (e.g., both MPM and FEM), local
particle (or element) stresses depend on resolution. For example, a discrete model of stresses
near a crack tip, where theoretical stress is infinite, will get larger stresses as particle sizes get
smaller. Thus, any discrete modeling that relies on local stress must treat initiation stress as a
resolution-dependent property [11]. Accepting resolution dependence is workable when using
a regular grid (as commonly done in MPM), but problematic in methods that allow damage
to propagate through regions with different resolutions. Second, inaccuracies or noise in local
stress may cause inaccurate crack normals. When ADaM simulations encounter problems, those
problems always appear to be associated with crack normals. Those problems did not occur
in examples above or in prior work [10, 11, 12]. A promising solution if problems arise is to
switch from particle stresses to non-local stresses or to base initiation and crack normal on stress
averaged over a volume with some input non-local radius. This radius would remain constant as
resolution changes. Preliminary results suggest this change can minimize resolution dependence
and improve crack normal calculations (it will be developed in a future publication).

Diffuse Damage: In ADaM, softening is limited to directions normal and shear to the crack plane.
While this feature is beneficial for representing cracks, it might not account for diffuse damage
that causes softening in other directions. A potential addition would to add diffuse damage to
the damage tensor or write

Dtotal = αD+ (1−α)Ddiffuse

where D is from Eq. (12), Ddiffuse is due to diffuse damage, and α is a mixing parameter. I suggest
Ddiffuse should modify isotropic damage tensor of Diso = dI to remain diagonal but use H(σx x)d
for normal terms and d for shear terms. Most of the analysis of this paper would remain the
same. The damage evolution would continue to be based on crack tractions allowing modeling
of mode I and mode II failures. The main difference would be that the update for stresses not
in the traction vector would reflect diffuse damage. The chief drawback would be deciding how
to choose the new mixing parameter α, but it should be anticipated to be near 1.

Coupled Plasticity: By strain-partitioning, the current D can find incremental bulk strain from
total incremental strain using dϵbulk = (I−D)dϵ. The above equations treated dϵbulk as an
elastic strain, but one could, for example, model the bulk as an elastic-plastic material as follows:
1. Each time step would do plasticity modeling using dϵbulk resulting in a stress increment and
a partitioning of dϵbulk into bulk elastic and plastic strain increments. 2. Once done, subtract
plastic strain increment from total strain increment and evaluate damage evolution by elastic-
material methods.

Coupled Heat Conduction: When elasticity is coupled to the heat equation, changes in volume
induce an adiabatic change in temperature, dTdS=0, which for an isotropic material is

dTdS=0

T
= −

Kα
ρCv

∆V
V

where K is bulk modulus, α is volumetric thermal expansion coefficient, ρ is density, Cv is
constant-volume heat capacity, and ∆V/V is volumetric strain [26]. If this coupling is based on
total strain, however, crack opening would be misinterpreted as an increase in volume inducing
cooling. Instead, dTdS=0 must be calculated solely from the volumetric strain increment in
dϵbulk. The cracks implied by ADaM likely also affect heat conduction. This effect could be
modeled by changing the thermal conductivity tensor as a function of damage state. For an
isotropic material, the tensor should evolve to an anisotropic tensor with reduced conductivity
normal to the crack plane.
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Large Deformation Theory: Extension to large deformation theory should start by defining D as
deformation-partitioning tensor. For example, 1D elongation could be partitioned into λ= λcλe
or a product cracking and elastic elongations. Defining D as fraction of total length change due
to crack opening results in (λ−λe) = D(λ− 1) (which reverts to ϵc = Dϵ for small strains). As
D evolves from 0 to 1, λe evolves from λ to 1 while λc evolves from 1 to λ. 1D methods would
evolve D by keeping Cauchy stress less than or equal to a strength model defined as a function
of maximum λc . Extension to 3D might define a damage tensor by (F− Fe) = D(F− I) where
F= FcFe is total deformation tensor as a product of deformation tensors due to cracking or
elastic deformations. The form of D would be determined by large-deformation description of
smeared cracks.

Anisotropic Materials: The above damage mechanics completely accounts for orthotropic
materials, but implementation needs direction-dependent traction failure surfaces that cannot
be based on principal stresses. A viable approach for orthotropic materials is:

• Resolve stress into components along material symmetry planes resulting in 9 strength
models (3 for normal stress and 6 for shear stresses) with associated toughnesses.

• When damage initiates, assume the damage normal is always along a material symmetry
plane. This restriction keeps the material orthotropic in the CAS. It is consistent with many
(not all) failure modes in anisotropic materials. Note: the need for 6 shear strength models
is that each shear plane needs two strengths to model cracks with normals in the two
material directions in that plane. In practice, all shear cracks in that plane will initiate in
the weaker direction.

Although failure surfaces in nine strength models are problematic, a cubic failure surface for
each material symmetry direction works reasonably well. If a cubic surface is inadequate, this
analysis could be amended to use other shapes, which may not be elliptical shapes. Because
damage updates depend on S(c) through Eq. (14), switching to new failure surfaces would
retain stress-strain curve in Eq. (2) and D in Eq. (12), but would need to derive new update
equations. If an orthotropic material fails with crack normal that is not in a material symmetry
direction, C in the CAS would have non-zero terms associated with a generally-anisotropic
material. Modeling such behavior may require both additional constraints to determine D and
coupling of the strength models (e.g., Fn(δn,δx y ,δxz)).

5. CONCLUSIONS

The “mechanics” of anisotropic damage mechanics (ADaM) is fully determined by interpreting D
as a fourth-rank tensor that partitions total strain, ϵ, into bulk material strain, ϵbulk, and cracking
strain associated with crack opening, ϵc , by ϵc = Dϵ. ADaM implementation is centered around
a postulated traction failure surface modeling crack traction conditions that induce evolution of
damage with these properties:

Three Strength Models: The traction failure surface is defined by Fn, Fx y , and Fxz , which are
associated with three components of crack traction, evolve as damage variables associated with
three crack-opening directions, δn, δx y , and δxz , evolve, and allow the model to partition tensile
and shear failure. Damage initiation occurs when the traction on any virtual crack plane reaches
this failure surface for undamaged strength properties (and orientation of that virtual plane
defines the crack normal for subsequent damage evolution).

Damage Evolution: Damage evolves whenever trial traction causes Φ(T (t r ial), c)> 0 and the
increment in damage is found by returning to an evolved surface such that Φ(T + dT , c + dc) =
0. Returning to the evolved surface along a path toward the origin assures that all crack tractions
simultaneously reach zero at failure and couples the damage parameters needed to define D into
a single damage parameter. The tensile-failure example shows that coupling damage parameters
is the preferred approach to modeling materials that fail by crack formation and propagation.
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Damage Material Properties: The input material properties are strengths and toughness needed
to define the axes of the traction failure surface. For isotropic materials these reduce to just
normal and shear strength models; anisotropic materials need strength models for each possible
failure direction. The special theory of damage mechanics assumes these strength models
depend only on the damage state. The general theory is needed to model materials where
strength depends on other variables. The pressure-dependent examples suggest the general
theory has potential for modeling real-world effects that could not be modeled by prior damage
mechanics methods.

APPENDIX I

Instead of deriving damage evolution from a strength model that depends on δ, damage
mechanics could proceed using strength models that depend on D and postulate D evolution
laws [13, 27]. These two approaches are identical provided the strength models and evolution
laws are consistent.

The first question is — given F(δ), what is the corresponding F(D) strength model? The
general result is

F(D) = F
�

δ−1(D)
�

where δ−1(D) is inverse to last relation in Eq. (4). For example, a linear strength model with
F(δ) = Eϵ0(1−δ/δ(c)) (where ϵ0 is strain to initiate damage), leads to non-linear F(D) strength
model:

F(D) = Eϵ0
(1− D)δ(c)

δ(c) + D(ϵ0 −δ(c))
Most non-linear F(δ) models will need numerical methods to determine F(D). An approach
that starts with F(D) would revise Eq. (4) to

σ = E(1− D)ϵi = F(D) =⇒ ϵi =
F(D)

E(1− D)
=⇒ δ = Dϵi =

D
1− D

F(D)
E

Now given F(D), the corresponding strength model inverts this last relation to give F(δ) =
F
�

D−1(δ)
�

. For example, choosing a linear F(D) = Eϵ0(1− D) results in F(δ) = Eϵ0(1−δ/ϵ0)
that corresponds to brittle elastic response (i.e., δ(c) = ϵ0); this model is unstable and therefore
not useful to damage mechanics. In general, choosing F(D) is difficult because D lacks the
physical interpretation available by relating δ in 1D to the maximum cracking strain. Damage
mechanics is better implemented by choosing F(δ) models.

The second questions is —- given an F(δ) strength model, what is the corresponding D
evolution law? During one-dimensional damage evolution, total strain and D in terms of that
strain are:

ϵ = δ+
F(δ)

E
=⇒ D =

δ−1(ϵ)
ϵ

where δ−1(ϵ) is inverse of the first equation. The D evolution law during monotonically
increasing strain in terms of a strength model embedded in δ−1(ϵ) becomes

dD
dϵ
=
ϵ

dδ−1(ϵ)
dϵ −δ

−1(ϵ)

ϵ2

For example, a linear strength model leads to evolution laws for D and δ when ϵ > ϵ0 as:

δ−1(ϵ) =
δ(c)(ϵ − ϵ0)
δ(c) − ϵ0

, D =
δ(c)

δ(c) − ϵ0

�

1−
ϵ0

ϵ

�

,
dD
dϵ
=

δ(c)ϵ0

(δ(c) − ϵ0)ϵ2
,

dδ
dϵ
=

δ(c)

δ(c) − ϵ0
,

The D evolution law is nonlinear: D evolves rapidly after initiation but more slowly near failure.
In contrast, δ evolves at a constant rate. Although either approach works in 1D, evolution using
strength models and δ is preferred in 3D and in the general theory.
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APPENDIX II

This appendix considers various methods for returning a trial traction that exceeds failure
surface to the evolved surface in Fig. 3. A common method in plasticity theory is to return
normal to the evolved surface. By this approach, the second equation for damage evolution is

∥r × n∥= 0 where n̂∥n̂∥=

�

τ(t r ial)
x y − ry

F2
x y(δx y + dδx y)

,
τ(t r ial)

xz − rz

F2
xz(δxz + dδxz)

�

is normal vector to the evolved ellipse. Expanding in a Taylor’s series and keeping first-order
terms, this coupling equation simplifies to

C66(1− dx y)ϕx y(δx y)dδx y = C55(1− dxz)ϕxz(δxz)dδxz

For an isotropic material, this coupling again leads to dx y = dxz , but for anisotropic materials,
the damage parameters may differ. Because the coupling equation leads to some damage in both
directions even during uniaxial shear loading, a model with dx y ̸= dxz could fail by x-z shear
strength even when loaded with τxz = 0. This non-physical response again suggests dx y and
dxz should be linked. Note that Ref. [10] proposes shear coupling by this normal return method.
Although that approach is valid for the isotropic materials, that paper has errors in calculating
the return path. Its coupling equation is different and does not result in dx y = dxz . In brief,
the uncoupled options in Ref. [10] are correct, but its coupling equations must be replaced by
Eq. (20).

By a fracture mechanics view of ADaM, damage evolution is energy balance. Perhaps the
return vector should maximize dissipated energy? When this option was tried, however, the
energy extremum was found to fall on the boundary for admissible increments in dδx y and
dδxz and those boundaries sometimes result in physically-unacceptable solutions.

Finally, the return vector could be parallel to the trial shear traction. The second equation and
its simplification after Taylor series expansion become

0= ∥r × T (t r ial)
s ∥ =⇒

Rxzdδxz

1− dxz
=
Rx y dδx y

1− dx y

At damage initiation, dx y = dxz = 0 and the first update becomes d(dxz) =Rxzdδxz =
Rx y dδx y = d(dx y). On the next step, the d ’s will be equal and they will remain equal on all
subsequent steps (i.e.. this option links dx y = dxz). In summary, coupling dx y and dxz physically
corresponds to returning to the evolved surface in the direction of the origin and guarantees
both shear traction components decay to zero at shear failure.
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16. de Souza Neto EA, Perić D, Owen DRJ. Computational Methods for Plasticity: Theory and Applications. John
Wiley & Sons, 2008.

17. Li S, Thouless M, Waas A, Schroeder J, Zavattieri P. Mixed-mode cohesive-zone models for fracture of an
adhesively bonded polymer–matrix composite. Engineering Fracture Mechanics 2006; 73(1):64 – 78.

18. Nairn JA, Aimene YE. A re-evaluation of mixed-mode cohesive zone modeling based on strength concepts
instead of traction laws. Engineering Fracture Mechanics 2021; 248:107 704.

19. Stack Exchange. A circle inside and ellipse. https://math.stackexchange.com/questions/1972994/a-circle-
inside-an-ellipse October 2016.

20. Sadeghirad A, Brannon RM, Burghardt J. A convected particle domain interpolation technique to extend
applicability of the material point method for problems involving massive deformations. Int. J. Num. Meth.
Engng. 2011; 86(12):1435–1456.

21. Nairn JA, Hammerquist CC. Material point method simulations using an approximate full mass matrix inverse.
Computer Methods in Applied Mechanics and Engineering 2021; 337:113 667.

22. Salman A, Gorham D. The fracture of glass spheres. Powder Technology 2000; 107:179–185.
23. Wikipedia. Soda lime glass. https://en.wikipedia.org/wiki/Soda
24. Gong J, Chen Y, Li C. Statistical analysis of fracture toughness of soda-lime glass determined by indentation.

J. Non-Crystallilne Solids 2001; 279:219–223.
25. Hammerquist CC, Nairn JA. Modeling nanoindentation using the material point method. Journal of Materials

Research 05 2018; 33:1369–1381.
26. Carlson DE. Linear thermoelasticity. Mechanics of Solids, vol. II, Truesdell C (ed.). Springer-Verlag, New York,

1984; 297–345.
27. Ladèveze P, Lubineau G. On a damage mesomodel for laminates: Micro-meso relationships, possibilities, and

limits. Comp Sci & Tech. 2001; 61:2149–2158.

Copyright © 2022 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2022)
Prepared using nmeauth.cls DOI: 10.1002/nme.7009


