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ABSTRACT

Many composites fail by fracture events, such as fiber breaks or matrix cracks, rather than
by continuous crack growth. Conventional fracture mechanics deals with predicting crack
growth. This paper suggests that conventional fracture mechanics can be extended to pre-
dict fracture events by using finite fracture mechanics. In finite fracture mechanics, the next
fracture event is assumed to occur when the finite energy released by that event exceeds the
energy required or the toughness for that event. After deriving some mathematical methods
for calculated finite energy release rate in composites, an application of finite fracture me-
chanics to predicting matrix microcracking is discussed. When finite fracture mechanics of
microcracking is done correctly and pays attention to all experimental boundary conditions,
it can be used to predict most microcracking results for laminates.

INTRODUCTION

Many composites, especially those with continuous, aligned, high-modulus fibers, are close
to being linear elastic until failure. Such composites are thus excellent candidates for failure
analysis using linear elastic fracture mechanics, in which failure is assumed to occur when
the energy release rate, G, for damage growth exceeds the critical energy release rate, Gc,
or toughness of the material. In other words, failure analysis of composites can often be
reduced to the problem of calculating G for some particular type of damage growth. The
calculation of G for composites, however, is normally more complicated than for homoge-
neous materials because it must account for material heterogeneity, residual stresses caused
by differential phase shrinkage, tractions, such as friction, on some crack surfaces, and for
possibly imperfect interfaces (1).

Another complication of composite fracture mechanics analysis is that many failure pro-
cesses are characterized by fracture events instead of by continuous crack growth. Typical
fracture events are fiber breaks, matrix cracks (2), and instantaneous fiber/matrix debond-
ing (3). Conventional fracture mechanics deals with predicting the conditions for which a
dominate crack grows (4). The experimental reality for composites is that crack growth is
often not observable; all that can be observed is the occurrence of fracture events. When
no experimental observations for crack growth are possible, there is little incentive to de-
rive fracture mechanics analysis for the underlying growth. Rather, there is a need to
develop fracture mechanics methods for predicting fracture events. Because fracture events
are associated with a finite increase in fracture area, Hashin has suggested calling such an
analysis finite fracture mechanics (5). Finite fracture mechanics has been used implicitly
for such failure problems as edge delamination (6), matrix microcracking (2), fiber breakage
and interfacial debonding (7), and cracking of coatings (8–10). This paper outlines some
mathematical methods for finite fracture mechanics, points out a new observation about
boundary condition effects, and gives an example by analyzing matrix microcracking.
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CONVENTIONAL vs. FINITE FRACTURE MECHANICS

The development of a finite amount of fracture area, ∆A, must conserve total energy. By
the first law of thermodynamics we can write

∆U
∆A

+
∆K
∆A

+ 2γ =
∆q
∆A

+
∆w
∆A

(1)

where U is internal energy, K is kinetic energy, γ is surface energy (note: crack growth of ∆A
creates 2∆A of new surface area), q is heat added to the sample, and w is external work done
on the sample. Conventional linear elastic fracture mechanics deals with an infinitesimal
amount of cracks growth (∆A → 0) for which ∆K → 0. For an elastic material, dq must
also be zero which leads to Griffith fracture or

G =
dw

dA
− dU

dA
= 2γ (2)

Fracture occurs when G = 2γ (11). This energy balance, however, only works for highly
brittle materials; for metals, polymers, and composites, dq is nonzero and negative as
inelastic deformations during crack growth dissipate heat. The crack growth energy balance
can be modified to

G =
dw

dA
− dU

dA
= − dq

dA
+ 2γ = Gc (3)

In other words, fracture occurs when G = Gc. Typically −dq/dA >> 2γ or Gc ≈ −dq/dA
which describes the ability of material to convert energy into heat during crack growth (12).
Such a Gc is not actually a material property because it is affected by such things as crack
tip stress state (e.g., mode I vs. mode II). Nevertheless, including the energy dissipation
term in the material property Gc is the basis of fracture mechanics which can explain and
predict crack growth in many types of materials. Gc can be treated as an effective material
property.

When fracture occurs by a fracture event instead of by infinitesimal crack growth, ∆K may
be nonzero. We have two options for dealing with ∆K 6= 0 in the fracture event energy
balance. First, it may be included in energy release rate:

G =
dw

dA
− dU

dA
− dK

dA
(4)

which makes it part of the crack driving energy. This approach is the basis for dynamic
fracture mechanics (4). Alternatively, it may be included within the material toughness or

Gc =
∆K
∆A

− ∆q
∆A

+ 2γ ≈ ∆K
∆A

− ∆q
∆A

(5)

This second approach can be suggested as justification for finite fracture mechanics. When
fracture events occur in otherwise slow tests, energy can be dissipated either by heat dissi-
pation (−∆q) or by kinetic energy (∆K) which corresponds to vibrations induced by the
fracture event that eventually will get dissipated as heat. Thus, in finite fracture mechanics,
fracture events are predicted to occur when the finite energy release rate given by

∆G =
∆w
∆A
− ∆U

∆A
(6)

is equal to Gc. Conventional fracture mechanics works well provided −dq/dA can be treated
as an effective material property that is independent of specimen properties like crack length
and specimen size. Similarly, finite fracture mechanics should work well provided the total
energy dissipation property (∆(K−q)/∆A) can be treated as an effective material property
that is independent of specimen size and current damage state.
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SOME COMPOSITE FRACTURE MECHANICS METHODS

This section gives some general results for calculating G for composite fracture while in-
cluding all material heterogeneity and residual stress effects. For simplicity, it is assumed
that all cracks are traction free and all interfaces are perfect. Some extensions to drop these
assumptions are given in Ref. (1).

For finite fracture mechanics, we need to calculate ∆G or the total energy release rate for
the formation of a finite amount of damage. We thus consider two states — an initial state
and a final state with some additional fracture area. Let σ0 and ε0 be the stresses and
strains in the initial state and σ0 + σp and ε0 + εp be the stresses and strains in the final
state. σp and εp are the perturbation stresses and strains or the change in stresses and
strains causes by the new damage. From Ref. (1), the ∆G for damage formation can be
written equivalently and exactly as

G =
1

2∆A

∫
V
σpSσpdV =

1
2∆A

∫
V
εpCεpdV =

1
2∆A

∫
∆A

~T p · ~u pdS (7)

where ∆A is the new fracture area, S and C are the position-dependent compliance and
stiffness tensors, and ~T p and ~u p are the perturbation tractions and displacements on the
new crack surface. Note that ∆G depends only on the perturbation stresses. This result is
important because the perturbation stresses can be expressed as the solution to an elasticity
problem that ignores residual stresses (1). In other words, Eq. (7) gives ∆G including the
effect of residual stresses without requiring any thermoelasticity of the new damage state.
All residual stress effects are contained in the initial stress state which provides boundary
conditions to the perturbation stress analysis.

Equation (7) is exact, but it is based on an exact solution for the perturbation stresses or
strains. In most composite fracture problems, no such exact solution will be available. Faced
with a similar lack of exact solutions, work on effective property analysis of composites used
variational mechanics methods to derive upper and lower bounds to bulk properties (13).
Because ∆G is a derivative of bulk properties, it is harder to bound ∆G than to bound
bulk properties. Nevertheless, some good bounds can be derived if we restrict consideration
to formation of damage in a previously undamaged composite (1, 5). For such problems,
the initial state is the undamaged composite. Assume that σ0 and ε0 are known exactly
(or sufficiently accurately as in laminated plate theory) for the undamaged composite. Fur-
thermore, assume that the perturbation stresses and strains for formation of any amount of
damage area A1 are not known exactly, but that they can be approximated by two separate
analyses — one based on an approximate, admissible stress state, σpa, and one based on an
approximate, admissible strain state, εpa. It can be proved that ∆G for formation of damage
A1 is bounded by (1):

−∆Πa(A1)
A1

≤ ∆G(0→ A1) ≤ ∆Γa(A1)
A1

(8)

where

∆Γa(A1) =
1
2

∫
V
σpaSσ

p
adV and ∆Πa(A1) =

1
2

∫
V
εpaCε

p
adV +

∫
A1

~T 0
c · ~u pa dS (9)

Here ∆Γa(A1) is the approximate change in complementary energy calculated from the
approximate stresses and ∆Πa(A1) is the approximate change in potential energy calculated
from the approximate strains.

3



In many composite failure analyses, it will be important to analyze an increase in damage
from some area A1 to A2 rather than the just the formation of damage in an undamaged
composite. From bounds on ∆G(0 → A1) and ∆G(0 → A2), it is possible to also derive
rigorous bounds to the propagation of damage (1):

−∆Πa(0→ A2) + ∆Γa(0→ A1)
A2 −A1

≤ ∆G(A1 → A2) ≤ ∆Γa(0→ A2) + ∆Πa(0→ A1)
A2 −A1

(10)

Unless the approximate solutions for the perturbation stresses and strains are extremely
accurate, these rigorous bounds to damage propagation, unfortunately, will be far apart.
This difficulty in bounding ∆G(A1 → A2) is a consequence of trying to bound a differential
function. Because σpa and εpa are each approximate solutions to the fracture problem,
perhaps energy release rates derived from one or the other will provide better results. We
thus define two new energy release rates

∆G1(A1 → A2) =
∆Γa(0→ A2)−∆Γa(0→ A1)

A2 −A1
(11)

∆G2(A1 → A2) = −∆Πa(0→ A2)−∆Πa(0→ A1)
A2 −A1

(12)

∆G1(A1 → A2) and ∆G2(A1 → A2) are calculated from the assumed stress state or strain
state approximations, respectively. In some example calculations given in the next section,
it was found that ∆G1(A1 → A2) and ∆G2(A1 → A2) bound the exact results. Thus they
can be suggested as providing non-rigorous or practical bounds to ∆G(A1 → A2).

One consequence of analyzing fracture events instead of continuous crack growth, is that
the analysis must pay attention to loading conditions. Figure (1) shows a load-displacement
curve for a fracture experiment with no residual stress effects. The hysteresis area between
the loading and unloading curves is the total energy released during the fracture event.
This area, however, depends on the loading conditions. The area of the ABC triangle is
the total energy released by a fracture event at constant load. The shaded area of the ABD
triangle is the total energy release by a fracture event at constant displacement. Thus the
energy released at constant load is larger than the energy released at constant displacement.
Deriving the slopes of the initial loading curve from Ei and of the unloading curve from Ef , it
is easy to show the the ratio of the ABD to ABC triangular areas is Ef/Ei. In conventional
fracture mechanics, or the limit as ∆A → 0, Ef will approach Ei or the energy released
will be identical for constant load or constant displacement boundary conditions. In finite
fracture mechanics, however, the loading conditions matter. Most laboratory experiments
are done under displacement control; finite fracture mechanics analyses for such experiments
should be done by analyzing constant displacement loading.

AN EXAMPLE

When cross-ply laminates ([0n/90m]s or [90m/0n]s) are loaded in tension parallel to the
0◦ plies, the 90◦ plies develop transverse cracks or matrix microcracks (see review article
Ref. (2)). On continued loading, the 90◦ plies crack into a roughly periodic array of mi-
crocracks. Early work on microcracking suggested microcracks form when the stress in the
90◦ plies reaches the transverse strength of the plies (14). Such a strength model does a
poor job of explaining experimental results (15). It is now accepted that microcracking
experiments can be better explained by a finite fracture mechanics model that assumes the
next microcrack forms when the energy release rate for formation of that microcrack reaches
Gmc or the critical microcracking toughness of the composite (2, 15).
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Fig. 1. Load-displacement curve for a finite increase in crack area. The area of the ABC triangle is
the total energy released by crack growth under load control. The shaded area of the ABD triangle
is the total energy released by crack growth under displacement control.

Previous analyses of microcracking have derived approximate, 2D, plane-stress solutions to
the stresses in the x−z plane of a microcracked laminate based either on an admissible stress
state (16) or an admissible strain state (17). These analyses, as well as other shear-lag based
analyses (18), have been implemented in finite fracture mechanics models, but these fracture
models have all considered constant load conditions. Reference (1) has recently extended
the admissible stress and admissible strain solutions to also consider constant displacement
boundary conditions and used those results to derive a finite fracture mechanics analysis
at constant displacement. Because most experiments are done at some fixed displacement
rate, the constant displacement analysis is the more appropriate analysis for interpreting
experiments. Below is a discussion of the new constant displacement analysis and some
new analyses of experiments using either the the new constant displacement analysis or the
previous constant load analysis.

By making only one assumption, that the axial stresses in each are ply are only a function
of the axial direction, and minimizing the complementary energy, it is possible to derive an
approximate solution based on an admissible stress state (1, 16). From this analysis, the
approximate change in complementary energy and constant displacement due to formation
of n microcracks is (1)

∆Γa(0→ n) = 2Wt21

(
σ0
xx,1

)2
(
C3

n∑
i=1

ELA(ρi)
E0

χL(ρi)

)
(13)

where W is the width of the laminate, t1 is the semi-thickness of the 90◦ ply group, σ0
xx,1

is the stress in the 90◦ plies prior to any damage, C3 is a constant that depends on ply me-
chanical properties and laminate geometry, ELA(ρi) is the lower-bound modulus of a cracked
laminate with periodic microcrack intervals having aspect ratios ρi, E0 is the modulus of the
undamaged laminate, and χL(ρi) is a function of laminate properties and the current crack
density. C3, χL(ρi), and a definition of ELA(ρi) are given elsewhere (2, 15). Similarly, by
making a few assumptions about displacements, and minimizing the potential energy, it is
possible to derive an approximate solution based on an admissible strain state (1, 17). From
this analysis, the approximate change in potential energy due to formation of n microcracks
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Fig. 2. Rigorous (upper and lower bounds) and practical bounds (∆Gm1 and ∆Gm2) for the energy
release rate ∆Gm(n → n + 1) or the energy released due to the formation of the next microcrack.
The symbols are finite element analysis calculations for ∆Gm(n→ n+ 1).

is (1)

∆Πa(0→ n) = 2Wt21

(
σ0
xx,1

)2
(
C3

n∑
i=1

EUA (ρi)
E0

χU (ρi)

)
(14)

where EUA (ρi) is the upper-bound modulus to a cracked laminate with periodic microcrack
intervals having aspect ratios ρi and and χU (ρi) is a new function of laminate properties
and the current crack density. χU (ρi) and a definition of EUA (ρi) are given elsewhere (1, 17).

The total energy release rate due to formation of the (n+ 1)th microcrack after previously
forming n microcracks can simply be rigorously bounded from Eq. (10) by using A2−A1 =
2Wt1. Similarly, substitution into Eqs. (11) and (12) leads to two practical bounds of

∆Gm1(n→ n+ 1) = C3t1
(
σ0
xx,1

)2
(

2
ELA(ρ/2)
E0

χL(ρ/2)− ELA(ρ)
E0

χL(ρ)

)
(15)

∆Gm2(n→ n+ 1) = C3t1
(
σ0
xx,1

)2
(

2
EUA (ρ/2)
E0

χU (ρ/2)− EUA (ρ)
E0

χU (ρ)

)
(16)

These practical bounds differ from previous practical bounds (see Refs. (15) and (17)) by
the modulus ratio factors (ELA(ρ)/E0 and EUA (ρ)/E0) which convert the previous constant
load analyses to new constant displacement analyses. Figure 2 gives a sample calculation of
∆Gm(n→ n+1) for [0/902]s E-glass/epoxy laminate (properties in Ref. (17)) as a function
of crack density for loading conditions giving σ0

xx,1 = 1 MPa. These sample calculations
include the rigorous upper and lower bounds (from Eq. (10)) and the practical bounds
defined in Eqs. (15) and (16). The symbols give some finite element calculations of the
energy release rate. The rigorous upper and lower bounds bound the numerical FEA results
but are fairly far apart. The practical bounds are much tighter and always bound the
numerical results, but the sense of which practical bound is an upper bound and which is
a lower bound switches at a crack density of about 0.6 mm−1.

To compare finite fracture mechanics predictions to experimental results, we first rewrite
∆Gm as

∆Gm =
(
σ0
xx,1

)2
Gm,unit(D) (17)
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where Gm,unit(D) is the energy release rate when there is unit initial axial stress in the 90◦

plies and the current crack density is D. In linear thermoelasticity, σ0
xx,1 can be written as

σ0
xx,1 = k

(1)
m σ0 + k

(1)
th ∆T where σ0 is total applied stress, ∆T is the temperature differential

leading to residual stresses, and k
(1)
m and k

(1)
th are mechanical and thermal stiffness terms

that can be derived from laminated plate theory (2). Equating ∆Gm to Gmc, using the
expanded form for σ0

xx,1, and rearranging gives

−k
(1)
m

k
(1)
th

σ0 = − 1

k
(1)
th

√
Gmc

Gm,unit(D)
+ ∆T (18)

This equation suggests defining reduced stress and reduced crack density as

σred = −k
(1)
m

k
(1)
th

σ0 (19)

Dred = − 1

k
(1)
th

√
1

Gm,unit(D)
(20)

which leads to
σred = Dred

√
Gmc + ∆T (21)

For a given laminate material, Eq. (21) defines a microcracking master plot (15). When
a collection of experimental results from a variety of laminates of the same material are
plotted as a master plot, Eq. (21) predicts the resulting plot should be linear with a slope
of
√
Gmc and an intercept giving the residual stress term ∆T (15). A master plot analy-

sis of microcracking experiments critically tests the fundamental finite fracture mechanics
hypothesis that the toughness property, Gmc, can be treated as a material property, or at
least an effective material property, that is independent of the laminate structure and the
current damage state. Moreover, a master plot analysis can be done with any input theory
for Gm,unit(D) and thus can also test the validity of the energy release rate theory (15).

The master plot method was previously used to analyze experimental results on a variety
of [0n/90m]s and [90m/0n]s laminates made from AS4/3501-6 carbon/epoxy prepreg (15).
That master plot analysis calculated Gm,unit(D) using a complementary energy analysis
with constant load boundary conditions. Here those results will be compared to a new mas-
ter plot analysis using constant displacement boundary conditions. The required constant
displacement results for Gm,unit(D) for each laminate type are

For [0n/90m]s : Gm,unit(D) = C3t1

(
2
ELA(ρ/2)
E0

χL(ρ/2)− ELA(ρ)
E0

χL(ρ)

)
(22)

For [90m/0n]s : Gm,unit(D) =
1
2
C3at1

(
3
ELA(ρ/3)
E0

χa(ρ/3)− ELA(ρ)
E0

χa(ρ)

)
(23)

The alternate form for Gm,unit(D) for [90m/0n]s is required to account for the different
stress state in such laminates and the observation of staggered microcracks in the two
surface 90◦ ply groups (19). The new constant, C3a and the new function χa(ρ) are defined
in Ref. (19); furthermore, the Gm,unit(D) here is modified from the analysis in Ref. (19)
by inclusion of the modulus ratio terms that are needed to convert the previous analysis
to a constant displacement analysis. Finally, the following master plot analysis was done
using Gm,unit(D) calculated from a complementary energy analysis, because it is currently
the only analysis that can handle both [0n/90m]s and [90m/0n]s laminates and account for
their different stress and damage states.
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Fig. 3. Master plot analysis for 14 [0n/90m]s (open symbols) and [90m/0n]s (filled symbols)
AS4/3501-6 carbon/epoxy laminates. Gm,unit(D) was calculated from a complementary energy
analysis with constant displacement boundary conditions. The straight line is a linear fit to the
experimental results. The slope and intercept of the fit give Gmc = 220 J/m2 and ∆T = −95◦C.

Figure 3 gives the master plot for 14 different AS4/3501-6 laminates using Gm,unit(D)
based on constant displacement boundary conditions. The open symbols are the results for
[0n/90m]s laminates; the filled symbols are the results for [90m/0n]s laminates. Microcrack-
ing experiments sometimes show deviations from predictions at low crack density. These
deviations have previously been attributed to either flaws or heterogeneity in toughness that
cause the first few cracks to form sooner then expected (2, 15). To avoid this early data, the
master plot was constructed using only experimental results having crack densities greater
than 0.4 mm−1. All experimental results conform very well to a linear master plot which
suggests both that finite fracture mechanics can explain a wide variety of microcracking
experiments and that Gm,unit(D) can be accurately calculated from a complementary en-
ergy analysis. Notably, the raw experimental results for [0n/90m]s and [90m/0n]s laminates
with the same values of m and n are different, but converge to the same master plot. In
other words, finite fracture mechanics analysis of microcracking can explain the difference
in microcracking properties for laminates with central 90◦ plies vs. laminates with surface
90◦ plies.

Figure 4 gives a master plot identical to Fig. 3 except Gm,unit(D) was calculated using
constant load boundary conditions instead of constant displacement boundary conditions.
The constant load results can be recovered from Eqs. (22) and (23) by dropping all modulus
ratio terms. This master plot is identical to the one given in Ref. (15). It was previously
judged to be a good analysis and gave superior results to all other theories for Gm,unit(D)
tried at that time. By comparing, Figs. 3 and 4, however, it is clear that the constant
displacement analysis improves the results even further and gives a master plot where ex-
perimental results conform even closer to a single line. The improvement on using a constant
displacement analysis is satisfying because all experiments were done under displacement
control. As described above, finite fracture mechanics calculations need to pay attention
to boundary conditions. The best finite fracture mechanics analysis of microcracking is the
one that uses the correct loading conditions. It would be interesting to do microcracking
experiments under load control and see if finite fracture mechanics can explain any observed
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Fig. 4. Master plot analysis for 14 [0n/90m]s (open symbols) and [90m/0n]s (filled symbols)
AS4/3501-6 carbon/epoxy laminates. Gm,unit(D) was calculated from a complementary energy
analysis with constant load boundary conditions. The straight line is a linear fit to the experimental
results. The slope and intercept of the fit give Gmc = 330 J/m2 and ∆T = −143◦C.

differences from the corresponding experiments under displacement control.

CONCLUSION

Finite fracture mechanics analysis of composite fracture events is, at least sometimes, a
valid method for predicting composite failure. It clearly works for analysis of matrix micro-
cracking. Some other applications of finite fracture mechanics that seem to be successful
are analysis of instantaneous debonding following fiber breaks (1, 3) and cracking of paints
or coatings on substrates (8–10). There are probably also examples of fracture events for
which ∆K/∆A is irreproducible or variable from event to event and therefore finite fracture
mechanics would not work. One simple example is tensile failure of unnotched specimens
where the fracture event is complete fracture. Thus, in conclusion finite fracture mechanics
is a potential tool for analysis of failure processes characterized by fracture events rather
than by continuous crack growth. Before it can be used with confidence for any type of
fracture event, however, it must be verified that a fracture event toughness deduced from
experimental results can be treated as an effective material property.
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