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INTRODUCTION

The properties of the fiber/matrix interface in composites have an influence on their overall
performance. Common methods for studying the interface are micromechanical tests that load a
single fiber/matrix interface to failure. Two popular tests are the microbond test [1] and the
single-fiber, pull-out test [2]. In a microbond test a droplet of matrix is sheared off the fiber by
pulling the fiber while restraining the droplet. In a pull-out test, the end of a fiber is embedded
in a polymer and pulled until failure while restraining the matrix. A common interpretation of
these tests is to reduce the load at failure to an interfacial shear strength (ISS) by dividing the
applied load by the total interfacial area. Physically this term is the average interfacial shear
stress at the time of failure. ISS has some use in qualitative work; it is less useful for
fundamental characterization of the interface.

An alternative approach is use fracture mechanics methods. In each test, a crack initiates and
propagates along the fiber matrix interface. By analyzing the interfacial cracking process with
fracture mechanics, it is possible to determine an interfacial toughness instead of an ISS. The
key analysis problem is to solve for the energy release rate of a propagating crack. The
resulting equations can then be used to interpret experimental results. Two complicating
features are residual stresses and friction. Residual stresses are always important in composites
due to differential shrinkage between the fiber and the matrix. Friction is important in
microbond and pull out tests because of the predominantly mode II loading conditions. This
chapter presents a fracture mechanics model for both tests that includes all relevant effects.
The model has been used to interpret experimental results.

FRACTURE MECHANICS THEORY

Detailed stress analysis of interface cracks is a difficult problem that has received much
attention [3]. Fortunately, good results can be obtained for microbond and pull-out specimens
by using an approximate, global energy analysis rather than a local, interfacial crack tip
analysis. This section summarizes an analysis for energy release rate due to crack growth in
microbond and pull-out specimens. More details can be found in Refs. [4-6].



Figure 1 shows a reduction of real specimens to an idealized geometry more amenable to
analysis [4,5]. The simplification for the pull-out test is to replace the matrix region
surrounding the embedded fiber by an equivalent cylinder of matrix. The length of the cylinder
is equal to the embedded fiber length, le. The radius, rm, is chosen to preserve the total fiber
volume fracture, vf, within the zone of the embedded fiber. The energy release rate analysis can
thus focus on the concentric cylinder model on the right of Fig. 1 because neither the free fiber
outside the matrix nor the matrix zone below the fiber end release energy during crack growth.
The pull-out specimen is loaded by a fiber stress of sd. By force balance, the total stress on the
bottom of the specimen is sdvf. The simplification for the microbond specimen is to replace the
elliptical matrix droplet by a matrix cylinder with length equal to the embedded fiber length and
matrix radius chosen to preserve the total fiber volume fraction within the matrix. The
microbond specimen is loaded by fiber stress of sd at the top of the specimen; that stress is
balanced by a matrix stress of -sdvf /vm. The bottom of a microbond specimen is stress free.

Applying the general composite fracture mechanics methods from Ref. [6] to the idealized
geometry in Fig. 1 with an interfacial debond of length a, the energy release rate for debond
growth in both specimen types can be written as
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where m=0 or 1 is for pull-out or microbond tests, respectively. The term 

† 

s  is a reduced
debonding stress defined by

Fig. 1. The left side shows the microbond (top) and pull-out (bottom) specimen geometries.
The right side shows the equivalent concentric cylinder model where the embedded length of
fiber is in a cylinder of matrix. The fiber in both specimens is loaded with stress sd. The
“dotted'” arrows are the remaining microbond specimen boundary conditions; the solid arrows
on the bottom of the specimen are the remaining pull-out specimen boundary conditions.
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Other terms in Eq. (1) are fiber radius, volume fraction, transverse thermal expansion
coefficient, and axial modulus (rf, vf, aT, and EA), matrix volume fraction, thermal expansion
coefficient, and modulus (vm, am, and Em), a temperature difference which defines the level of
residual stresses (DT), a friction stress on the debond (tf), a stress-transfer function (CT(a)),
and several constants which depend only on the fiber and matrix properties and the geometry
of the concentric cylinders (C33s, D3s, A0, D3, and C33 which are defined in Ref [5]). As
explained elsewhere [5], Eq. (1) is essentially an exact result for debonding energy release rate
in the concentric cylinders model including both the effects of residual thermal stresses and
friction. Residual stresses are included by selecting DT to match the true level of residual
stresses in the specimen. Because rigorous modeling of Coulomb friction is difficult, friction is
included approximately by introducing a constant shear stress on the debond surface of tf.

Equation (1) is written in terms of the solution to an elasticity problem. The cumulative stress
transfer function, CT(a), is defined by:
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where F(z) is the solution for axial fiber stress in concentric cylinders of length le-a  subjected
to unit normal stress on the fiber and a balancing –vf /vm stress on the matrix, both at z=0 in
addition to zero stress on the other end at z=le-a. The functions F(z) and CT(a) can be found by
any analytical, numerical, or even experimental means and then substituted into Eq. (1) to find
the energy release rate. One simple analytical approach, which was demonstrated to be accurate
by comparison to finite element analysis [4,6], is to use shear-lag analysis for which it is easy
to derive [4]:
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where b is a shear-lag parameter as defined in Ref. [4] and elsewhere.

MICROBOND AND PULL OUT EXPERIMENTAL RESULTS

Verification of fracture mechanics methods for the microbond test was done using macroscopic
model specimens of a steel wire embedded in a cylinder of epoxy (see Ref. [4] for specimen
details). Steel/epoxy specimens are analogues of carbon/epoxy or glass/epoxy microscopic
specimens with modulus ratio similar to carbon/epoxy but higher than glass/epoxy specimens.
In macroscopic experiments, crack growth along the interface could be observed visually. After
debonding was complete, it was further possible to observe and record frictional stress. The
key experiments are force as a function of crack length for various specimen geometries. The
verification experiments are summarized in Fig. 2 in which the raw data are interpreted by
fracture mechanics four different ways. For fracture mechanics to be useful, one expects the
measured toughness to be independent of geometrical factors and of crack length. Microbond
experiments satisfy this requirement provided the data are analyzed correctly.

Fig. 2. Crack-resistance curves for a steel/epoxy model specimen analyzed four different ways.
Curve a ignores residual stresses and friction; curve b includes residual stresses but ignores
friction; curve c includes both residual stresses and friction; curve d ignores residual stresses,
but includes friction.



Curve a in Fig. 2 is an analysis that ignores both residual stresses and interfacial friction. This
curve is clearly a poor fracture mechanics result. Curve b includes residual thermal stresses by
setting DT=-95˚C, but still ignores friction; it is also a poor fracture mechanics result. Curves c
and d both include friction effects by setting tf=4.2 MPa which was the measured interfacial
shear stress after complete debonding. Curve c is an analysis that included both residual
stresses and friction. This curve is a good fracture mechanics result. There is an initial rise in
toughness at short debond lengths, but the results soon level out at an approximately constant
toughness (360 J/m2). Curve d  includes interfacial friction, but ignores residual stresses.
Although curve d looks relatively flat on the scale of Fig. 2, it actually never levels off and is a
poor fracture mechanics result. The difference between curves c and d illustrates the magnitude
of the contribution of residual stress to debonding. The magnitude is large; in fact, most of the
energy released comes from residual stresses.

The experiments are more difficult with micro-specimens because it is difficult or impossible to
observe crack growth. From the macroscopic specimen results, and in agreement with theory, it
was found that interfacial crack growth is stable and the load continued to increase until
complete debonding. A proposed fracture mechanics approach when there is no crack length
data is to record the peak load and calculate interfacial toughness from Eq. (1) by taking the
limit as a approaches droplet length [4-6]. This approach was verified by using it on the
macroscopic experiments for which crack length could be observed. The toughness calculated
by the peak-load method agreed reasonably well with a full analysis that included crack-length
information. Figure 3 shows an experimental investigation of the effect of aging on interfacial
toughness from micro-sized E-glass fiber/epoxy specimens [6,8]. These data were analyzed by
the peak-load method. Fracture mechanics analysis should show a toughness that is
independent of droplet length and differences between aged and unaged  results should show
the effect of physical aging on the interfacial toughness. The square symbols are an initial
fracture mechanics analysis that used a simplistic calculation of residual stresses. These results
gave the impression that the interfacial toughness increased with aging. Similarly, a non-fracture
mechanics method suggested that aging affected the interface. The true results were revealed by
new fracture mechanics calculations that included the actual level of residual stresses by
accounting for stress relaxation during the aging process. The final interpretation (circular

Fig. 3. Fracture toughness calculated from microbond specimens as a function of droplet length.
Curves a include residual stresses but do not account for relaxation of those stresses during
aging. Curves b account for relaxation of residual stresses.



symbols) showed that aging does not affect interfacial toughness; it only changes the level of
residual stresses. These experiments illustrate how fracture mechanics interpretation can lead to
the proper interpretation of experiments, but it is essential to have a good energy release rate
analysis and to include all significant effects such as residual stresses and friction.

Fracture mechanics can analyze pull-out tests by similar methods. In the pull-out results for
glass fiber/vinyl ester [9] analyzed in Fig. 4, it was possible to observe initiation of crack
growth as a kink in the load-displacement curve. A toughness was calculated from each
specimen using Eq. (1) by setting a=0 (or any suitably small a). Friction could be ignored
because it had a negligible effect for initiation. The effect of friction only becomes significant as
the debond length gets long. The calculated interfacial toughness for three fibers of different
diameters is plotted in Fig. 4 as a function of embedded fiber length. After an initial rise, all
results became roughly constant. In other words, as expected for good fracture mechanics
results, the interfacial toughness was independent of both fiber length and fiber diameter.

RECOMMENDATIONS

Equation (1) provides an accurate, analytical result that can be used to calculate the energy
release rate for interfacial crack growth in both the microbond and the pull-out test geometries.
Hence, it is possible to derive fracture toughness information from these common interfacial
test methods. The calculation of interfacial toughness requires sufficient experimental input for
determination of all terms in Eq. (1). The key results needed are specimen geometry, current
interfacial crack length, the load required to extend the crack, the actual level of residual
stresses, and the magnitude of any friction on the debond surfaces. Residual stresses are
particularly important for analysis of microbond specimens because they account for much of
the energy released. Friction is especially important as the debond gets long. In some micro-
sized specimens it can be difficult to observe crack growth. This situation can be handled by
using indirect means to deduce crack length. For example, the crack length at the peak load in
microbond tests is nearly equal to the droplet length. For pull-out tests, debond initiation can
sometimes be observed as a kink in the force-displacement curve and the “kink” load
corresponds to zero initial crack length.

Fig. 4. Fracture toughness calculated from initiation of debonding in pull-out tests for glass
fibers of three different diameters in a vinyl-ester matrix as a function of embedded fiber length.
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